

LArTPC Calibration

Michael Mooney Brookhaven National Laboratory (BNL)

NNN16, IHEP, Beijing, China November 3rd, 2016

Introduction

- <u>Goal of LArTPC calibration</u>: measure charge and position associated with ionization signal in unbiased manner and as precisely as possible
 - Noise, detector effects lead to bias, resolution loss
 - With calibrations in place, can then look at higher-level candles to study particle reconstruction (e.g. cosmic muons, Michel electrons, photons from π° decays)
- Crucial for LArTPC experiments to reach physics goals!
- In what follows, will describe relevant detector effects and calibration techniques using **MicroBooNE** as an example
 - Operational single-phase LArTPC: plenty of data to begin looking at these effects
 - Also reference **test stand measurements** where relevant

Case Study: MicroBooNE

- "Micro Booster Neutrino Experiment"
 - Accelerator v experiment @ FNAL
 - LArTPC with 89 ton active mass
 - Non-evacuated liquid argon fill
 - Cold (in LAr) front-end electronics
 - Near-surface operation
 - UV laser calibration system

- Physics goals:
 - Investigate MiniBooNE lowenergy excess
 - Measure first low-energy v-Ar cross sections
 - R&D for future detectors
 - Key step for Short Baseline Neutrino (SBN) program

MicroBooNE TPC

- Two induction planes (U, V) and one collection plane (Y); drifted ionization in LAr puts signal on all three
 - Drift E field at 273 V/cm, ~uniform via surrounding field cage
 - 8000+ channels in total with front-end electronics in LAr
- 3D event reconstruction by combining signals from all three planes (minimum two needed), each with 3 mm wire pitch
 - Millimeter-scale spatial resolution

BRO

WR

BRO

NATIONAL LABORATORY

WR

WE

BROOM

WE

BROOI

HAVEN

BROOKI

WEN

BROOK

WEN

BROOK

WEN

BROOK

WEN

BROOK

KVEN

BROOK

WEN

BROOK

BROOKHAVEN National Laboratory

Raw Waveform Output

Raw Waveform Output

LArTPC Imaging

Image Credit: C. Adams

BROOKHAVEN National Laboratory

Different Plane Views

"Collection" Plane (Y)

"Induction" Plane (U, V)

20

10 0 -10 -20

Ω

200

400

Deconvolution: $S(\omega) = \frac{M(\omega)}{R(\omega)}$

"Collection" Plane (Y)

"Induction" Plane (U, V)

 $F(\omega)$

→ Reconstruct Tracks/Showers

1800

1400

1000

Filter (F): Prevents Blow-up of Noise During Deconvolution

2000

- Must understand detector effects to develop LArTPC technology
 - Essential for SBN and DUNE
 - Noise removal, space charge effects (SCE), wire response, energy scale, diffusion, e- lifetime, etc.

Reducing Noise Levels

- Significantly more noise "out of the box" on induction planes (top row)
- All planes look very clean after software noise filtering (bottom row)

Final Noise Levels

Wire Noise Level in MicroBooNE

- After software noise filtering on MicroBooNE data, see noise levels expected from bench measurements of cold front-end electronics
 - Scales linearly with wire length (capacitance)
 - Thanks to cold front-end electronics and noise-filtering techniques, low ENC achievable in 100-ton-scale LArTPC: ENC < 400 e⁻

- Must remove correct field response of wires in deconvolution to enable unbiased charge estimation
- Simulated field response (Garfield) needs verification with **data**
- Measurement with MIPs in situ folds in track extent across wire pitch
- BNL test stand aiming to make measurement with point-like source from laser pulsed on photocathode – "LArFCS"

Dynamic Induced Charge

- Nominally assume ionization leads to signal on only one wire
- In reality, nearby wires also see some signal
 - Characteristics of this induced signal dynamically dependent on track angle "Dynamic Induced Charge" or DIC
 - Effect leads to cancellation of signals on waveform for tracks at high angles → hits lost → problems in track/shower reconstruction
- Solution is to account for DIC when removing detector response in deconvolution to extract charge – improves imaging

Another DIC Example

- Effect can be studied in depth at **LArFCS** with point-like source
- Smaller effect for larger wire spacing (e.g. 5 mm for DUNE)

Space Charge Effects

- Looking at cosmic data, noticed offsets in track start/end points from top/bottom of TPC
 - Very suggestive of space charge effects (SCE) at MicroBooNE, a near-surface experiment (20-30 cosmics per 4.8 ms readout window)
 - **Space charge**: build-up of slow-moving Ar⁺ ions due to e.g. cosmic muons impinging active volume of TPC (via ionization)
 - Leads to E field distortions, spatial distortions in ionization position

