

IceCube's low energy side DeepCore & PINGU

J.P. Yanez for the **IceCube-Gen2 Collaboration** NNN workshop Beijing, November 2016

Bourses postdoctorales Banting Postdoctoral Fellowships

j.p.yanez@ualberta.ca

Atmospheric neutrinos: a multi-purpose beam

7

9

IceCube DeepCore

A giant, naturally occurring piece of ice deep in Antarctica continuously monitored with over 5000 of the most sensitive cameras invented

Digital Optical Module (DOM)

Ice-Cherenkov detector

- » At the South Pole (ice)
- » Depth of 1450-2450 m
- » 5160 digital optical modules
- » 86 strings, 125m separation
- » 17m between DOMs in a string

DeepCore volume

- » ~ 500 DOMs, 7m apart
- » 40-70m between strings
- » Energy threshold ~ 10 GeV

The IceCube detector

GeV Neutrinos in ice

GeV Neutrinos in ice

GeV Neutrinos in ice

Neutrino signals in Antarctica

The detector medium: global

» Naturally occurring, clear ice ... that we have tampered with

Global ice optical properties

DeepCore is located at the region with best optical properties

The detector medium: local

https://www.youtube.com/watch?v=YWdn3InbsY0

The detector medium: calibration

- » Advanced studies: DOM flashers (inter-string)
- » Studies being improved: minimum ionizing muons
- » New studies: Self DOM flashing, in-situ camera information

Backgrounds: CR muons

» Muons from air showers

» Muon trigger rate ~ 10^5 neutrino trigger rate

Side view of IceCube

- » Scattering → misreconstructions
- » Known problematic directions_1450

Backgrounds: PMT noise

» Noise

- » Noise rates ~ 500 Hz
- » Two components

» random noise + correlated burst

» Pure noise "events" appear

Similar effects seen before with cold PMTs

Spontaneous electron emission from a cold surface

H. O. Meyer

Published 26 February 2010 • Europhysics Letters Association

At cryogenic temperature, the dark rate in a photomultiplier is caused by single electrons, emitted spontaneously from the cathode surface. This "cryogenic" dark rate increases with decreasing temperature down to at least 4 K. The average event rate ...

Neutrino flux modeling: now

- » Using Honda'15 flux for South Pole modifying spectral index & normalization
- » Uncertainties from Phys.Rev.D74:094009,2006
- » Introduce 2 eff. params. \rightarrow Reproduce changes reported in paper
 - » Neutrino-to-antineutrino ratio (NuNubar)
 - » Up-to-horizontal flux ratio (UpHor)

Neutrino flux modeling: future

» Moving towards an open tool: MCEq

Calculation of conventional and prompt lepton fluxes at very high energy A. Fedynitch, R. Engel, T. K. Gaisser, F. Riehn, T. Stanev arXiv:1503.00544, http://mceq.readthedocs.io/en/latest/index.html

- » Possible to modify
 - » CR spectrum, primaries
 - » Hadronic interactions
 - » Atmospheric conditions

» Goal \rightarrow better modeling of uncertainties

Neutrino cross sections

» Using GENIE for simulating interactions» Working on corrections to explain

Corrections change bin content in experimental histograms by 1-2%

Analysis of diffuse fluxes Selected results

Low energy standard oscillations

- » "Low statistics" sample published PRD 91, 072004, 2015*
 - » 5k events/year, "golden events", high neutrino purity (~99%)
 - » Events that traverse the Earth, mainly muon neutrinos
 - » Muon neutrino disappearance
 - \rightarrow excellent channel for measuring atmospheric oscillation parameters

Low energy standard oscillations

* Revised selection - data of this analysis available at http://icecube.wisc.edu/science/data

Low energy sterile v + oscillations

- » Sterile neutrino presence
 - → additional "negative" potential on NC interactions
 - \rightarrow modification of oscillation probabilities

* Revised selection - data of this analysis available at http://icecube.wisc.edu/science/data

Low energy sterile v + oscillations

* Revised selection - data of this analysis available at http://icecube.wisc.edu/science/data

