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 Jiangmen Underground Neutrino Observatory, in Guangdong Province     

 A multiple purpose neutrino experiment, approved in Feb. 2013

JUNO experiment
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Rich Physics [a] : 

Reactor neutrinos: 

Mass hierarchy & Precision measurement of mixing parameters

Supernova neutrinos

Solar neutrinos, Geo-neutrinos, Atmospheric neutrinos

Sterile neutrinos and Dark matter searches

Nucleon decay and other Exotic searches

JUNO physics goals and potentials

• 27-36 GW reactor power, 20k ton LS detector (high statistics of 

inverted beta decay, positron events).

• 3%/ 𝐄(𝐌𝐞𝐕)energy resolution, <1% energy scale uncertainty
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• [a] Fengpeng An, et al (JUNO Collaboration): J. Phys. G 43 (2016) 030401

http://iopscience.iop.org/article/10.1088/0954-3899/43/3/030401/meta;jsessionid=A913A0EE0C8AB9A29A27E405B92C14C6.c3.iopscience.cld.iop.org


Sensitivity on MH

PRD 88, 013008 (2013) Relative Meas. [a]Use absolute Dm2

Statistics only 4s 5s

[b]Realistic case 3s 4s

 JUNO’s sensitivity with 6 years' data

• [a] If accelerator experiments, e.g

NOvA, T2K, can measure ∆𝑀𝜇𝜇 to 

~1% level;

• [b] Take into account multiple 

reactor cores, uncertainties from 

energy non-linearity, etc.
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http://journals.aps.org/prd/pdf/10.1103/PhysRevD.88.013008
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March, 

2014
July, 

2015
SS truss+ Acrylic 

sphere

Balloon + Acrylic support+ SS 

tank

Acrylic 

sphere+

SS truss

Balloon+ 

SS tank

Acrylic 

sphere+

SS tank

Acrylic 

module+

SS tank Final decision:

Acrylic sphere + SS 

truss

History of the Central Detector Design
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Central detector

Acrylic sphere+ 

20kt Liquid Scin+

~17000 20’’ PMT+

~36000 3’’ PMT

Water Cherenkov

~2000 20’’ PMT

Top Tracker

43.5m

D43.5m

AS: ID35.4m

SSLS: ID40.1m

AS: Acrylic sphere;   SSLS: stainless steel latticed shell

Electronics

Filling +

Overflow

44m

Ming Yao

Calibration
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Calibration source selection:

1. Radioactive sources:

2. Optical source: fast Laser (ns) /LED + Fiber + Diffuser

Source Type Radiation
137Cs γ 0.662 MeV
54Mn γ 0.835 MeV
60Co γ 1.173 + 1.333 MeV

40K γ 1.461 MeV
68Ge e+ annil 0.511 + 0.511 MeV
22Na e+ annil + 1.275 MeV

40K e- 0~1.31 MeV
90Sr e- 0~2.28 MeV

241Am-Be n,  γ neutron + 4.43 MeV
241Am-13C or 241Pu-13C n,  γ neutron + 6.13 MeV

252Cf multiple n, multiple γ prompt γ’s,   delayed n’s 

11



• Main issues: the shadowing effects (more important) and the energy loss 

on the dead volume (less important);

• Solution: make the source to be small (generic SS enclosure ∅6×6 mm is 

possible) and with highly reflective surface

Radioactive source enclosure (γ and neutron)

20cm

20cm

Quick connector

Source

Bottom Weight
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Bias of full abs peak due to enclosure (MC)

• Bias due to the enclosure <0.2% 

𝐵𝑖𝑎𝑠 =
𝑀𝑒𝑎𝑛 𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒 − 𝑀𝑒𝑎𝑛(𝑛𝑎𝑘𝑒𝑑)

𝑀𝑒𝑎𝑛(𝑛𝑎𝑘𝑒𝑑)

• Full absorption peak determine:

Compton edge + Gaussian fitting
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Overview of source deployment systems

• Internal source deployment:

 Automatic Calibration Unit (ACU)

• Scan the central axis (1D)

 Cable Loop System (CLS)

