



# Ultralow background LS and related technologies

Grzegorz Zuzel

Jagiellonian University, Cracow, Poland

#### **Outline**



- Ultra-pure LS: BOREXINO
- Internal and external background: mitigation techniques
- LS purification
- Conclusions



#### **BOREXINO at LNGS**



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





### **BOREXINO** design



BOREXINO

Bcg mitigation

LS purification

Conclusions





# **BOREXINO** radio-purity

In a nutshell: the cleanest detector ever built



#### **BOREXINO**

Bcg mitigation

LS purification



| Isotope Specification for LS     |                             | Achieved after filling (2007 - 2010)         |
|----------------------------------|-----------------------------|----------------------------------------------|
| 238 <b>U</b>                     | $\leq 10^{-16} \text{ g/g}$ | $(5.3 \pm 0.5) \cdot 10^{-18} \text{ g/g}$   |
| <sup>232</sup> Th                | $\leq 10^{-16} \text{ g/g}$ | $(3.8 \pm 0.8) \cdot 10^{-18} \text{ g/g}$   |
| <sup>14</sup> C/ <sup>12</sup> C | ≤ 10 <sup>-18</sup>         | $(2.69 \pm 0.06) \cdot 10^{-18} \text{ g/g}$ |
| $^{40}\mathrm{K}$                | $\leq 10^{-18} \text{ g/g}$ | $\leq 0.4 \cdot 10^{-18} \text{ g/g}$        |
| <sup>85</sup> Kr                 | ≤ 1 cpd/100 t               | $(30 \pm 5) \text{ cpd/}100 \text{ t}$       |
| <sup>39</sup> Ar                 | ≤ 1 cpd/100 t               | << <sup>85</sup> Kr                          |
| <sup>210</sup> Po                | not specified               | ~ (70) 1 dpd/100 t                           |
| <sup>210</sup> Bi                | not specified               | (20) 70 dpd/100 t                            |

$$A_{Bx} = \sum (bcg \ ev.) \sim 30 \frac{cpd}{100 \ t} \sim \mathbf{10^{-9}} \frac{Bq}{kg}$$

$$A_{water} \sim \mathbf{10} \frac{Bq}{kg}$$

$$\rightarrow activity \ reduction \ factor$$

$$f \sim \mathbf{10^{10}}$$





#### **BOREXINO**

Bcg mitigation

LS purification



- Graded shielding: traveling inward to the center, each component is protected from external radiation by the preceding one
- The radio-purity level is increasing towards the center
- Active (definition of FV, Čerenkov veto) and passive (PC buffer, water) suppression of external radiation
- Careful selection of construction materials and detector components with respect to content of radioactive isotopes, <sup>222</sup>Rn emanation and permeability
- Preventing surface contamination
- Application of appropriate purification (liquids, gases) and cleaning techniques

### **BOREXINO** design



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





#### CTF – testing the scintillator



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions

Nn<sup>,</sup>16



CFT – 1: 1995

CTF - 2:2000

CTF - 3: 2001-2003

- Phys. Lett. B, 422, 349 (1998)
- Astrop. Phys. 8(3), 141 (1998)
- NIM A406, 411 (1998)
- Physics Letters B 525, 29 (2002)
- Physics Letters B 563, 23 (2003)
- Physics Letters B 563, 37 (2003)
- JETP Lett. 78 No 5, 261 (2003)
- Eur. Phys. J. C 37, 421 (2004)
- Eur. Phys. J. C 47, 21 (2006)
- Phys. Rev. C 74, 045805 (2006)

$$\frac{^{14}C}{^{12}C} \sim 10^{-18}$$
  $C_{U/Th} \sim 4 \times 10^{-16} \ g/g$ 

## **HPGe spectroscopy**



#### **BOREXINO**

Bcg mitigation

LS purification

Conclusions



#### **GeMPIs at GS** (3800 m w.e.)

- GeMPI I operational since 1997 (MPIK)
- GeMPI II built in 2004 (MCavern)
- GeMPI III/IV constructed in 2007-2012 (MPIK/LNGS)
- World's most sensitive spectrometers

#### **GeMPI I:**

- Crystal: 2.2 kg,  $\varepsilon_{\rm r} = 102 \%$
- Bcg. Index (0.1-2.7 MeV): 6840 cts/kg/year
- Sample chamber: 15 l

