TPC Tracker Detector Technology

Mini-workshop, IHEP, Beijing

TPC in PandaX

Ke HAN (韩柯)

Shanghai Jiao Tong University

上海交通大学

September 1, 2016

PandaX: Particle and astrophysical Xenon experiments

- Searching for new physics beyond the Standard Model with TPC
- Dark matter WIMPs
 - Explore the particle nature of dark matter
 - Recent results of PandaX-II got accepted by PRL
- Neutrinoless Double-Beta Decay
 - Directly check whether neutrinos are their own anti-particles: Majorana neutrinos
 - Test lepton number violation

PandaX Detectors

I: 120kg LXe DM 2009 - 2014 II: 500kg LXe DM 2014 - 2017

Multi-ton LXe DM 2017 - III: 200kg - 1 ton HPXe 0vββ 2016 - 2022

PandaX-III: The first large-scale NDBD experiment in China

- TPC: 200 kg scale, symmetric, double-ended charge readout with cathode in the middle
 - Charge readout plane: tiles of square microbulk Micromegas (MM) modules with X, Y strips
 - The largest low-background high pressure TPC
- Four more upgraded modules for a ton scale experiment
- PandaX-III will be located at Hall #B4 at China Jin Ping underground Laboratory (CJPL-II).

Microbulk MicroMegas

- Microbulk MicroMegas films made of Copper ٠ and Kapton only
 - Perfect for radio-purity purpose
- 20 cm by 20 cm ٠
- XY strip readout; 3mm pitch size; 128 channel •
- 100 ~ 1000 gain ٠
- 3% energy resolution at 2.5 MeV ٠

Double side Cu-coated (5 μ m) Kapton foil (50 μ m) Construction of readout strips/pads (photolithography)

Attachment of a single-side Cu-coated kapton foil $(25/5 \,\mu\text{m})$

pitch

- Construction of readout lines
- Etching of kapton
- Vias construction
- 2nd Layer of Cu-coated kapton
- Photochemical production of mesh holes
- Kapton etching / Cleaning

Andriamonje, S. et al. JINST 02 (2010): P02001

Scalable Radio-pure Readout Module (SR2M)

- Scalable Radio-pure Readout Module (SR2M): Mosaic layout to cover large readout planes
 - Solderless system to extract pixel and mesh signal
 - Dead-zone-free arrangement
- Two SR2Ms produced at CERN, now being tested at SJTU and Zaragoza
 - 20 by 20 cm

More SR2M design features

Hermetic seal

Electrical connection

Joining two SR2Ms

TPC Field Cage – option 1 (mature)

- Copper shaping rings + resistors + external Teflon (or Acrylic) supporting bars
 - Mature technology
 - Used and tested extensively in PandaX-I and PandaX-II
- Supporting bars are critical
 - Dielectric strength
 - Displacer for ¹³⁶Xe

PandaX-III prototype TPC; showing the field cage

TPC Field Cage – option 2 (more elegant)

- Resistive coating on the acrylic pieces. The resistive layer works as continuous field shaping rings.
 - No more resistors
 - No more soldering
 - No copper rings
- Diamond-like carbon sputtering was developed for MM for ATLAS.
 - Can be very thin and resistive

Large sputter station at NARIT (SUT has access)

- Challenges remain:
 - Uniformity of the coated resistivity
 - Radio-purity
 - Cost
- SUT (Thailand) is collaborating with SJTU on developing this option

High pressure vessel

- High gas pressure and radio-pure
- Baseline approach: oxygen-free copper welded with E-beam technique
 - Technologically challenging
 - Still a major contributor to our background budget
- Alternatively:
 - Titanium vessel with copper lining
 - SS vessel with copper lining

High voltage system

- Feedthrough for high voltage and withstand 10 bar gas pressure
 - Teflon wrap with a stainless steel core
 - Squeezed by a Swagelok for gas tightness
- Tested on the prototype TPC
 - 70 kV in air
 - 95 kV in 10 bar N₂

Xe +TMA mixture

- Better energy resolution
 - Extrapolated from 511keV and 1.2MeV peaks: 3%
 FWHM (@Q_{0vββ})
- Better tracks
 - TMA suppress electron diffusion
- Better operation
 - TMA as a quencher

 $350 \ 400 \ 450 \ 500 \ 550 \ 600 \ 650$

energy [keV]

Gas handling system

- A gas handling system at high pressure (10 bar) was designed and manufactured.
- Used successfully for mixing Xe and TMA and extracting TMA from Xe.

• An online gas analyzing system is being added.

¹³⁶Xe enriched gas

- 145 kg of 90% Xe-136 enriched gas purchased and arrived at SJTU.
- Gas content measured at • LBNL with an ion source and double checked at SJTU with a sniffer.
- 55 kg more will be procured later this year.

Prototype TPC at SJTU

- 16 kg of Xenon at 10 bar (active mass within TPC)
 - Single-ended TPC
- To optimize the design of Micromegas readout plane
- To study the energy calibration of TPC
- To develop algorithm of 3D electron track reconstruction

7 MicroMegas

September 1st, 2016, IHEP

2D track

Radio-purity control

- ICP-MS recently commissioned at PKU (Beijing)
 - Agilent 7900 ICP-MS
 - Class 10 clean room; class 1 for the ICP-MS hood
- HPGe detectors at CJPL and SJTU
- Low radioactivity environment
 - Radon sealant on the wall of Hall 4
 - Rn-free air in the detector assembly region of the lab
 - Rn-control in water shield
 - Rn-emanation measurements
- Copper vessel and SS bolts are the main contributors to background budget.

Electronics

- ASIC AGET chips: generic electronics for TPC from CEA-Saclay
 - 350 nm CMOS, mature technology
 - 64 channel multiplex
 - 512 sampling point per channel
 - 12 bit ADC
 - Dynamic range up to 10 pC
 - Sampling rate: 1 MHz to 100 MHz

AGET and the commercial version ASAD are being tested and studied at Zaragoza, USTC, and SJTU

Ensure high

energy resolution

PandaX-III collaboration

- China: Shanghai Jiao Tong University, University of Science and Technology of China, Peking University, China Institute of Atomic Energy, Shandong University, Sun Yat-Sen University, Central China Normal University
- Spain: Universidad de Zaragoza
- France: CEA Saclay
- US: University of Maryland, Lawrence Berkeley National Laboratory
- Thailand: Suranaree University of Technology

Conclusion

• PandaX-III is using a high pressure xenon TPC to search for double beta decay

PandaX-III TPC is unique:

- Radio-purity
- Energy resolution
- High pressure

Shared TPC technology:

- Micromegas
- Electronics
- Energy and track reconstruction

MULTIPHUSICS 1

How the field changes with thickness

Width 12cm

20%thinner Max:120% of the average; E field deviation goes below 5% in 3 cm from the boundary ;

10%thinner Max:109% of the average; E field deviation goes below 5% in 1.7cm from the boundary ;

PandaX vs. NEXT

PandaX-III first TPC		NEXT-100
200 kg Xe(enriched) + 1% TMA	Detector medium	100 kg pure Xe (enriched)
	Light	Primary + electroluminescence light readout by PMTs
Micromegas	Charge/Tracking	SiPM
3%	Projected energy resolution	0.7%
2-3 mm	Tracking pitch size	1 cm
X,Y	Fiducialization	X,Y,Z
Since 2015		Since ~2008

Xe+TMA

Figure 1. Simplified schematic of Xe and TMA reactions after initial ionization and excitation of Xe. We made the first direct measurement of the processes shown with red arrows.