Parameters in these analysis

Source of error		Nominal value from	Uncertainty
Neutrino interactions	Total cross-section scaling		Free
	Linear energy dependence		E^(+/-0.03)
	DIS cross section	GENIE MODEL	BodekYang params
	Axial mass of non-DIS events		~ +/-20%*
Atmospheric neutrino flux	Overall normalization		Free
	Spectral index		E^(+/-0.04)
	<u>Up/Horizontal ratio</u>	Honda 2015	E dependent (+/- 8%)
	<u>Nu/NuBar ratio</u>		E dependent (+/- 25%)
	<u>NuE relative normalization</u>		<u>+/- 3%</u>
	Hadronic energy scaling	Coopt4 (model)	+/- 5%
Detection	<u>Hadronization/propagation</u>		From models
	DOM overall efficiency	Muons, flashers	+/- 10% → 4%
	DOM angular acceptance* (scattering in hole-ice)	Fit to flasher data	As large as 50% [‡] Model being changed
	Bulk-ice model		Two models

* Exact value depends on the individual process

[‡] Largest deviation for photons perpendicular to PMT direction

High energy sterile v oscillations

- » Sterile neutrinos of ~ eV mass \rightarrow oscillations at E_v ~ 1 TeV
- » Matter effects → enhance even small mixing under correct hierarchy
- » Using two through going samples of muon neutrinos (half & full detector)

High energy sterile v oscillations

High energy sterile v oscillations

Analysis of diffuse fluxes Near future

Detailed event reconstruction

- » Use arrival time of individual photons
- » Fit energy + direction simultaneously
- » More inclusive selection allowed
- » Include ice properties

- » Similar resolutions in DeepCore
- » Higher efficiency
- » Working in DeepCore, testing vs data
- » Used in **PINGU** analyses

Inclusive data samples

- >> "Low statistics" oscillations publication (PRD 91, 072004, 2015)*
 - » 5k events/year, "golden events", high neutrino purity (~99%)
 - » Events that traverse the Earth, mainly muon neutrinos
- » "Medium statistics" finalized, being analyzed
 - » ~ 15k events/year, 90% neutrinos / 10% CR muons
 - » All sky, sophisticated reconstructions, mainly muon neutrinos
- » "High statistics" final stages of development
 - » ~ 44k events/year, 77% neutrinos / 23 % CR muons
 - » All sky, sophisticated reconstructions, all flavors

* Data of this analysis available at http://icecube.wisc.edu/science/data

MidStats projected precision

HighStats on v_{τ} appearance

Flux measurements of K/Pi ratio

Pion/Kaon Ratio

IceCube-Gen2 PINGU

IceCube-Gen2 at low energies

IceCube-Gen2 at low energies

IceCube-Gen2 at low energies

Improve on all DeepCore studies listed

+ not mentioned:

» Non-standard interactions
 » Indirect dark matter searches
 » Neutrino flux spectrum

New studies

» Neutrino mass ordering

» Octant of θ_{23}

IceCube-Gen2 sensors

- » Baseline sensors →
 used for sensitivity studies
- » Gain of new sensors under evaluation

*For details see yesterday's talk

IceCube-Gen2 calibration

» POCAM → isotropic light emitter

arXiv:1510.05228

Optical properties of ice Global optical efficiency

» Muon tagging OMs (MTOM) → scintillator

Precise knowledge of point along trajectory → Better understanding of reconstructions

Staged approach: Phase 1

- » 7 additional strings in DeepCore region
- » 125 modules per string
- » Additional calibration devices

Full IceCube-Gen2 physics

» Neutrino mass ordering

Full IceCube-Gen2 physics

» Octant of θ_{23}

Full IceCube-Gen2 physics

» Tau neutrinos and PMNS unitarity

Conclusion

» Atmospheric neutrinos + IceCube

- » Measured standard oscillations parameters
- » Set limits on sterile neutrinos, non-standard interactions
- » Continuous improvements in
 - » Detector understanding, simulation
 - » Selection and event reconstruction