Sensitivity for U/Th: ~10 μBq/kg

Appl. Rad. Isot., 53 (2000) 191 Astrop. Phys. 18 (2002) 1



# Survey different materials

| X | Septem 1 |
|---|----------|
|   | X        |

BOREXINO

Bcg mitigation

LS purification

Conclusions



|  | Sample             | Description      | <sup>226</sup> Ra<br>[mBq/kg] | <sup>228</sup> Th<br>[mBq/kg] | <sup>40</sup> K [mBq/kg]   |
|--|--------------------|------------------|-------------------------------|-------------------------------|----------------------------|
|  | a                  | AISI304L: SSS    | $4.6 \pm 0.9$                 | $11.4 \pm 1.1$                | < 14                       |
|  | Stainless<br>Steel | SS for pipes     | < 14                          | < 10                          | < 34                       |
|  | Steel              | SS for flanges   | $6.2 \pm 1.2$                 | $6.5 \pm 1.6$                 | < 13                       |
|  | PMTs               | Dynodes          | < 280                         | $450 \pm 163$                 | < 240                      |
|  | inner              | Ceramic plates   | $170 \pm 50$                  | $310 \pm 60$                  | $960 \pm 450$              |
|  | parts              | Al for dynodes   | $1190 \pm 100$                | $980 \pm 80$                  | $2800 \pm 600$             |
|  | PMTs               | Mu metal         | $57 \pm 20$                   | < 27                          | < 180                      |
|  | ancillary<br>parts | Volt. div. board | $170 \pm 60$                  | $80 \pm 40$                   | $770 \pm 360$              |
|  |                    | Voltage divider  | $680 \pm 30$                  | $320 \pm 20$                  | $3200 \pm 320$             |
|  | Glass              | Sand for glass   | $40 \pm 3$                    | < 3.1                         | < 25                       |
|  |                    | ETL LB glass     | $820 \pm 230$                 | $130 \pm 12$                  | $500 \pm 120$              |
|  |                    | Base glass       | $520 \pm 90$                  | $410 \pm 90$                  | $(2.2 \pm 0.6) \cdot 10^5$ |
|  |                    |                  |                               |                               |                            |

Astroparticle Physics 18 (2002) 1

#### <sup>222</sup>Rn emanation



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions

Nn<sup>,</sup>16



#### <sup>222</sup>Rn emanation



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





#### **Blanks:**

 $201 \rightarrow 50 \mu Bq$ 

 $801 \rightarrow 80 \mu Bq$ 

Absolute sensitivity ~100 μBq [50 atoms]

Appl. Rad. Isot. 53 (2000) 371

# <sup>222</sup>Rn emanation: examples



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions



| System                                   | Sample                                                    | Description                         | <sup>222</sup> Rn em. rate    |
|------------------------------------------|-----------------------------------------------------------|-------------------------------------|-------------------------------|
|                                          | SS vessel TK1                                             | 114 m <sup>3</sup>                  | < 60 mBq                      |
| PC storage area                          | SS vessel TK2                                             | $114 \text{ m}^3$                   | $(45 \pm 8) \text{ mBq}$      |
|                                          | SS vessel TK3                                             | $114 \text{ m}^3$                   | $(24 \pm 5) \text{ mBq}$      |
| $N_2$                                    | Electrical heater                                         |                                     | $(0.92 \pm 0.29) \text{ mBq}$ |
| distribution line  LS purification plant | Particle Filter                                           |                                     | $(0.34 \pm 0.13) \text{ mBq}$ |
|                                          | 1.5" distrib. line                                        | ~ 100 m long                        | $(0.47 \pm 0.13) \text{ mBq}$ |
|                                          | SS package                                                | $25 \text{ m}^2$                    | < 0.12 mBq                    |
|                                          | H <sub>2</sub> O extraction<br>column + 24 SS<br>packages | $0.6 \text{ m}^3 / 608 \text{ m}^2$ | $(4.83 \pm 0.70) \text{ mBq}$ |
|                                          | N <sub>2</sub> sparging column<br>+ 26 SS packages        | $0.2 \text{ m}^3 / 280 \text{ m}^2$ | $(1.78 \pm 0.21) \text{ mBq}$ |

Over 1000 entries in the DB!

