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• Parallel session 2 
– Sensors 

– Electronics 

– DAQ 

• Apologize for the 
partial summary 
and not highlight 
all your points. 

• For more 
technical details, 
please refer to 
the parallel talks 
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Sensors: photon detection 
• According to the larger and larger target volume, 

smart/intelligent/digital  PMT or module 
showing more advantages: digitize 
signal/control with front end electronics directly 
considering cost, signal quality, reliability  etc. 
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KM3NeT 

IceCube-
Gen2 

JUNO 

Hyper-K 

20inch 

3inch 

LAPPD 

• Fast timing (<100ps), large area 
and vertex sensitive LAPPD is 
under developing and testing 



KM3NeT 
• Cherenkov light 
• Large area, good efficiency, photon counting 
• Hold of >400bars: Sea-bed: ~3.5 km deep 
• Full directional detection 
• Monitoring and calibration 
• Reliability, lower power consumption  
• Cost effective 
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Ronald Bruijn (Nikhef) 

ARCA and ORCA 
5.7 Mton to ~ Gton 

Pressure water 
Un-changeable with reliability 



Digital Optical Module (DOM) 
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PMT bases and light 
concentration 



Mechanics 
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Timing and 
efficiency 
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IceCube-Gen2 
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Juan-Pablo Yanez (University of Alberta) Pressure ice 
Un-changeable with reliability 



IceCube-Gen2 DOM 
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Baseline option 

Pressure rating 700 bar 



Gen2 DOM other candidates 
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~1W/module 

Segmented modules, more but smaller PMTs 
Uniform angular coverage 
Dynamic digitization scheme 



JUNO PMT system 
• 20 kton Liquid scintillator 
• ~75% photon cathode coverage 
• High efficiency, energy response 
• Double calorimetry 
• waveform measurement 
• Implosion protection 
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Zhonghua Qin (IHEP) Pressure water 
Un-changeable with 
reliability 
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PC or PETG not working with thickness < 5 mm, and loss light 
significantly with thickness > 5 mm 

Acrylic cover thickness >= 9 mm is a good choice for JUNO.  

Implosion protection 
design and test 



Hyper-K 

• Giant underground 
water Cherenkov 
Detector  
– Two tanks 
– 520 kt of 

ultrapure water  
– 93,400 photo-

sensors (80,000 
ID + 13,400 OD)  

• Measure charge 
and timing of 
pulses coming from 
Cherenkov photons.  
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Marcin Ziembicki (W) Pressure water 
Un-changeable with reliability 
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Baseline option 

Front end electronics under water  
(current baseline design) 



LAPPD 
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Large-Area Picosecond Photo-Detectors 
(LAPPDTM) 

Andrey Elagin (U) 

 Large-Area Picosecond Photo-Detectors 
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107 gain 
<50 ps timing resolution 
<1 mm position resolution 

ANNIE  
NuDot 



Electronics 
• Front end electronics for photon detection 

– Hit: photon counting 

– Timing: leading edge 

– Time over threshold (ToT): Width of pulse  

– Multi Discriminators 

– Amplitude 

– Charge 

– Waveform sampling 
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KM3NeT 

IceCube-Gen2 

JUNO 

Hyper-K 
Under investigation 

Considering physics requirements, partial or full information 
recording, reliability, power consumption, cost, … 



KM3NeT 
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KM3NET 
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~140mW@31 PMTs 



IceCube-Gen2 
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Discriminators 

Readout chain 

Reconstructed waveform 

~1W/module 

Baseline option 



ADC Chip Vulcan for JUNO PMT waveform 
sampling 
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• The receiver electronics are attached to the PMT underwater for: 
• Lower data bandwidth on the cable 
• Programmable signal threshold modes 
• Local data storage  (RAM) for supernova events 
• Programmable digital signal pre-processing to further reduce data 

bandwidth 
• Intelligent PMT developed together with several groups in Asia and 

Europe  

Christian Grewing  
(Forschungszentrum Juelich: Central Institute of Engineering, Electronics and Analytics) 

