
J.P. Yanez for the IceCube-Gen2 Collaboration
NNN workshop

Beijing, November 2016

j.p.yanez@ualberta.ca

IceCube's low energy side 
DeepCore & PINGU



Atmospheric neutrinos: 
a multi-purpose beam
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An atmospheric neutrino flux
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An atmospheric neutrino flux

ν oscillations

ντ appearance

ν mass ordering

Sterile ν's

Hadron production

All with a single detector



IceCube DeepCore

A giant, naturally occurring piece of ice deep in Antarctica continuously monitored 
with over 5000 of the most sensitive cameras invented
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Digital Optical Module (DOM)
Ice-Cherenkov detector 

» At the South Pole (ice)

» Depth of 1450-2450 m

» 5160 digital optical modules

» 86 strings, 125m separation

» 17m between DOMs in a string

DeepCore volume

» ~ 500 DOMs, 7m apart

» 40-70m between strings

» Energy threshold ~ 10 GeV
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GeV Neutrinos in ice



Hadrons

μ

Muon range α energy
 (~5m/GeV)

Shower brightness 
scales with energy

~150 Cherenkov 
photons / MeV

ν
μ
 CC DIS → long muon track

50-100m scale

F
oo

tp
rin

t 
vi

ew
S

id
e 

vi
ew



  
14

GeV Neutrinos in ice



Hadrons
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Muon range α energy
 (~5m/GeV)

Shower brightness 
scales with energy

~150 Cherenkov 
photons / MeV
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μ
 CC DIS → long muon track

12 GeV ν
μ
 interaction

8 GeV track (R~40m) + 4 GeV cascade
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GeV Neutrinos in ice
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Neutrino signals in Antarctica
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The detector medium: global

» Naturally occurring, clear ice … that we have tampered with

Global ice optical properties

DeepCore is located at the region with best optical properties
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The detector medium: local

Local ice properties

https://www.youtube.com/watch?v=YWdn3InbsY0

Inter-string flashers

DOM self-flashig

Relative angular acceptance
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The detector medium: calibration

» Advanced studies: DOM flashers (inter-string)

» Studies being improved: minimum ionizing muons

» New studies: Self DOM flashing, in-situ camera 
information

NIM A711:73,2013
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Backgrounds: CR muons
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» Muons from air showers

» Muon trigger rate ~ 105 neutrino trigger rate

» Scattering → misreconstructions

» Known problematic directions
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Backgrounds: PMT noise

» Noise

» Noise rates ~ 500 Hz

» Two components

» random noise + correlated bursts

» Pure noise “events” appear

Noise hit times in a DOM in IceCube

Spontaneous electron emission from a cold surface
H. O. Meyer

Published 26 February 2010 • Europhysics Letters Association 

At cryogenic temperature, the dark rate in a photomultiplier is caused by single electrons, emitted spontaneously from the 
cathode surface. This "cryogenic" dark rate increases with decreasing temperature down to at least 4 K. The average event  
rate ...

Similar effects seen before with cold PMTs
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Neutrino flux modeling: now

»Using Honda'15 flux for South Pole - modifying spectral index & 
normalization

»Uncertainties from Phys.Rev.D74:094009,2006

» Introduce 2 eff. params. → Reproduce changes reported in paper 

»  Neutrino-to-antineutrino ratio (NuNubar)

»  Up-to-horizontal flux ratio (UpHor) Assumptions required!
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E = [3,30] GeV E > 30 GeV

http://arxiv.org/abs/astro-ph/0611266
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Neutrino flux modeling: future

» Moving towards an open tool: MCEq

» Possible to modify

» CR spectrum, primaries

» Hadronic interactions

» Atmospheric conditions

» Goal → better modeling of uncertainties

Calculation of conventional and prompt lepton fluxes at very high energy
A. Fedynitch, R. Engel, T. K. Gaisser, F. Riehn, T. Stanev
arXiv:1503.00544, http://mceq.readthedocs.io/en/latest/index.html

http://arxiv.org/abs/1503.00544
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Neutrino cross sections
» Using GENIE for simulating interactions

» Working on corrections to explain 

x=0.015

x=0.045

X=0.080

x=0.015

x=0.045

X=0.080

Corrections change bin content in experimental histograms by 1-2%



Analysis of diffuse fluxes
Selected results
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Low energy standard oscillations
»  “Low statistics” sample – published PRD 91, 072004, 2015*

»  5k events/year, “golden events”, high neutrino purity (~99%)

