

JUNO central detector and its calibration strategy

Mengjiao Xiao University of Maryland, College Park (On behalf of the JUNO collaboration) 2016-11-03

NNN'16, November 3-5, 2016, IHEP, Beijing · China

Outline

- Introduction to JUNO experiment
- JUNO central detector
- Calibration to the central detector
 - Calibration source design.
 - Calibration source deployment and positioning systems.
 - Strategy for position non-uniformity and energy nonlinearity calibration (MC simulation).
- Summary

JUNO experiment

- Jiangmen Underground Neutrino Observatory, in Guangdong Province
- > A multiple purpose neutrino experiment, approved in Feb. 2013

JUNO Collaboration

Institute	19.
Yerevan Physics Institute	
Universite libre de Bruxelles	5
PUC	
UEL	~
PCUC	
BISEE	1
Beijing Normal U.	6
CAGS	14
ChongQing University	- 1
CIAE	- 5
DGUT	
ECUST	
Guangxi U.	
Harbin Institute of Technology	
IHEP	
Jilin U.	
Jinan U.	
Nanjing U.	
Nankai U.	
NCEPU	
Pekin U.	
Shandong U.	
Shanghai JT U.	
IMP-CAS	
SYSU	
Tsinghua U.	
UCAS	
USTC	
U. of South China	
Wu Yi U.	6
Wuhan U.	U
Xi'an JT U.	

6 institutions, 444 collaborators, 8 observers

China Xiamen University					
China	NUDT				
Czech	Charles U.				
Finland	University of Oulu				
France	APC Paris				
France	CPPM Marseille				
France	IPHC Strasbourg				
France	LLR Palaiseau				
France	Subatech Nantes				
Germany	Forschungszentrum Julich				
Germany	RWTH Aachen U.				
Germany	TUM				
Germany	U. Hamburg				
Germany	IKP FZI Jülich				
Germany	U. Mainz				
Germany	U. Tuebingen				
Italy	INFN Catania				
Italy	INFN di Frascati				
Italy	INFN-Ferrara				
Italy	INFN-Milano				
Italy	INFN-Milano Bicocca				
Italy	INFN-Padova				
Italy	INFN-Perugia				
Italy	INFN-Roma 3				
Pakistan	PINSTECH				
Russia	INR Moscow				
Russia	JINR				
Russia	MSU				
Taiwan	National Chiao-Tung U.				
Taiwan	National Taiwan U.				
Taiwan	National United U.				
Thailand	SUT				
USA	UMD1				
USA	UMD2				

JUNO physics goals and potentials

- 27-36 GW reactor power, 20k ton LS detector (high statistics of inverted beta decay, positron events).
- $3\%/\sqrt{E(MeV)}$ energy resolution, <1% energy scale uncertainty

Rich Physics ^[a]:

≻ Reactor neutrinos:

Mass hierarchy & Precision measurement of mixing parameters

- ≻ Supernova neutrinos
- ≻Solar neutrinos, Geo-neutrinos, Atmospheric neutrinos
- ➤ Sterile neutrinos and Dark matter searches
- ➤ Nucleon decay and other Exotic searches
- [a] Fengpeng An, et al (JUNO Collaboration): <u>J. Phys. G 43 (2016) 030401</u>

Sensitivity on MH

Outline

- Introduction to JUNO experiment
- JUNO central detector
- Calibration to the central detector
 - Calibration source design.
 - Calibration source deployment and positioning systems.
 - Strategy for position non-uniformity and energy nonlinearity calibration (MC simulation).
- Summary

History of the Central Detector Design

AS: Acrylic sphere; SSLS: stainless steel latticed shell

Outline

- Introduction to JUNO experiment
- JUNO central detector

Calibration to the central detector

- Calibration source design.
- Calibration source deployment and positioning systems.
- Strategy for position non-uniformity and energy nonlinearity calibration (MC simulation).
- Summary

Calibration source selection:

1. Radioactive sources:

Source	Туре	Radiation
¹³⁷ Cs	γ	0.662 MeV
⁵⁴ Mn	γ	0.835 MeV
⁶⁰ Co	γ	1.173 + 1.333 MeV
⁴⁰ K	γ	1.461 MeV
⁶⁸ Ge	e ⁺	annil 0.511 + 0.511 MeV
²² Na	e^+	annil + 1.275 MeV
⁴⁰ K	e	0~1.31 MeV
90Sr	e	0~2.28 MeV
²⁴¹ Am-Be	n, γ	neutron + 4.43 MeV
²⁴¹ Am- ¹³ C or ²⁴¹ Pu- ¹³ C	n, γ	neutron + 6.13 MeV
²⁵² Cf	multiple n, multiple γ	prompt γ 's, delayed n's

2. Optical source: fast Laser (ns) /LED + Fiber + Diffuser

Radioactive source enclosure (y and neutron)