SCE Data/MC Comparison

- SCE simulation qualitatively reproduces effect
 - Assumes linear space charge profile
 - Agreement in normalization, basic shape features, but offset near anode in data... consistent with impact from **liquid argon flow**
 - Can impact track/shower reconstruction and calorimetry – calibrate out in 3D using UV laser system, cosmic muon tracks

Ion Recombination

- Charge quenching from prompt recombination of ionization electrons with argon ions leads to charge loss
 - <u>Sizable</u>: ~**50%** Q loss (@ 273 V/cm)
- Correction depends on E field, dE/dx
 - Tracks (muon, proton, etc.): **simple**
 - Electromagnetic showers: apply to individual charge depositions based on dE/dx **more complicated**

Electron Lifetime

- Electron lifetime, as measured by purity monitors, consistently **above 6 ms** for majority of run thus far – design: **3 ms**
 - **6 ms**: conservative lower bound
- <u>Important conclusion</u>: can operate
 LArTPCs in non-evacuated cryostats
 with high electron lifetime
- Calibrate out via measurement of charge from TPC tracks vs. drift distance

Diffusion

- Diffusion can reduce the spatial resolution of reconstructed particle trajectories, especially for longer drift times → **must measure, simulate**
- Important for e.g. supernova neutrinos vs. alpha/beta decays (track-like vs. point-like)
- Measure longitudinal diffusion at **BNL test stand**

- $\sigma_{L/T} = \sqrt{\frac{2 \cdot \varepsilon_{L/T} \cdot d}{E}} \cdot \frac{t}{d}$
- E: electric field
- d: drift distance
- t: drift time
- σ : width of electron cloud
- ε : electron energy

Diffusion

- ◆ Diffusion can reduce the spatial resolution of reconstructed particle trajectories, especially for longer drift times → must measure, simulate
- Important for e.g. supernova neutrinos vs. alpha/beta decays (track-like vs. point-like)
- Measure longitudinal diffusion at BNL test stand

- $\sigma_{L/T} = \sqrt{\frac{2 \cdot \varepsilon_{L/T} \cdot d}{E}} \cdot \frac{t}{d}$ E: electric field d: drift distance t: drift time σ : width of electron cloud
- ε : electron energy

Michel e⁻ Spectrum

Tag Michel electrons from cosmic muon decay using "kink" topology and muon Bragg peak

- Uses automated reconstruction
- Important calibration sample for energy scale, tuning e⁻, γ reconstruction (charge clustering)

Michel e⁻ Spectrum

Tag Michel electrons from cosmic muon decay using "kink" topology and muon Bragg peak

- Uses automated reconstruction
- Important calibration sample for energy scale, tuning e⁻, γ reconstruction (charge clustering)

Michel e⁻ Spectrum

 Tag Michel electrons from cosmic muon decay using "kink" topology and muon Bragg peak
 Uses automated reconstruction
 Important calibration sample for energy scale, tuning reconstruction

- LArTPC calibration essential for unbiased, precise determination of ionization charge
- This requires first removing noise to find signals
- Then account for detector effects, including wire response, to obtain charge information correctly
- Finally use high-level candles (e.g. Michel electrons) to tune particle trajectory/energy reconstruction
- Extensive process, but necessary before producing robust physics measurements

Backup

Why Liquid Argon?

	-16	Ne	Ar	Kr	Xe	Water
Boiling Point [K] @ 1atm	4.2	27.1	87.3	120	165	373
Density [g/cm ³]	0.125	1.2	1.4	2.4	3	1
Radiation Length [cm]	755.2	24	14	4.9	2.8	36.1
dE/dx [MeV/cm]	0.24	1.4	2.1	3	3.8	1.9
Scintillation [γ/MeV]	19,000	30,000	40,000	25,000	42,000	
Scintillation λ [nm]	80	78	128	150	175	
Approx. Cost [\$/kg]	52	330	5	330	1200	

- ♦ Argon is cheap: ~1% of atmosphere
- Dense target (more v-N interactions per unit time)
- High scintillation light yield, argon transparent to own light
- Relatively small radiation length for EM shower containment

Electronics Chain

BROOKHAVEN National Laboratory

Event Reconstruction

- Multiple ways to get to 3D:
 - Identify clustered tracks/showers in 2D, match across planes
 - Create 3D hits from wire triplets (matching charge) and directly cluster tracks/showers
 - "Wire-Cell" method (see images)

Example MC Interaction Event (2D Projection of 3D)

http://www.phy.bnl.gov/wire-cell/bee/

Looking at Noise Data

- First look at noise data: during TPC and cryogenics commissioning (April-July 2015)
- TPC noise level dropped during purge/cool-down
 - Expected (desired) feature of cold electronics; noise level as expected from design
- TPC noise level slowly rose with LAr fill
 - Increased capacitance w/ LAr

Detector Stability

Issue	# Channels Affected
Unresponsive ASICs	~300
Shorted Wires	~400
Noisy Channels	~50
Uninstrumented	~100

- High detector uptime only handful of cathode, pump trips in first year of operations
 - Gaining operational experience with large LArTPCs essential for running future LArTPC experiments
- Both high-level and low-level features in data stable over time
- Number of unresponsive/noisy channels very stable w.r.t. time
 - 10% unresponsive/noisy, but 97% of detector volume has at least two planes operational (minimum needed for 3D reco.)

