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IntroductionIntroduction
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♦ Goal of LArTPC calibration:  measure charge and position 
associated with ionization signal in unbiased manner and 
as precisely as possible
• Noise, detector effects lead to bias, resolution loss

• With calibrations in place, can then look at higher-level candles 
to study particle reconstruction (e.g. cosmic muons, Michel 
electrons, photons from π0 decays)

♦ Crucial for LArTPC experiments to reach physics goals!

♦ In what follows, will describe relevant detector effects and 
calibration techniques using MicroBooNE as an example
• Operational single-phase LArTPC:  plenty of data to begin 

looking at these effects

• Also reference test stand measurements where relevant



Case Study:  MicroBooNECase Study:  MicroBooNE

♦ “Micro Booster Neutrino 
Experiment”

• Accelerator ν experiment @ FNAL

• LArTPC with 89 ton active mass

• Non-evacuated liquid argon fill

• Cold (in LAr) front-end electronics

• Near-surface operation

• UV laser calibration system
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♦ Physics goals:
• Investigate MiniBooNE low-

energy excess

• Measure first low-energy ν-Ar 
cross sections

• R&D for future detectors

• Key step for Short Baseline 
Neutrino (SBN) program



MicroBooNE TPCMicroBooNE TPC

♦ Two induction planes (U, V) and one collection plane (Y); drifted 
ionization in LAr puts signal on all three

• Drift E field at 273 V/cm, ~uniform via surrounding field cage

• 8000+ channels in total with front-end electronics in LAr

♦ 3D event reconstruction by combining signals from all three planes 
(minimum two needed), each with 3 mm wire pitch

• Millimeter-scale spatial resolution
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Signal FormationSignal Formation
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Cartoon Credit:
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Raw Waveform OutputRaw Waveform Output
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LArTPC ImagingLArTPC Imaging
Image Credit:  C. Adams
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Different Plane ViewsDifferent Plane Views
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“Collection” Plane (Y) “Induction” Plane (U, V)

ArgoNeuT

Collection Wire Response:
Unipolar Signal

Induction Wire Response:
Bipolar Signal

In order efficiently find ionization signal and 
correctly determine charge, must first remove 
detector response → deconvolution



Deconvolution:               Deconvolution:               
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“Collection” Plane (Y) “Induction” Plane (U, V)

ArgoNeuT

Raw Waveform (M)

Deconvoluted Waveform (S) Detector Response (R) Removed → Now Find “Hits”
→ Reconstruct Tracks/Showers → ...

Example:  Induction Plane Waveform

Filter (F):  Prevents Blow-up of Noise During Deconvolution



Calibration SchemeCalibration Scheme
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♦ Must understand detector effects to develop LArTPC technology
• Essential for SBN and DUNE

• Noise removal, space charge effects (SCE), wire response, energy scale, 
diffusion, e- lifetime, etc.

Important to 
understand 

detector effects and 
develop calibration 

scheme for 
unbiased, precise 
determination of 

ionization charge.



Reducing Noise LevelsReducing Noise Levels

♦ Significantly more noise “out of the box” on induction planes (top row)

♦ All planes look very clean after software noise filtering (bottom row)
23



Final Noise LevelsFinal Noise Levels
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♦ After software noise filtering on MicroBooNE data, see noise levels 
expected from bench measurements of cold front-end electronics

• Scales linearly with wire length (capacitance)

• Thanks to cold front-end electronics and noise-filtering techniques, 
low ENC achievable in 100-ton-scale LArTPC:  ENC < 400 e-



Field Response MeasurementField Response Measurement

♦ Must remove correct field response of wires in deconvolution to 
enable unbiased charge estimation

♦ Simulated field response (Garfield) needs verification with data

♦ Measurement with MIPs in situ folds in track extent across wire pitch

♦ BNL test stand aiming to make measurement with point-like source 
from laser pulsed on photocathode – “LArFCS”

25

LAr Field 
Calibration 

System 
(“LArFCS”)



Dynamic Induced ChargeDynamic Induced Charge

♦ Nominally assume ionization leads to signal on only one wire

♦ In reality, nearby wires also see some signal
• Characteristics of this induced signal dynamically dependent on track 

angle – “Dynamic Induced Charge” or DIC

• Effect leads to cancellation of signals on waveform for tracks at high 
angles → hits lost → problems in track/shower reconstruction

♦ Solution is to account for DIC when removing detector response in 
deconvolution to extract charge – improves imaging 26



