TPC Tracker Detector Technology Mini Workshop, Beijing, September 1, 2016

Micromegas module for ILC-TPC

A decade of R&D

Paul COLAS, CEA Saclay

Early tests

Magnetic field charge spreading Ion Back Flow Single-module tests Micromegas development Seven-module test Integration issues : electronics, cooling

Introduction

- TPCs have good records in e+e- physics (ALEPH and DELPHI at LEP), and showed adaptability to dense high-rate environment (STAR, ALICE)
- MPGDs yield a promise for improvement : smaller structures lead to smaller ExB effects, ion feedback can be naturally suppressed, light construction of large area is possible.

Charged tracks cross a medium with a low (drift) field : 200 V/cm. Ionization electrons drift to a mesh maintained ~100 μ above sensitive pads : the very high field (O(60kV/cm)) multiplies the electrons.

Very small gap : very fast detector

Funnel effect: avalanche spread by diffusion of electrons, ions follow back field lines, most of them closing on the mesh.

 $S2/S1 = E_{drift}/E_{amplif} \sim 200/60000 = 1/300$

Micromegas

Charge spreading

 Continuous RC network spreading evenly the charge over several pads

Early tests

- 2001-2002 : Check that Micromegas works in a magnetic field. Requires non-magnetic mesh.
- Study the ion back flow natural suppression
- Select gas candidates
- 2000-2005 : development of the chargespreading method (M. Dixit et al.). Tested in a 5T field: 30 μm resolution with 2mm pads

EUDET/AIDA Test facility at DESY

GEMs

Micromegas

Micromegas TPC

Chips on board (wire bonding) – The resistive foil suffices to protect against sparks – 0.25 X° thick

Bulk process for MM manufacture Carbon-loaded kapton or Diamond-like carbon as resistive coating

Module size: 22 cm × 17 cm Readout: 1726 Pads 24 rows Pad size: ~ 3 mm × 7 mm

Gating

- Necessary to fully suppress the space charge produced by ion back flow from the amplification gap
- Practical solutions under study, e.g. gating GEM (see Akira Sugiyama's talk)
- Not possible at CEPC (see Huirong's talk)

Perfomance : resolution

Resolution 70 μ m in r ϕ and 200 μ m in z at zero drift distance for 3mm-wide pads Drift dependence follows expectation from diffusion

Comparison of distortion between experiment and simulation

Distribution of the residuals as obtained in **Experiment** after alignment correction.

Distribution of the residuals as obtained in <u>Simulation</u>

Comparison of distortion between experiment and simulation

B=1T

Distribution of the residuals as obtained in **Experiment** without alignment correction.

B=1T

Distribution of the residuals as obtained in <u>Simulation</u>

2-phase CO2 cooling

- Can operate at room temperature (requires high pressure, no problem in O(1mm) pipes. Allows more uniform gas temperature and no worry with dripping condensed water.
- No consequence of leaks : CO2 vaporizes
- Excellent heat removal (high heat capacity and high latent heat)
- Very little matter budget

Thermal inhomogeneities cause changes in drift properties in the gas, hence distortions. Needs simulations.

Thermal simulation of the gas volume and of the endplate modules

Warming up and cooling down of a module. Good agreement with data

Summary

- Basic demonstration that a TPC can operate at ILC with required performance is made
- More work needed to demonstrate that it can work at a CC (time structure, ion back flow)
- A lot of progress was made in a decade towards an engineered detector