- Main issues: the shadowing effects (more important) and the energy loss on the dead volume (less important);
- Solution: make the source to be small (generic SS enclosure Ø6×6 mm is possible) and with highly reflective surface

Bias of full abs peak due to enclosure (MC)

Outline

- Introduction to JUNO experiment
- JUNO central detector
- Calibration to the central detector
 - Calibration source design.
 - Calibration source deployment and positioning systems.
 - Strategy for position non-uniformity and energy nonlinearity calibration (MC simulation).
- Summary

Overview of source deployment systems

Calibration house Internal source deployment: ACU Central cable Automatic Calibration Unit (ACU) Side cable Scan the central axis (1D) Cable Loop System (CLS) Bridge Scan one vertical plane (2D) Remotely Operated Vehicle CLS pulley (ROV) Scan "everywhere" (3D) source • External source deployment: Guide Tube ROV 000 Guide Tube (GT) Scan CD outer surface (boundary)

Overview of Internal Source Deployments

Design of ACU

- Regular deployment (every week), very similar to Daya Bay's design
- Deployment of radioactive and optical source along the central axis
- The rotation motor: 100 rpm (100:1), and the deployment motor: 20 rpm (10:1)

Cable loop system (CLS)

- > The central detector has obvious non-uniformity, especially at large R;
- \Rightarrow very necessary to scan the position at large R (CLS is needed)
- MC simulation found that the detector has good symmetry in Ø (ROV can be used to calibrate the detector's response in Ø);
- \Rightarrow plate scanning can be extended to whole volume (CLS is meaningful)

Cable Loop System

Overview of the ROV design (section view)

Guide Tube for boundary study

Boundary Effect:

- Calibration in the area that ACU, CLS and ROV can not reach.
- Neutron Spill in/out effect study

Source positioning system

• Ultrasonic works as the primary and CCD as assistant (monitoring).

Outline

- Introduction to JUNO experiment
- JUNO central detector
- Calibration to the central detector
 - Calibration source design.
 - Calibration source deployment and positioning systems.
 - Strategy for position non-uniformity and energy nonlinearity calibration (MC simulation).
- Summary

Overview of JUNO calibration strategy (Preliminary)

Non-uniformity correction with ACU/CLS/GT

Non-uniformity correction for gamma events

- > Uniformly distribute mono-energy gamma events in CD;
- \succ Correct every event to the center of the detector.

Non-uniformity correction for positron events

Same correction mapping is applied to positron events

Positron energy non-linearity

- > Positron E non-linearity in Daya Bay experiment [a]:
 - Most energy scale uncertainty at the low energy region

• [a] Daya Bay Collaboration: arXiv:1610.04802 [hep-ex]

JUNO Energy non-linearity calibration

Approach-1:

Based on the gamma energy calibration, use gammas as workhorse to nail e+ nonlinearity.

Nonlinearity (γ) = PDF (γ -to-electron) x Nonlinearity (electron)

Approach-2:

- > Develop the special "windowless" source;
- Locate positron (⁶⁸Ge, ²²Na) and beta sources (⁴⁰K, ⁹⁰Sr) at the detector center with ACU and get the detector's response in PE spectrum;
- Based on the MC, fit the PE spectrum and extract the parameterized function between PE and deposited energy;
- > Reconstruct the electron energy with the parameterized function;

Two methods can be crosschecked with each other!

Gamma energy non-linearity calibration

- Locate various gamma (¹³⁷Cs, ⁵⁴Mn, ⁴⁰K), electron (⁶⁸Ge, ²²Na) and neutron sources (²⁴¹AmBe, ²⁴¹Am-¹³C or ²⁴¹Pu-¹³C) at the detector center with ACU;
- Study the detector's response to different gamma energies (0.511, 0.662, 0.835, 1.275, 2.22, 1.46, 4.43, 6.13 MeV);
- > Reconstruct the gamma energy with the spline fitting.

The bias is less than 0.2% in MC (assuming 100 Hz event rate and 30-min data taking as well as 5-cm reconstruction resolution).

Special e⁺/e⁻ source consideration: foil source

Key points:

> Very thin foil (can be $1 \sim 2 \mu m$): introduce the neglectable energy loss for electrons;

> High optical transparency source enclosure (acrylic): small shadowing effect.

Looks quite promising to achieve <1% energy scale uncertainty.

Summary

- JUNO is a multiple purpose project and will measure the neutrino mass hierarchy (3-4 σ in 2026).
- The design of the central detector is finalized and construction and R&D are on schedule.
- Energy resolution and scale uncertainty are the key to mass hierarchy measurement.
- With the MC simulation, the current calibration strategy should allow us to achieve 3%/√E energy resolution and <1% energy scale uncertainty.

Thank you!

Backup slides

Source enclosure test in the prototype detector

Bias introduced by the source enclosure (data)

Energy bias with foil beta source (preliminary)