Astroparticle Physics 18 (2002) 1 LRT 2004 proceedings, p. 141 – 149 Int. J. Mod. Phys. A29 (2014) 1442009

#### <sup>222</sup>Rn/<sup>226</sup>Ra in water



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





International

STRAW: System for the <sup>222</sup>Rn and <sup>226</sup>Ra Assay of Water

- Placed at the BOREXINO water plant
- 222Rn extraction from 350 liters
- 222Rn and 226Ra measurements possible

<sup>222</sup>Rn detection limit: ~0.1 mBq/m<sup>3</sup> <sup>226</sup>Ra detection limit: ~0.8 mBq/m<sup>3</sup>

Nucl. Instr. Meth. A 497 (2003) 407

5 Beijing, China

| H <sub>2</sub> O flow [m <sup>3</sup> /h] | HPN <sub>2</sub> flow<br>[kg/h] | $C_{Rn}$ [mBq/m <sup>3</sup> ] | ${ m C_{Ra}} \ [{ m mBq/m^3}]$ |
|-------------------------------------------|---------------------------------|--------------------------------|--------------------------------|
| 2 30                                      |                                 | $704 \pm 7$                    | $1.2 \pm 0.5$                  |
| 1 20                                      |                                 | $247 \pm 6$                    | $3.8 \pm 0.7$                  |
| 1 30                                      |                                 | $186 \pm 5$                    | $2.0 \pm 0.6$                  |
| Loop mode                                 |                                 | $3.0 \pm 0.4$                  | $1.3 \pm 0.9$                  |

# **BOREXINO** design



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





#### <sup>222</sup>Rn diffusion



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





Sensitivity: D ~  $10^{-13}$  cm<sup>2</sup>/s  $d_e$  ~ 2  $\mu$ m

#### <sup>222</sup>Rn diffusion



Results obtained for the 0.018 mm thick C38F film (BOREXINO)

| RH standard salt                                     | RH in gas<br>phase (%) | Water amount in nylon, $M$ (%) | Diffusion coefficient, $D \text{ (cm}^2/\text{s)}$ | Solubility,<br>S |
|------------------------------------------------------|------------------------|--------------------------------|----------------------------------------------------|------------------|
| Mg(ClO <sub>4</sub> ) <sub>2</sub>                   | ~0                     | ~0                             | $(2.1\pm0.4)\times10^{-12}$                        | $4.5 \pm 0.7$    |
| $H_3PO_4 \cdot \frac{1}{2}H_2O$                      | $9 \pm 1$              | $0.72 \pm 0.04$                | $(2.3\pm0.3)\times10^{-12}$                        | $2.5 \pm 0.3$    |
| $\text{LiCl}_2 \cdot \overline{\text{H}_2\text{O}}$  | $12 \pm 1$             | $0.87 \pm 0.04$                | $(2.2\pm0.3)\times10^{-12}$                        | $2.2 \pm 0.3$    |
| CaCl <sub>2</sub> · 6H <sub>2</sub> O                | $32 \pm 2$             | $2.09 \pm 0.04$                | $(4.3\pm0.5)\times10^{-12}$                        | $1.8 \pm 0.2$    |
| $Na_2Cr_2O_7 \cdot 2H_2O$                            | $52 \pm 2$             | $3.74 \pm 0.05$                | $(1.9\pm0.3)\times10^{-11}$                        | $1.4 \pm 0.2$    |
| $Na_2S_2O_3 \cdot 5H_2O$                             | $76 \pm 2$             | $6.35 \pm 0.05$                | $(6.5\pm0.9)\times10^{-11}$                        | $1.5 \pm 0.2$    |
| K <sub>2</sub> CrO <sub>4</sub>                      | $88 \pm 3$             | $7.60 \pm 0.05$                | $(1.3\pm0.2)\times10^{-10}$                        | $1.5 \pm 0.2$    |
| Na <sub>2</sub> SO <sub>4</sub> · 10H <sub>2</sub> O | $93 \pm 3$             | $9.12 \pm 0.07$                | $(3.3\pm0.4)\times10^{-10}$                        | $1.0 \pm 0.1$    |
| H <sub>2</sub> O vapors                              | $100 \pm 3$            | $10.14 \pm 0.09$               | $(1.3\pm0.2)\times10^{-9}$                         | $0.7 \pm 0.1$    |

**BOREXINO** 

Bcg mitigation

LS purification

Conclusions



There is 3 orders of magnitude difference between the diffusion in the dry and in the foil saturated with water!