»  Events that traverse the Earth, mainly muon neutrinos

»  Muon neutrino disappearance 

→ excellent channel for measuring atmospheric oscillation parameters

* Revised selection - data of this analysis available at http://icecube.wisc.edu/science/data

Su
rv

iv
al

 p
ro

ba
bi

lit
y

arXiv:1509.08404 [hep-ex]

http://arxiv.org/abs/1509.08404
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Low energy standard oscillations

* Revised selection - data of this analysis available at http://icecube.wisc.edu/science/data
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Low energy sterile ν + oscillations
»  Sterile neutrino presence 

→ additional “negative” potential on NC interactions

→ modification of oscillation probabilities

* Revised selection - data of this analysis available at http://icecube.wisc.edu/science/data



  
29* Revised selection - data of this analysis available at http://icecube.wisc.edu/science/data

Low energy sterile ν + oscillations
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Parameters in these analysis

Source of error Nominal value from Uncertainty

Neutrino interactions

Total cross-section scaling

GENIE model

Free

Linear energy dependence E^(+/-0.03)

DIS cross section BodekYang params

Axial mass of non-DIS events ~ +/-20%*

Atmospheric neutrino 
flux

Overall normalization

Honda 2015

Free

Spectral index E^(+/-0.04)

Up/Horizontal ratio E dependent (+/- 8%)

Nu/NuBar ratio E dependent (+/- 25%)

NuE relative normalization +/- 3%

Detection

Hadronic energy scaling
Geant4 (model)

+/- 5%

Hadronization/propagation From models

DOM overall efficiency Muons, flashers +/- 10%  → 4%

DOM angular acceptance* 
(scattering in hole-ice) Fit to flasher data

As large as 50%‡

Model being changed

Bulk-ice model Two models

* Exact value depends on the individual process
‡ Largest deviation for photons perpendicular to PMT direction
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High energy sterile ν oscillations

»  Sterile neutrinos of ~ eV mass → oscillations at Ev ~ 1 TeV

»  Matter effects → enhance even small mixing under correct hierarchy

» Using two through going samples of muon neutrinos (half & full detector)

Phys. Rev. Lett. 117, 071801 (2016)
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High energy sterile ν oscillations

Phys. Rev. Lett. 117, 071801 (2016)
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High energy sterile ν oscillations

Phys. Rev. Lett. 117, 071801 (2016)



Analysis of diffuse fluxes
Near future
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Detailed event reconstruction
»Use arrival time of individual 

photons

» Fit energy + direction 
simultaneously

»More inclusive selection allowed

» Include ice properties

»Similar resolutions in DeepCore

»Higher efficiency

»Working in DeepCore, testing vs 
data

»Used in PINGU analyses
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Inclusive data samples

» “Low statistics” - oscillations publication (PRD 91, 072004, 2015)*

»  5k events/year, “golden events”, high neutrino purity (~99%)

»  Events that traverse the Earth, mainly muon neutrinos

»  “Medium statistics” - finalized, being analyzed

»  ~ 15k events/year, 90% neutrinos / 10% CR muons

»  All sky, sophisticated reconstructions, mainly muon neutrinos

»  “High statistics” - final stages of development

»  ~ 44k events/year, 77% neutrinos / 23 % CR muons

»  All sky, sophisticated reconstructions, all flavors

* Data of this analysis available at http://icecube.wisc.edu/science/data
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MidStats projected precision
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HighStats on ν
τ
 appearance
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Flux measurements of K/Pi ratio
» Neutrinos from Pi & K 

→ different flux vs angle

MidStats High stats



IceCube-Gen2
PINGU
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IceCube-Gen2 at low energies
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IceCube-Gen2 at low energies
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IceCube-Gen2 at low energies

Improve on all DeepCore 
studies listed

+ not mentioned:

»Non-standard interactions

» Indirect dark matter searches

»Neutrino flux spectrum

New studies

» Neutrino mass ordering 

» Octant of θ23
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IceCube-Gen2 sensors

» Baseline sensors →

used for sensitivity studies

» Gain of new sensors 
under evaluation

*For details see yesterday's talk
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IceCube-Gen2 calibration
» POCAM → isotropic light emitter

» Muon tagging OMs (MTOM) → scintillator

Precise knowledge of 
point along trajectory → 
Better understanding of 
reconstructions