» IceCube-Gen2 (PINGU): unique physics opportunities

- » Phase1 PMNS unitarity
- » Full detector: NMO & octant of $\theta_{\rm 23}$

Backup slides

VLVLNT in context

	Paramator	VLVNT		SK	MINOS TOK NOVA	
	ranameter	ANTARES	DeepCore	SK		
Detector (far)	Instrumentation density (m^{-3})	$9.1 \times 10^{-5} \mathrm{OMs}$	$2.3 \times 10^{-5} \mathrm{DOMs}$	$0.2\mathrm{OMs}$	15 channels	
	Detection principle	ciple Cherenkov light over tens of meters		Cherenkov rings	Trackers/calorimeters	
	E_{ν} resolution	$50\% \pm 22\%$	25% at 20 ${\rm GeV}$	3% at 1 GeV	$10\text{-}15\%$ at $10~\mathrm{GeV}$	
	θ_{ν} resolution	3° at 20 GeV	8 $^\circ$ at $20{\rm GeV}$	$2-3^{\circ}$	_	
	Particle ID capabilities	Muon/no muon in interaction		e, μ, π (rings)	Individual particles, charge	
Neutrino flux	Source of neutrinos	Atmosphere: mix of ν_e , $\bar{\nu}_e$		$ar{ u}_e, u_\mu,ar{ u}_\mu$	Accelerator: $\nu_{\mu}/\bar{\nu}_{\mu}$ modes	
	Baseline	$10\text{-}12700\mathrm{km}$			$300\text{-}800\mathrm{km}$	
	Flux determination	Atm. ν models, self fit		+ top/down ratios	Near/Far detector	
	Energy range	$10{-}100{ m GeV}$		few MeV-few GeV	few GeV	
	Main interaction channel	DIS		${ m QE}$	QE, RES, COH, DIS	
	ν events expected with osc.	530	1800	2000	30(T2K), 900(MINOS)	
	and without osc. (per year)	660	2300	2300	120(T2K), 1050(MINOS)	

Evolution of oscillation analysis in IceCube DeepCore

LowStats sample breakdown

Component	Events in sample		
Component	Osc.	No osc.	
v_{μ}	3755	5900	
v_{τ}	273	-	
V _e	678	650	
$v_{\rm NC}$	418		
Atm. μ	54		

LowStats reconstruction

Latest published DeepCore results

- » Zenith: Require a core of *direct* (unscattered) photons
 - » Minimize impact of ice properties
 - » 30% efficiency
 - » Fit zenith angle with direct photons (assume no scattering)

» Energy: track+cascade hypothesis

- » Fit track length and vertex position/E
- » Keep direction fixed
- » Assume track and cascade are collinear

LowStats reconstruction

Latest published DeepCore results

- » Zenith: Require a core of *direct* (unscattered) photons
 - » Minimize impact of ice properties
 - » 30% efficiency
 - » Fit zenith angle with direct photons (assume no scattering)
- » Energy: track+cascade hypothesis
 - Energy: track+cascade hypothesis » Fit track length and vertex position/ » Keep direction fixed

 - » Assume track and cascade are collinear

LowStats selection efficiency

»Efficiency vs zenith angle

70% NuMu, 30% NuMuBar

Flux uncertainties outcome

- » Modifying neutrino/antineutrino and up/hor ratio
 - » Error on nu/nubar ratio can be assigned to either component
 - » A third parameter decides how to share the error (see below)

LowStats Background

» Muons from air showers

»Starting events \rightarrow IceCube as veto for DeepCore »Tag muons directly from data

»Use "event quality" to remove misreconstructions

Phys. Rev. D 91, 072004 (2015)

LowStats neutrino identification

- » Obtained from comparing fits with different hypotheses
 - » Assume track+cascade vs only cascade
 - » Ratio of the x² obtained
 - »Only track-like events have been used for current results

LowStats sample analyzed

» Energy range, W² and Q² according to GENIE

61

LowStats DeepCore results

Data of this analysis available at http://icecube.wisc.edu/science/data/nu_osc

LowStats error budget

» Expected reduction of error by removing individual sources of uncertainty

	$sin^{2}(\theta_{23})$	Δm ² ₃₁ (10 ³ eV ²)	
PRD errors	~ 0.1	~ 0.2	
Hole ice (angular acceptance)	29.88%	2.34%	
DOM eff	0.73%	19.06%	
Gamma	0.13%	8.67%	
NuE	0.05%	0.94%	
Atm Mu	0.00%	0.72%	
Hadronic energy scale		- 1 0/	
Axial mass (non-DIS events)		Preliminary	

LowStats seasonal variations

- » Data used for PRD result (red+blue)
 - » Neutrinos (Earth-crossing): amplitude ~ 4%
 - » Atm. Muons (down-going): amplitude ~10%