Peak Signal-to-Noise Ratio

- Peak Signal-to-Noise Ratio (PSNR signal height divided by noise RMS) very high after software noise filtering
 - <u>Note</u>: here calculated for all signals in event (not just MIPs)
 - Collection plane: **PSNR > 40**
 - Induction planes: **PSNR > 12** (note bipolar nature of signal)
- ◆ Higher PSNR post-filtering → charge resolution improves

Low-Frequency Noise

- Majority of noise present before filtering is due to low-frequency (10-30 kHz) noise coherent across all channels on a cold motherboard pair – thought to be associated with voltage regulators
- Almost completely filtered out with software algorithm that takes advantage of coherent nature of noise
- Hardware fix: upgrade service boards (this summer)

Other TPC Noise Features

- Another major noise source primarily on first induction plane: narrow-band noise associated with cathode HV power supply
 - Can filter out easily in software (compare left to middle)
 - Hardware fix: install second filter pot for cathode HV (this summer)
- High-frequency pick-up noise on downstream side of TPC (right)
 - Suppressed by higher shaping time, easily filtered out with low-pass filter

Effects of ASIC Saturation

- Occasionally ASICs found to "saturate" leading to dead regions of TPC waveforms
 - Charge builds up too fast on capacitor in ASIC circuit
 - Current source believed to be from vibrating wires worse for longer wires
- Solution is to use higher bias current ("leakage current") setting in ASIC – occurrence small in MicroBooNE, but accounted for in software noise filtering step
 - New ASIC design includes higher leakage current settings

Signal Processing Chain

Weighting potential of a wire

KVEN

BROOKI

NATIONAL LABORATORY

Deconvolution Filter

BROOI

NATIONAL LABORATORY

KVEN

Shockley-Ramo Theorem

BROOKHAVEN National Laboratory

The deconvolution is employed to estimate the true ionization signal *S* from the measured signal *M* on the raw waveform, with

$$R(t,t_0) \equiv R(t-t_0), \qquad \qquad M(t_0) = \int_{-\infty}^{\infty} R(t,t_0) \cdot S(t) \cdot dt.$$

This process is done in the frequency domain and utilizes a known full response *R* (field + electronics) and a filter *F*:

A 2D (time vs. wire) deconvolution is done for the U/V planes in order to account for different responses from nearby wires:

$$\begin{pmatrix} M_1(\omega) \\ M_2(\omega) \\ \vdots \\ M_{n-1}(\omega) \\ M_n(\omega) \end{pmatrix} = \begin{pmatrix} R_0(\omega) & R_1(\omega) & \dots & R_{n-2}(\omega) & R_{n-1}(\omega) \\ R_1(\omega) & R_0(\omega) & \dots & R_{n-3}(\omega) & R_{n-2}(\omega) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ R_{n-2}(\omega) & R_{n-3}(\omega) & \dots & R_0(\omega) & R_1(\omega) \\ R_{n-1}(\omega) & R_{n-2}(\omega) & \dots & R_1(\omega) & R_0(\omega) \end{pmatrix} \cdot \begin{pmatrix} S_1(\omega) \\ S_2(\omega) \\ \vdots \\ S_{n-1}(\omega) \\ S_n(\omega) \end{pmatrix}$$

The 2D version (*R* matrix inversion) recovers reconstructed tracks at high angles with respect to the anode plane.

Muon Counter System

BROOKHAVEN NATIONAL LABORATORY

SCE Analysis Overview

- ♦ Utilize MuCS for track t_o tags
 - Probe features in drift direction
- See strange feature in data
- Seems like SCE feature, so take a look at SCE simulation
- Data vs. MC: similar, but differences
- Attempt partial correction can reduce impact of effect in data 5

SCE E Field Distortions

SCE Spatial Distortions

BRO

WEN

NATIONAL LABORATORY

SCE Laser Calibration

- Qualitatively, SCE very clear in laser event displays
- Can make point-to-point SCE correction throughout TPC using crossing point of two laser tracks

- Uses t_o-tagged tracks: anode-cathode crossing tracks, anode/cathode-piercing tracks and MuCS-tagged tracks
- ◆ Calibrate points in TPC using single tracks (TPC faces) and pairs of tracks (TPC bulk) – utilize ~straight tracks using MCS measurement (high momentum → ~straight)