• Scan one vertical plane (2D)

 Remotely Operated Vehicle 

(ROV)

• Scan “everywhere” (3D)

• External source deployment:

 Guide Tube (GT)

• Scan CD outer surface (boundary)
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ACU chamber
∅ =1.4 m, h=1 m

Two independent 
cable loop systems

Remotely 
Operated Vehicle Source storage

Overview of Internal Source Deployments
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Design of ACU

Neutron 
source

Gamma 
source

• Regular deployment (every week)，very similar to Daya Bay’s design

• Deployment of radioactive and optical source along the central axis

• The rotation motor: 100 rpm (100:1), and the deployment motor: 20 rpm (10:1) 

Turntable

Bellow

Servomotor

Spool

∅ = 60 cm

h
=

 6
3

.4
 c

m

∅ = 100 cmJUNO detector 

central axis

Load cell
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Cable loop system (CLS)

 The central detector has obvious non-uniformity, especially at large R; 

 very necessary to scan the position at large R (CLS is needed)

 MC simulation found that the detector has good symmetry in ∅ (ROV 

can be used to calibrate the detector’s response in ∅ );

 plate scanning can be extended to whole volume (CLS is meaningful)

18

∅



Cable Loop System 

• Scan the off-center plane (every month);

• Two independent systems for each half 

plane scanning;

• Quick connector and electronic hands 

for source changing.

Water Line

Tracker

Central 
cable

Side 
cable

pulley

Side cable

Source
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Quick connector 



Overview of the ROV design (section view)

Cable

Ultrasonic 

emitters

PCB board

Jet pump A

Buoyancy unit

Leakage 

sensor

Jet pump B

Depth 

sensor

CCD 

camera

Clamping

• Computed several ROV shapes, 

difference insignificant (everywhere 

source!)

• No deployment cable in the model yet

• Full volume bias is ~0.3% 
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Horizontal: two orthogonal jet pumps

Vertical: buoyancy device 



Guide Tube for boundary study

Boundary Effect:

 Calibration in the area that ACU, CLS and ROV can not reach.

 Neutron Spill in/out effect study

21
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AB

C D

a
b

c
d

Source positioning system

• Ultrasonic positioning system (primary):

• Serves for both ROV and CLS;

• Ultrasonic emitter and receiver array (150 kHz);

• Time of flight method to reconstruct the position;

• Positioning error <30 mm, positon resolution 

better than 5 mm.

emitter

receivers

• Infrared CCD monitor/positioning system:

• Active infrared light source (940 nm);

• Infrared CCDs take pictures for position 

reconstruction.

• Ultrasonic works as the primary and CCD 

as assistant (monitoring).
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Radioactive 
Source

Non-uniformity 
correction mapping

(Inputs for the 
reconst algorithm)

Non-linearity 
correction mapping

ACU+CLS+
GT (ROV)

ACU

One or multiple sources

Multiple sources (𝛾/𝛽/e+)

Source in CD volume

Source at CD center

IBD events Event vertex

IBD energy 
spectrum

positioning 
system

NH/IH

χ
2

fit

Position 
reconstruction

Overview of JUNO calibration strategy (Preliminary)

Fast optical 
source (ns)

PMT&&Electronics 
calibration

input
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Non-uniformity correction with ACU/CLS/GT

Guide Tube

Ratio to center as function of R and 𝜃
Fit it with spline function to get 𝑓(𝑅, 𝜃)

CLS
ACU

𝜃

Polar coordinates

~266 calibration positions

𝜃𝑅

𝑅
a

ti
o

anchor

𝑓 𝑅, 𝜃 mapping for position non-uniformity 

correction: (Co60, 100 Hz and 5-mins data taking).
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(Before correction) (After correction)

Non-uniformity correction for gamma events 

 Energy resolution improves significantly 

after the position non-uniformity 

correction.

 Energy resolution follows ∝
1

𝐸

G
a

m
m

a
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 Uniformly distribute mono-energy gamma events in CD;

Correct every event to the center of the detector.