Another DIC ExampleAnother DIC Example

♦ Effect can be studied in depth at LArFCS with point-like source

♦ Smaller effect for larger wire spacing (e.g. 5 mm for DUNE)
27



Space Charge EffectsSpace Charge Effects

♦ Looking at cosmic data, noticed offsets in track start/end points from 
top/bottom of TPC

• Very suggestive of space charge effects (SCE) at MicroBooNE, a near-surface 
experiment (20-30 cosmics per 4.8 ms readout window)

• Space charge:  build-up of slow-moving Ar+ ions due to e.g. cosmic muons 
impinging active volume of TPC (via ionization)

• Leads to E field distortions, spatial distortions in ionization position
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SCE Data/MC ComparisonSCE Data/MC Comparison

♦ SCE simulation qualitatively reproduces effect
• Assumes linear space charge profile

• Agreement in normalization, basic shape 
features, but offset near anode in data... 
consistent with impact from liquid argon flow

• Can impact track/shower reconstruction and 
calorimetry – calibrate out in 3D using UV 
laser system, cosmic muon tracks
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Ion RecombinationIon Recombination
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♦ Charge quenching from prompt 
recombination of ionization electrons 
with argon ions leads to charge loss

• Sizable:  ~50% Q loss (@ 273 V/cm)

♦ Correction depends on E field, dE/dx
• Tracks (muon, proton, etc.):  simple

• Electromagnetic showers:  apply to 
individual charge depositions based 
on dE/dx – more complicated

Image Credit:
D. Caratelli



Electron LifetimeElectron Lifetime
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♦ Electron lifetime, as measured by purity 
monitors, consistently above 6 ms for 
majority of run thus far – design: 3 ms

• 6 ms:  conservative lower bound

♦ Important conclusion:  can operate 
LArTPCs in non-evacuated cryostats 
with high electron lifetime

♦ Calibrate out via measurement of charge 
from TPC tracks vs. drift distance

Image Credit:
D. Caratelli



DiffusionDiffusion
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♦ Diffusion can reduce the spatial resolution of 
reconstructed particle trajectories, especially for 
longer drift times → must measure, simulate

♦ Important for e.g. supernova neutrinos vs. 
alpha/beta decays (track-like vs. point-like)

♦ Measure longitudinal diffusion at BNL test stand 

BNL
Test

Stand



DiffusionDiffusion
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♦ Diffusion can reduce the spatial resolution of 
reconstructed particle trajectories, especially for 
longer drift times → must measure, simulate

♦ Important for e.g. supernova neutrinos vs. 
alpha/beta decays (track-like vs. point-like)

♦ Measure longitudinal diffusion at BNL test stand 

BNL
Test

Stand

Drift Length σ
L

σ
T

1.8 m 1.2 mm 1.7 mm

3.6 m 1.8 mm 2.5 mm

6.0 m 2.3 mm 3.1 mm

20.0 m 4.2 mm 5.7 mm

500
V/cm
Drift
Field



Michel eMichel e-- Spectrum Spectrum
♦ Tag Michel electrons from cosmic muon decay using “kink” 

topology and muon Bragg peak
• Uses automated reconstruction

• Important calibration sample
for energy scale, tuning e-, γ
reconstruction (charge clustering)

34

Shape Normalized,
2D Reconstruction,
Stat. Uncert. Only
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Michel eMichel e-- Spectrum Spectrum
♦ Tag Michel electrons from cosmic muon decay using “kink” 

topology and muon Bragg peak
• Uses automated reconstruction

• Important calibration sample
for energy scale, tuning e-, γ
reconstruction (charge clustering)
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Shape Normalized,
2D Reconstruction,
Stat. Uncert. Only

Can also use π0 mass
peak to study electromagnetic

shower reconstruction at
higher energies – upcoming

MicroBooNE result



SummarySummary
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♦ LArTPC calibration essential for unbiased, precise 
determination of ionization charge

♦ This requires first removing noise to find signals

♦ Then account for detector effects, including wire 
response, to obtain charge information correctly

♦ Finally use high-level candles (e.g. Michel electrons) to 
tune particle trajectory/energy reconstruction

♦ Extensive process, but necessary before producing robust 
physics measurements
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Thanks!



Backup

39



Why Liquid Argon?Why Liquid Argon?

