

Astroparticle and neutrino oscillation research with KM3NeT

M. Circella (INFN Bari) on behalf of the KM3NeT Collaboration

M. Circella, INFN Bari, KM3NeT, NNN2016, Beijing, 4 Nov. 2016

KM3NeT

Multi-site, deep-sea, next generation neutrino research infrastructure

Single Collaboration, Single Technology

KM3Ne

Objectives

Oscillation Research with Cosmics in the Abyss (ORCA) Astroparticle Research with Cosmics in the Abyss (ARCA)

KM3Ne¹

3

Detector sizes

Phase-1 vs. Phase-2 (ARCA+ORCA)

OALC - 4

Phase-1

Phase-1 (ongoing):

- 24 ARCA DUs at KM3NeT-It (ARCA)
- 6 ORCA DUs at KM3NeT-Fr (ORCA)

Status of infrastructures

ORCA (Toulon, France, 2500 m depth)

- Main electro-optical cable and submarine node
 of Phase-1 installed
- Onshore station up and running

i.e.: infrastructure ready to accept first detection units!

Deployment of the ORCA long-distance cable

ARCA (Capo Passero, Italy, 3500 m depth)

- Shore station operating
- First Junction Box of Phase-1 submarine infrastructure installed
- Two detection units in operation

i.e.: infrastructure up and running, data taking ongoing!

Shore station of ARCA

KM3Ne

Deployment of the ORCA node

Power station ORCA (side by side to ANTARES...)

Cable Termination Frame (above) and first Junction Box (below) of ARCA

7

A bit more about DOMs (Digital Optical Modules)

- 31 PMTs of 3" photocathode in a 17" glass sphere
- Optical gel coupling between PMTs and glass
- Reflection rings around the PMTs to increase detection surface
- Electronics, optics for long-range communications and calibration devices (including: 'nanobeacon' LED pulser, compass/tiltmeter, and piezo-sensor for acoustic measurements) installed inside the sphere – each DOM acting as an individual, autonomous detection node
- Connection to the rest of the apparatus requires two conductors (+12 V power) and one optical fibre through a single penetrator

See presentations by Ronald Bruijn (DOM) and Salvo Viola (calibrations) yesterday

About DOM performance

KM3NeT

A bit more about DUs (Detection Units)

- Mechanical structure of the string based on two dyneema ropes, anchored on sea floor and kept taut by a (commercial) top buoy (plus DOM buoyancy)
 - Slender arrangement
 - DOMs keep the correct attitude
 - String dynamics under control (but requires positioning calibration!)
- DOM collars keep the DOMs in their positions

penetrator

DOM and ropes

- the VEOC (Vertical Electrical-Optical Cable) connects all DOMs to the DU base – the VEOC is an oil-filled pressure-balanced hose equipped with 18 optical fibres (one for each DOM)
- A Break-out-box (BOB) is the interface between a DOM and the VEOC
 - Very simple structure hosting fibre splices and a DC/DC converter
 - A short cable (BEOC BOB Electrical-Optical Cable) connects the BOB to the DOM penetrator

An anchor equipped with a base module allows connection to undersea network BEOC BOB

- DOM collar

— DOM-rope interface

DU

VEOC

ropes

rope spreader bar (and clips)

Detection unit installation

- The detection unit is packed on a launcher vehicle (LOM) and installed on an anchor
- After deployment on sea bed, unfurling is launched by operating a (ROV-operable or acoustic) release
- LOM (and acoustic release) is recovered after operation

Ready to deployment!

Overboard

Connection to undersea infrastructure

ROV inspection of an unfurled DU

Unfurling! 1

Development plan

Selected results from ARCA-DU1&2

Nanobeacon-induced hits in DOMs (light emitted from DOM1 upwards)

KM3NeT preliminary Inter-DOM time offsets in ARCA-DU1

Comparison of time offsets determined with different methods

Depth dependence of multiple-hit coincidence rates

A muon track detected by the two DUs

Preparation of mass production

DOM production: 1 DOM/day/site (ongoing) DU production: 1 DU/month/site

At full speed, it will be possible to mount up to 3 DUs/month (for Phase-1; to be increased for Phase-2)

ARCA

Astroparticle Research with Cosmics in the Abyss

KM3NeT

Diffuse flux searches

Significance $[\sigma]$

IceCube confirmed existence of cosmic neutrino diffuse flux The search for sources is launched!

Track channel

Analysis for up-going events based on maximum likelihood Pre-cuts on $\theta_{zen} > 80^{\circ}$, reconstruction quality parameter and N_{hit} (proxy for muon energy)

Cascade channel

Containment cut on reconstructed vertex to remove atmospheric muons (excludes upper 100 m layer) All sky analysis based on BDT and maximum likelihood.

Reduced search windows

Mediterranean is best location for dedicated search to Galactic Ridge, Fermi Bubbles, etc.