 Same correction mapping is applied to positron events
P

o
si

tr
o

n

(Before correction) (After correction)

 It’s possible to use a single source 

(Co60) to correct the detector’s 

non-uniformity and reach a good 

energy resolution (3%/√E )! 

 Source change system makes it 

possible to use multiple sources

Non-uniformity correction for positron events 
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Positron energy non-linearity

 Positron E non-linearity in Daya Bay experiment [a]:

• Most energy scale uncertainty at the low energy region

• [a] Daya Bay Collaboration: arXiv:1610.04802 [hep-ex]

[MeV]

https://arxiv.org/abs/1610.04802


JUNO Energy non-linearity calibration

Develop the special “windowless” source;

 Locate positron (68Ge, 22Na) and beta sources (40K, 90Sr) at the 

detector center with ACU and get the detector’s response in PE 

spectrum;

 Based on the MC, fit the PE spectrum and  extract the 

parameterized function between PE and deposited energy;

 Reconstruct the electron energy with the parameterized function;

Approach-1:

 Based on the gamma energy calibration, use gammas as workhorse 

to nail e+ nonlinearity.

Approach-2:

Two methods can be crosschecked with each other!
29

Nonlinearity (𝛾) = PDF (𝛾 -to-electron) x Nonlinearity (electron)



Gamma energy non-linearity calibration

 Locate various gamma (137Cs, 54Mn, 40K)、electron (68Ge, 22Na) and neutron 

sources (241AmBe, 241Am-13C or 241Pu-13C) at the detector center with ACU;

 Study the detector’s response to different gamma energies (0.511, 0.662, 

0.835, 1.275, 2.22, 1.46, 4.43, 6.13 MeV) ;

 Reconstruct the gamma energy with the spline fitting.

Bias of the reconstructed gamma energyDetector’s response to gamma energies

30

The bias is less than 0.2% in MC (assuming 100 Hz event rate and 

30-min data taking as well as 5-cm reconstruction resolution).



 Very thin foil (can be 1~2 𝜇m): introduce the neglectable energy loss for electrons;

 High optical transparency source enclosure (acrylic): small shadowing effect.

PE

Thin foil

LS

Acrylic shell

Acrylic holder

wire

Key points:

Looks quite promising to achieve <1% energy scale uncertainty.

Comparison between naked and foiled K40

Special e+/e- source consideration: foil source
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Summary

• JUNO is a multiple purpose project and will measure 

the neutrino mass hierarchy (3-4 σ in 2026).

• The design of the central detector is finalized and 

construction and R&D are on schedule.

• Energy resolution and scale uncertainty are the key 

to mass hierarchy measurement.

• With the MC simulation, the current calibration 

strategy should allow us to achieve 3%/√E energy 

resolution and <1% energy scale uncertainty.
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Thank you!
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Backup slides
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Source enclosure test in the prototype detector

Naked source Steel enclosure Teflon enclosure Daya Bay enclosure

Cs137: 2π, 3×5×10mm

24mm24mm

50mm

10mm

Co60: 4π, 6×6mm
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Bias introduced by the source enclosure (data)

𝑏𝑖𝑎𝑠 =
𝑚𝑒𝑎𝑛 𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒 − 𝑚𝑒𝑎𝑛(𝑛𝑎𝑘𝑒𝑑)

𝑚𝑒𝑎𝑛(𝑛𝑎𝑘𝑒𝑑)

Naked
Teflon 

enclosure

Steel 

enclosure

Daya Bay 

enclosure

Mean (MC) 790.4(0.2) 791.9(0.2) 782.6(0.2) 772.4(0.2)

Bias (%) (MC) 0 +0.19(0.04) -0.99(0.04) -2.28(0.04)

Bias (%) (Measurement) 0 +0.21(0.006) -0.78(0.006) -2.59(0.006)

Spectrum for Cs137
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Energy bias with foil beta source (preliminary)

• Energy response: E = f(PE) =
p0+p1∙PE

1+p2∙e
−p3∙PE

K40 PE spectrum fitting Bias of the reconstructed energy 

It’s very promising to achieve less than 1% energy scale uncertainty
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