♦ Argon is cheap:  ~1% of atmosphere

♦ Dense target (more ν-N interactions per unit time)

♦ High scintillation light yield, argon transparent to own light

♦ Relatively small radiation length for EM shower containment
40



Electronics ChainElectronics Chain
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Event ReconstructionEvent Reconstruction

♦ Multiple ways to get to 3D:
• Identify clustered tracks/showers in 2D, 

match across planes

• Create 3D hits from wire triplets 
(matching charge) and directly cluster 
tracks/showers

– “Wire-Cell” method (see images)

42

Example MC Interaction Event
(2D Projection of 3D)

No Charge Info

W/ Charge Info

MC Truth

Example 3D Cosmic 
Event (Data)

http://www.phy.bnl.gov/wire-cell/bee/

http://www.phy.bnl.gov/wire-cell/bee/


Looking at Noise DataLooking at Noise Data

♦ First look at noise data:  during TPC and cryogenics commissioning 
(April-July 2015)

♦ TPC noise level dropped during purge/cool-down
• Expected (desired) feature of cold electronics; noise level as expected from 

design

♦ TPC noise level slowly rose with LAr fill
• Increased capacitance w/ LAr

43

9 Tanker 
Truck Fills



Detector StabilityDetector Stability

44

♦ High detector uptime – only handful of cathode, pump trips in first year 
of operations

• Gaining operational experience with large LArTPCs – essential for running 
future LArTPC experiments

♦ Both high-level and low-level features in data stable over time

♦ Number of unresponsive/noisy channels very stable w.r.t. time
• 10% unresponsive/noisy, but 97% of detector volume has at least two planes 

operational (minimum needed for 3D reco.)

3 Months



Peak Signal-to-Noise RatioPeak Signal-to-Noise Ratio
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♦ Peak Signal-to-Noise Ratio (PSNR – signal height divided by noise RMS) 
very high after software noise filtering

• Note:  here calculated for all signals in event (not just MIPs)

• Collection plane:  PSNR > 40

• Induction planes:  PSNR > 12 (note bipolar nature of signal)

♦ Higher PSNR post-filtering → charge resolution improves



Low-Frequency NoiseLow-Frequency Noise
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Other TPC Noise FeaturesOther TPC Noise Features
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Effects of ASIC SaturationEffects of ASIC Saturation
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Signal Processing ChainSignal Processing Chain
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Response FunctionsResponse Functions
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Deconvolution FilterDeconvolution Filter
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Shockley-Ramo TheoremShockley-Ramo Theorem
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Deconvolution ProcedureDeconvolution Procedure
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Muon Counter SystemMuon Counter System
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SCE Analysis OverviewSCE Analysis Overview

♦ Utilize MuCS for track t0 tags

• Probe features in drift direction

♦ See strange feature in data

♦ Seems like SCE feature, so take a look at SCE 
simulation

♦ Data vs. MC:  similar, but differences

♦ Attempt partial correction – can reduce impact 
of effect in data 55



SCE E Field DistortionsSCE E Field Distortions
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SCE Spatial DistortionsSCE Spatial Distortions
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SCE Laser CalibrationSCE Laser Calibration

♦ Qualitatively, SCE very clear in laser event displays

♦ Can make point-to-point SCE correction throughout TPC using 
crossing point of two laser tracks
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Simulated Laser Coverage:  X-Z Plane

Simulated Laser Coverage:  Y-Z Plane



SCE Cosmic Muon CalibrationSCE Cosmic Muon Calibration

♦ Uses t0-tagged tracks:  anode-cathode crossing tracks, 
anode/cathode-piercing tracks and MuCS-tagged tracks

♦ Calibrate points in TPC using single tracks (TPC faces) and pairs 
of tracks (TPC bulk) – utilize ~straight tracks using MCS 
measurement (high momentum → ~straight)

59



SCE Corr. ValidationSCE Corr. Validation

♦ Validate SCE calibration using separate sample of t0-tagged 
tracks

• Look at track angles, track hit density, etc.

• Also characterize time-dependence of effect – important!

♦ MicroBooNE SCE public note gives example of this type of 
validation using MuCS-tagged tracks (angular residuals)

60



Michel eMichel e-- Energy Loss Energy Loss
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Michel eMichel e-- Reconstruction Reconstruction

♦ Tag Michel electrons from cosmic muon decay using 
characteristic topology and calorimetric information

• 2D reconstruction for now (collection plane only)

• Yields a high purity (80-90%) and low efficiency (2-3%) sample of 
Michel electrons

62

Topology (“Kink”) Calorimetry (Bragg Peak)



Special RunsSpecial Runs
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♦ Also have taken special runs for calibrations and detector physics – 
laser, cosmic, special ASIC settings, etc.