Inner Galactic plane

ANTARES upper limits for 1500 days Phys lett. B2016.06.0511504.00227 KM3NeT/ARCA 5 discovery potential (track events only) for this region considering 1500 days. Improved analysis is ongoing.

KM3Ne

Point-like sources

- KM3NeT sensitivity for point-like sources with unbroken E⁻² spectrum.
- Shower channel is also promising
- The sensitivity may be increased for transient/periodic sources if the time information is provided (from gamma, GW, radio detectors...). Source stacking for the candidate lists.

KM3Ne

ORCA

Oscillation Research with Cosmics in the Abyss

KM3NeT

Measuring NMH with Atmospheric Neutrinos

- A free "beam" of known composition (v_e , v_μ)
- Wide range of baselines (50 \rightarrow 12800 km) and energies (GeV \rightarrow PeV)
- Oscillation pattern distorted by Earth matter effects (hierarchy-dependent):
 - maximum difference IH vs NH at
 - $\theta = 130^{\circ}$ (7645 km) and Ev = 7 GeV
- Opposite effect on anti-neutrinos: IH(v)≈NH(anti-v)
- BUT differences in flux and cross-section:
- Φatm(v) ≈ 1.3 x Φatm(anti-v)
- $\sigma(v) \approx 2\sigma(anti-v)$ at low energies
- Measure zenith angle and energy of upgoing atmospheric GeV-scale neutrinos, identify and count muon and electron channel events
- Careful treatment of systematics mandatory 0 5

E_v [GeV

Sensitivity to Mass Hierarchy

- ~3σ MH sensitivity in 3 years
- The combination of NH and upper octant of θ_{23} would significantly improve sensitivity (5 σ in 3 years)
- For IH, sensitivity is essentially independent of $\theta_{\rm 23}$
- The value of $\delta_{\rm cp}$ has small but non-negligible impact on sensitivity

Best case scenario (NH and θ₂₃=48°) could achieve >5σ by mid 2021 (1.5 years)

Additional ORCA Physics Topics

- Test NSI, sterile and other exotic physics
- Indirect Search for Dark Matter
- Earth tomography and composition
- Low energy neutrino astrophysics
 - Gamma-ray bursts, Colliding Wind Binaries,...
- A neutrino beam from Protvino to ORCA
 - NMH and CP phase
- Supernova monitoring

+ (common to ARCA): Earth and Sea sciences oceanography, seismology, bioacoustics, bioluminescence, ...

W. Winter, arXiv:1511.05154

J. Becker Tjus, arXiv:1405.0471 ...

J. Brunner, AHEP, Volume 2013 (2013), Article ID 782538.

Indirect Detection of Dark Matter

Spin Dependent

Spin Independent

ORCA 3 years - tracks+showers

KM3Ne¹

Future multi-messenger programs

following ANTARES

Bringing together the astronomy, astrophysics and particle astrophysics communities.

Astronomy ESFRI & Research Infrastructure

Cluster

+SNEWS (low energy neutrinos). Both ORCA and ARCA are promising for supernova detection in our Galaxy (measured by optical rate increase in the detector) KM3Ne

Achieved and planned goals

- DOM prototype tested in situ (2500 m) Eur. Phys. J. C (2014) 74:3056
 - DU prototype tested (3 DOMs) in situ (3500 m) 🕮 Eur. Phys. J. C (2016) 76: 54
- Detector geometries defined
- Letter Of Intent is published III J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001
- Data taking at ARCA is ongoing with two DUs
- Preparing to deploy first ORCA DU
- Mass production of the DUs is in preparation (for ARCA and ORCA)
- KM3NeT 2.0 is in ESFRI Roadmap 2016 launch of Phase-2 expected soon!

Summary and Perspectives

- KM3NeT: phased construction of a next-generation neutrino telescope (ARCA-high energy + ORCA-low energy)
- ORCA
 - Neutrino Telescope optimised for low energy (GeV) atmospheric neutrinos offers prospect of rapid and cost-effective measurement of NMH
 - Worst case scenario (IH, NH/first octant) can determine NMH at 3 sigma level in 3 years. Much quicker if NH/second octant
 - Competitive measurements of Δm_{32}^2 and $sin^2\theta_{23}$ parameters, sterile neutrinos, NSI, low mass dark matter,...

ARCA

- It will provide soon complementary measurement of IC flux
- Great capabilities for point-like search (angular resolution <0.2 deg, effective for E>1 TeV) for track events
- Checks neutrino emission from:
 - Galactic plane (3 sigma in 1.3 years)
 - RXJ1713 (3 sigma in 4 years), Vela X (in 2 years)
 - GC (<4 years to rule out the recent model)
 - Other point and extended candidates from gamma-rays (stacking)
- Search for unknown sources (extragalactic/optically thick)
- Multimessenger searches
- Multidisciplinary (bio-, geo-physics)
- Developed novel and performant multi-PMT technology (it may be of interest for other experiments as well)