SCE Corr. Validation

- Validate SCE calibration using separate sample of t_o-tagged tracks
 - Look at track angles, track hit density, etc.
 - Also characterize time-dependence of effect **important!**
- MicroBooNE SCE public note gives example of this type of validation using MuCS-tagged tracks (angular residuals)

Michel e⁻ Energy Loss

Michel e⁻ Reconstruction

Topology ("Kink")

Calorimetry (Bragg Peak)

- Tag Michel electrons from cosmic muon decay using characteristic topology and calorimetric information
 - 2D reconstruction for now (collection plane only)
 - Yields a high purity (80-90%) and low efficiency (2-3%) sample of Michel electrons

Special Runs

 Also have taken special runs for calibrations and detector physics – laser, cosmic, special ASIC settings, etc.

Special Runs

 Also have taken special runs for calibrations and detector physics – laser, cosmic, special ASIC settings, etc.

◆ <u>Four stages</u>: (1) purge (2) cool-down (3) LAr fill (4) recirculation and purification → operating at least 2-3 times design purity!

LArTPC: Early History

Early History of the Development of LArTPC

- W. Willis and V. Radeka, Liquid argon ionization chambers as total absorption detector, NIMA 120:221 (1974)
- D. R. Nygren, The Time Projection Chamber: A New 4π Detector for Charged Particles. eConf. C740805:58 (1974)
- H. H. Chen et al. A Neutrino detector sensitive to rare process. I. A study of neutrino electron reactions. FNAL-Proposal-0496 (1976)
- C. Rubbia, The liquid argon time projection chamber: a new concept for neutrino detector, CERN-EP/77-08 (1977)

V. Radeka

D. R. Nygren

C. Rubbia

LArTPC Experiments

BROOKHAVEN

MicroBooNE Physics Goals

Low-Energy Excess

- Low-energy v_e/v_e candidate excess seen at MiniBooNE
 - MiniBooNE: Cherenkov detector (also on BNB)
 - Baseline too short (541 m) for 3flavor $v_{\mu} \rightarrow v_{e}$ oscillation
- No e[±]/γ separation... is excess misunderstood background, sterile neutrino, or... ?

69

Low-Energy Excess (cont.)

- Can discriminate e[±]/γ with MicroBooNE's LArTPC
 - Shower displacement from vertex ("gap") for γ also provides separation
 - Separation with dE/dx
- <u>End result</u>: either discover new particle or improve MC for future experiments

Cross Section Measurements

- Cross-section measurements at MicroBooNE will teach us more about nuclear effects, neutrino energy reconstruction, etc.
 - e.g. nucleon-nucleon correlations

VATIONAL LABORATORY

Cross Section Measurements

- Cross-section measurements at MicroBooNE will teach us more about nuclear effects, neutrino energy reconstruction, etc.
 - e.g. nucleon-nucleon correlations

ATIONAL LABORATOR

Supernova v, Exotic Physics

- Additional topics include studies related to supernova neutrinos and exotic physics
 - If we're lucky, supernova neutrinos (~10 MeV) captured using continuous readout stream and SNEWS alert system
 - Also study zero suppression, triggering schemes
 - Can study proton decay backgrounds in MicroBooNE's LArTPC
 - Signal: $\mathbf{p} \rightarrow \mathbf{K}^+ + \mathbf{v}$
 - Background (cosmogenic): $\mathbf{K}^{\mathbf{0}}_{\mathbf{L}} + \mathbf{p} \rightarrow \mathbf{K}^{+} + \mathbf{n}$
- Both helpful to DUNE physics program

Detector Physics

- Must understand detector effects to develop LArTPC technology
 - Essential for SBN and DUNE
 - Space charge effects (SCE), wire response, energy scale, noise studies, diffusion, e⁻ lifetime, etc.

VATIONAL LABORATOR

Booster Neutrino Beam

Fermilab Neutrino Experiments

Booster Neutrino Beam: "BNB"

- Receives 8 GeV Protons from Booster
- $-v_{\mu}(\overline{v}_{\mu})$ beam

MicroBooNE @ BNB:

- On-axis at 470 m baseline
- First three years in v_{μ} mode (pre-SBN)

Booster v beam MicroBooNE, SBN program

NuMI v beam

Booster proton energy: 8 GeV

Main Injector proton energy: 120 GeV

DUNE v beam

BNB Overview

- Protons hit beryllium target producing mesons
- Magnetic field of horn focuses positive mesons, defocuses negative mesons
- 50 m decay pipe for π^+ and \mathbf{K}^+ decay to primarily μ^+ and \mathbf{v}_{μ}
- Layers of steel and concrete absorb charged particles
- <u>Result</u>: \mathbf{v}_{μ} beam

BNB Overview