Laser Run
@ -58 kV



Special RunsSpecial Runs
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Cathode
Hit

Space Charge 
Effect Not Large

Laser Run
@ -58 kV

♦ Also have taken special runs for calibrations and detector physics – 
laser, cosmic, special ASIC settings, etc.



Cryogenics CommissioningCryogenics Commissioning
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♦ Four stages:  (1) purge (2) cool-down (3) LAr fill (4) recirculation and 
purification → operating at least 2-3 times design purity!

70 ppm O2

20 ppb O2

40 ppt O2

9 tanker 
truck fills



LArTPC:  Early HistoryLArTPC:  Early History
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LArTPC ExperimentsLArTPC Experiments
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MicroBooNE Physics GoalsMicroBooNE Physics Goals
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Oscillation 
Physics

(Investigate 
MiniBooNE Low-

Energy Excess)

Cross-Section 
Measurements Detector 

Physics for 
LArTPC 

R&D

Exotic Physics
Supernova Neutrino 

Detection

ν?



Low-Energy ExcessLow-Energy Excess

♦ Low-energy νe/νe candidate excess 
seen at MiniBooNE
• MiniBooNE:  Cherenkov detector 

(also on BNB)

• Baseline too short (541 m) for 3-
flavor νμ → νe oscillation

♦ No e±/γ separation... is excess 
misunderstood background, sterile 
neutrino, or... ?

69

ν?



Low-Energy Excess (cont.)Low-Energy Excess (cont.)

♦ Can discriminate e±/γ with 
MicroBooNE's LArTPC
• Shower displacement from 

vertex (“gap”) for γ also 
provides separation

• Separation with dE/dx

♦ End result:  either discover new 
particle or improve MC for 
future experiments

70

ArgoNeuT
arXiv:1610.04102

ν?



Cross Section MeasurementsCross Section Measurements

♦ Cross-section measurements at MicroBooNE 
will teach us more about nuclear effects, 
neutrino energy reconstruction, etc.
• e.g. nucleon-nucleon correlations

71

Charged 
Current 

(CC)

Neutral 
Current 

(NC)

ν?



Cross Section MeasurementsCross Section Measurements

♦ Cross-section measurements at MicroBooNE 
will teach us more about nuclear effects, 
neutrino energy reconstruction, etc.
• e.g. nucleon-nucleon correlations

72

Energy Range:
DUNE's 2nd Osc. 

Maximum

ν?



Supernova Supernova νν, Exotic Physics, Exotic Physics

♦ Additional topics include studies related to supernova 
neutrinos and exotic physics

• If we're lucky, supernova neutrinos (~10 MeV) 
captured using continuous readout stream and 
SNEWS alert system

– Also study zero suppression, triggering schemes

• Can study proton decay backgrounds in 
MicroBooNE's LArTPC

– Signal:  p → K+ + ν

– Background (cosmogenic):  K0

L
 + p → K+ + n

♦ Both helpful to DUNE physics program

73DUNE:  Deep Underground Neutrino Experiment

ν?



Detector PhysicsDetector Physics
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♦ Must understand detector effects to develop LArTPC 
technology

• Essential for SBN and DUNE

• Space charge effects (SCE), wire response, energy scale, 
noise studies, diffusion, e- lifetime, etc.

ν?

Important to understand 
detector effects and 
develop calibration 
scheme for unbiased, 
precise determination of 
ionization charge.



Booster Neutrino BeamBooster Neutrino Beam
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Booster Neutrino Beam: “BNB”
– Receives 8 GeV Protons from Booster
– νμ (νμ) beam

MicroBooNE @ BNB:
– On-axis at 470 m baseline
– First three years in νμ mode (pre-SBN)



BNB OverviewBNB Overview
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♦ Protons hit beryllium target producing mesons

♦ Magnetic field of horn focuses positive mesons, defocuses negative 
mesons 

♦ 50 m decay pipe for π+ and K+ decay to primarily μ+ and νμ

♦ Layers of steel and concrete absorb charged particles

♦ Result:  νμ beam

Target

Horn

Absorber
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♦ Protons hit beryllium target producing mesons

♦ Magnetic field of horn focuses positive mesons, defocuses negative 
mesons 

♦ 50 m decay pipe for π+ and K+ decay to primarily μ+ and νμ

♦ Layers of steel and concrete absorb charged particles

♦ Result:  νμ beam

Target

Horn

Absorber

νμ
νμ

νe

νe
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