Nucl. Instr. Meth. A 449 (2000) 158

Nucl. Instr. Meth. A 524 (2004) 355

$$d_e = \sqrt{\frac{D}{\lambda}}$$
  $d_e^d = 7 \mu m$   $d_e^w = 270 \mu m$ 

# <sup>226</sup>Ra in/on BOREXINO nylon



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





1 ppt U required (~12 μBq/kg for <sup>226</sup>Ra)

 $D_{dry} = 2x10^{-12} \text{ cm}^2/\text{s} \ (d_{dry} = 7 \text{ } \mu\text{m})$  $D_{wet} = 1x10^{-9} \text{ cm}^2/\text{s} \ (d_{wet} = 270 \text{ } \mu\text{m})$ 

 $A_{dry} = A_{sf} + 0.14 \cdot A_{bulk}$  $A_{wet} = A_{sf} + A_{bulk}$ 

Separation of the bulk and surface <sup>226</sup>Ra conc. was possible through <sup>222</sup>Rn emanation

Very sensitive technique:  $(C_{Ra} \sim 10 \mu Bq/kg)$ 

Bx IV foil: bulk  $\leq 15 \mu Bq/kg$ surface  $\leq 0.8 \mu Bq/m^2$ total =  $(16 \pm 4) \mu Bq/kg (1.2 ppt U eqiv.)$ 

NIM A 498 (2003) 240

### Construction of nylon vessels



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





Princeton clean room class 100 with  $^{222}$ Rn-reduced air (VSA filter):  $C_{Rn} \sim 1 \text{ Bq/m}^3$ 

A. Pocar, PhD Thesis (2003)

#### Inflation of vessels in SSS



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





The nylon vessels were inflated in the sphere with synthetic air:  $C_{Rn} < 100 \mu Bq/m^3$ 

Int. J. Mod. Phys. A29 (2014) 1442009





**BOREXINO** 

Bcg mitigation

LS purification

Conclusions



#### Effective scintillator purification processes

- Efficient removal of radioactive elements
  - distillation
  - water extraction
  - nitrogen stripping
- Development of cleaning methods to remove radioactivity from equipment surfaces
- Purification of scintillator before and after filling detector



- **BOREXINO**
- Bcg mitigation
- LS purification
- Conclusions
- Nn<sup>,</sup>16

- Vessels inflated with synthetic air
- Vessels filled with high-purity deionized water
- Scintillator distilled and stripped with LAK nitrogen during filling
- Detector filled with scintillator from top, while draining water from bottom

J. Benziger et al. / Nuclear Instruments and Methods in Physics Research A 587 (2008) 277-291



## **BOREXINO** design



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





# <sup>222</sup>Rn in gases: MoREx



**BOREXINO** 

Bcg mitigation

LS purification





### Ar and Kr in nitrogen



**BOREXINO** 

Bcg mitigation

LS purification





#### **BOREXINO** nitrogen



#### **BOREXINO**

Bcg mitigation

LS purification

Conclusions



#### **Regular Purity Nitrogen:**

- Technical 4.0 quality, not purified
- Production rate up to 100 m3/h (STP)
- $^{222}$ Rn (30 70) µBq/m<sup>3</sup> Ar ~ 10ppm, Kr ~ 30 ppt

#### **High Purity Nitrogen:**

- <sup>222</sup>Rn adsorption on charcoal (LTA)
- Achieved concentration (0.30 ± 0.09) μBq/m³
- Production rate up to 100 m<sup>3</sup>/h (STP)
- Ar and Kr not removed



#### LAK (Low Ar and Kr) Nitrogen:

- Spec. Ar < 0.4 ppm, Kr < 0.2 ppt 222Rn < 7 μBg/m<sup>3</sup>
- Purification by adsorption on different materials extensively studied (successfully!)
- Cooperation with companies on the nitrogen survey
- Tests of the nitrogen delivery chain

#### Nitrogen survey

| Nitrogen sample    | C <sub>Ar</sub> [ppm] | C <sub>Kr</sub> [ppt] |  |
|--------------------|-----------------------|-----------------------|--|
| MESSER (4.0)       | $200 \pm 30$          | $1680 \pm 240$        |  |
| Air Liquide (4.0)  | $11.0 \pm 1.3$        | $40 \pm 5$            |  |
| Linde AG, (7.0)    | $0.031 \pm 0.004$     | $2.9 \pm 0.4$         |  |
| SOL (6.0)          | $0.0063 \pm 0.0006$   | $0.04 \pm 0.01$       |  |
| Westfalen AG (6.0) | $0.00050 \pm 0.00008$ | $0.06 \pm 0.02$       |  |
| Goal (BOREXINO)    | < 0.4                 | < 0.2                 |  |