MTOM

mDOMs

Optical properties of ice
Global optical efficiency

arXiv:1510.05228

https://arxiv.org/abs/1510.05228
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Staged approach: Phase 1
» 7 additional strings in DeepCore region

» 125 modules per string

» Additional calibration devices

Phase 1 proposal

2016 2017 2018 2019 2020 2021

module R&D

Full module prototype

Module production

Drill firn

Drilling/deployment
Refurbish drill at SP

Cable design, production

Data
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Full IceCube-Gen2 physics
» Neutrino mass ordering
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Full IceCube-Gen2 physics

» Octant of θ23
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Full IceCube-Gen2 physics
» Tau neutrinos and PMNS unitarity
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Conclusion

» Atmospheric neutrinos + IceCube

» Measured standard oscillations parameters

» Set limits on sterile neutrinos, non-standard interactions

» Continuous improvements in

» Detector understanding, simulation

» Selection and event reconstruction

» IceCube-Gen2 (PINGU): unique physics opportunities

» Phase1 – PMNS unitarity

» Full detector: NMO & octant of θ23 



Backup slides
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VLVLNT in context
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Evolution of oscillation analysis in 
IceCube DeepCore

IC2012

IC2014
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LowStats sample breakdown

Component
Events in sample

Osc. No osc.

νμ 3755 5900

ντ 273 -

νe 678 650

νNC 418

Atm. μ 54
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LowStats reconstruction

Latest published DeepCore results

»  Zenith: Require a core of direct  
(unscattered) photons

»Minimize impact of ice properties

»30% efficiency

»Fit zenith angle with direct photons 
(assume no scattering)

»Energy: track+cascade hypothesis

»Fit track length and vertex position/E

»Keep direction fixed

»Assume track and cascade are 
collinear



Hadrons

μ

Find last point of 
Cherenkov light emission

 

Fit of a cascade with a 
track segment
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LowStats reconstruction

Latest published DeepCore results

»  Zenith: Require a core of direct  
(unscattered) photons

»Minimize impact of ice properties

»30% efficiency

»Fit zenith angle with direct photons 
(assume no scattering)

»Energy: track+cascade hypothesis

»Fit track length and vertex position/E

»Keep direction fixed

»Assume track and cascade are 
collinear

Resolutions for DeepCore (PRD)
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LowStats selection efficiency
»Efficiency vs zenith angle

Inelasticity of the final sample

70% NuMu, 30% NuMuBar
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Flux uncertainties outcome
» Modifying neutrino/antineutrino and up/hor ratio

»  Error on nu/nubar ratio can be assigned to either 
component

»  A third parameter decides how to share the error (see 
below)

Neutrino flux integrated between E=15-40 GeV
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LowStats Background

» Muons from air showers

»Starting events → IceCube as veto for DeepCore

»Tag muons directly from data

»Use “event quality” to remove misreconstructions
Analysis of DeepCore data

Final level

Phys. Rev. D 91, 072004 (2015)
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LowStats neutrino identification

»Obtained from comparing fits with different 
hypotheses

»  Assume track+cascade vs only cascade

»  Ratio of the χ2 obtained

»Only track-like events have been used for current 
results
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LowStats sample analyzed

» Energy range, W2 and Q2 according to GENIE

Muon neutrino CC interactions

● 84% DIS
● 10% RES
● 6% QEL
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LowStats DeepCore results

»Using muon tracks 
only

»Best fit to the data from 
a 2D analysis (E, θ)

»Up-going events

»Using E < 56 GeV

»5174 events in 3 years

» In 2D fit histogram

»χ2 = 54.9 / 56 d.o.f.

Projection in L/E (not used in analysis)

Data of this analysis available at http://icecube.wisc.edu/science/data/nu_osc

Phys. Rev. D 91, 072004 (2015)
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LowStats error budget
» Expected reduction of error by removing 

individual sources of uncertainty

sin2(θ
23

) Δm2
31

 (103 eV2)

PRD errors ~ 0.1 ~ 0.2

Hole ice (angular acceptance) 29.88% 2.34%

DOM eff 0.73% 19.06%

Gamma 0.13% 8.67%

NuE 0.05% 0.94%

Atm Mu 0.00% 0.72%

Hadronic energy scale
< 1 %

Axial mass (non-DIS events) Preliminary
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LowStats seasonal variations
» Data used for PRD result (red+blue)

» Neutrinos (Earth-crossing): amplitude ~ 4%

» Atm. Muons (down-going): amplitude ~10%

Neutrinos Tagged atm. muons

Preliminary
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