General Control Unit (GCU):  Instituto Nazionale di Fisica Nucleare, Università di Padova  
• Connection to the BEC and control of the HV and ADU   
• LVDS signal interface to the ADU 
• Dedicated fast memory (2GB) for local signal storage (supernova) 
• Configurable digital processing of the signal and signal over threshold generation  
Analog to Digital conversion Unit (ADU), Vulcan System on Chip: Forschungszentrum Jülich, ZEA-2 
• Highly linear, low noise receiver 
• 3 - 8bit, 1Gb/s Flash ADC with programmable characteristics 
• Programmable data reduction and low jitter clock generation 
• Configurable trigger schemes, overshoot compensation 
• All integrated regulators w/o external capacitors for all internal supplies 
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Signal Mode  

1  2 4  8  16  31  64  128  256  512  1024  2048
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6 ADC High Gain ADC Medium Gain ADC Low Gain

Charge
[photo electron; p.e.]

ADC out
[]

1b=0.06p.e. 1b=0.4p.e. 1b=8 p.e.

1. Two signal chains with programmable gains and parallel TIA inputs, combined input 
resistance R ≈  5Ω 
2. With larger input currents >20mA the TIA inputs saturate, the ESD diodes open with a 
combined resistance R ≈  5Ω, The voltage over the diodes is measured with the third signal 
chain 
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3 LVDS trigger lines are available one for each of the 3 ADC  
Configurable trigger modes: 

• Analog voltage comparator for fastest trigger 
• Digital threshold value  
• Integrating the last 8/16/32 values and compare 

with digital threshold 
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Hyper-K 
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Hyper-K 

~0.5 W/channel 

Super-K used 



Cold Electronics for LAr and LXe 

• First step: ICARUS 
– Cold LArTPC with warm FE and digitization 
– Achieved excellent S/N (G. Meng’s slides) 
– Planned warm electronics upgrade for SBN 

 
 

• Next generation: MicroBooNE, ArgoNeuT, LArIAT, others… 
– Cold FE with warm digitization 
– Overall achieved excellent S/N (slides from Asaadi, Bishai, Mooney) 
– Beginning to produce physics results 

 

• Future development: large LArTPCs 
– ProtoDUNE-SP/SBND toward DUNE 
– Cold FE to achieve low S/N 
– Cold digitization for simplicity of large cryostat design 
– Dual-phase unique amplification and “warm” CE (Shuoxing’s slides) 

• nEXO readout in LXe 
– Cold FE, option to use either warm or cold digitization 
– Which option achieves necessary S/N? (Wenhuan’s slides) 

S. Gao’s slides 
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Cold electronics 
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Shanshan Gao (bnl) 



ICARUS 
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guang meng (infn) 
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Shanshan Gao (bnl) 



nEXO 
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Wenhuan Wu (IHEP) 
Lower noise with CE 
Lower radioactivity 

Energy resolution from 1.2% (EXO) to 1% (nEXO) at Q value 
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Adapting LAr ASIC readout similar to BNL 

Critical spec.: <200e-/ch; tested ~265e-/ch 



DAQ 
• From the view of intelligent/digital PMT or modules, fiber or net 

cables are used for digital data transferring in tens to thousands 
meters distance directly to PC for further analysis, even no global 
triggering. 

• The issues are the event builder, bandwidth, data volume. 
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ICARUS 
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From 3Hz to 15Hz 

Differential value 
storing with 4bits 

instead of total 
10bits, with ~4 
compression 

factor 



Words for summary 

• Huge detector target volume asking for more intelligent 
detecting sensors 
– Directional 
– High efficiency 
– Cost effective 
– High Reliability 

• More photon sensors come true or under developing 
– 20” MCP PMT 
– LAPPD 

• Front end electronics and DAQ also updating our mind and 
design 
– Cold electronics for better SNR and sensitive measurement 
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Thanks for your attention! 
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Thanks all the speakers and attendance 
of Parallel session 2. 