#### Tests of the delivery chains



| Supplier/setup                          | $C_{Rn} \left[ \mu B q/m^3 \right]$ | C <sub>Ar</sub> [ppm] | C <sub>Kr</sub> [ppt] |
|-----------------------------------------|-------------------------------------|-----------------------|-----------------------|
| Linde AG, 3-m <sup>3</sup> movable tank | 1.2                                 | 0.018                 | 0.06                  |
| SOL, 16-m <sup>3</sup> tank             | 8                                   | 0.012                 | 0.02                  |

#### **BOREXINO LAK nitrogen**



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions





# LS re-purification



#### **BOREXINO**

Bcg mitigation

LS purification



- From 2007 to 2010 the <sup>210</sup>Bi background increased
  - Scintillator refills to compensate the vessel leak / others ?
  - <sup>210</sup>Bi rate: 20 → 70 cpd/100 t
  - 85Kr rate: 30 cpd/100 t (constant)
- To reduce background, scintillator was re-purified using two processes:
  - Water extraction to remove <sup>210</sup>Pb (<sup>210</sup>Bi)
  - Nitrogen stripping to remove <sup>85</sup>Kr and other volatiles
- Six purification cycles were performed, each took ~1 month
  - Each operation processed all the scintillator in the detector once (320 m<sup>3</sup>).
  - Data were acquired to evaluate backgrounds after each operation.
  - Not all six operations were successful.

### **BOREXINO** radio-purity



**BOREXINO** 

Bcg mitigation

LS purification



| Isotope                          | Specification for LS               | Achieved after filling (2007 - 2010)         | After aditional purification           |
|----------------------------------|------------------------------------|----------------------------------------------|----------------------------------------|
| $^{238}U$                        | $\leq 10^{-16} \text{ g/g}$        | $(5.3 \pm 0.5) \cdot 10^{-18} \text{ g/g}$   | $< 0.8 \cdot 10^{-19} \text{ g/g}$     |
| <sup>232</sup> Th                | $\leq 10^{-16} \text{ g/g}$        | $(3.8 \pm 0.8) \cdot 10^{-18} \text{ g/g}$   | $< 1.2 \cdot 10^{-18} \text{ g/g}$     |
| <sup>14</sup> C/ <sup>12</sup> C | ≤ 10 <sup>-18</sup>                | $(2.69 \pm 0.06) \cdot 10^{-18} \text{ g/g}$ | unchanged                              |
| <sup>40</sup> K                  | $\leq 10^{-18} \text{ g/g}$        | $\leq 0.4 \cdot 10^{-18} \text{ g/g}$        | unchanged                              |
| <sup>85</sup> Kr                 | $\leq 1 \text{ cpd/}100 \text{ t}$ | $(30 \pm 5) \text{ cpd/}100 \text{ t}$       | ≤ 5 cpd/100 t                          |
| <sup>39</sup> Ar                 | ≤ 1 cpd/100 t                      | << <sup>85</sup> Kr                          | << 85Kr                                |
| <sup>210</sup> Po                | not specified                      | ~ (70) 1 dpd/100 t                           | unchanged                              |
| <sup>210</sup> Bi                | not specified                      | (20) 70 dpd/100 t                            | $(20 \pm 5) \text{ cpd/}100 \text{ t}$ |

# Topics not discussed



**BOREXINO** 

Bcg mitigation

LS purification



- <sup>226</sup>Ra adsorption on the nylon vessel (J. Rad. Nuc. Chem. 296 (2013) 639)
- <sup>222</sup>Rn-daughters deposition on the nylon vessel (E. Harding, Princeton)
- Tests of <sup>210</sup>Pb removal from PC (J. Rad. Nuc. Chem. 296 (2013) 639)
- Online <sup>222</sup>Rn monitoring with an electrostatic detector (NIM A 460 (2001) 272)
- Adsorption of noble gases on various porous materials (B. Freudiger, PhD Thesis (2003))
- NAA and ICP-MS measurements (Astroparticle Physics 18 (2002) 1)

#### **Conclusions**



**BOREXINO** 

Bcg mitigation

LS purification

Conclusions



- BOREXINO has achieved an unprecedented background level in the liquid scintillator
- Strict quality control program including the assay of all components of the detector during its construction
- +10 years of R&D, many people/institutions involved
- Several detectors and experimental methods were developed allowing measurements even at a single atom level.
- Most of the developed techniques are world-wide most sensitive (Ge spectroscopy, <sup>222</sup>Rn detection, <sup>222</sup>Rn diffusion) and are applied in next-generation experiments (GERDA, XENON, DARKSIDE,...)