
Introduction to Lodestar
(LHAASO Offline Data Processing Software Framework)

Xingtao HUANG, Xueyao ZHANG, Teng LI
Shandong University

2016.8.15

2016-8-26 1

Outline
• Overview of Lodestar
• Introduction to SNiPER
• Development Status
• Summary

2016-8-26 2

Overview of LodeStar
• LodeStar:

• LHAASO Offline Data Processing Software Framework
• Constituents of LodeStar:

• offline: specific to LHAASO Experiments
• SNiPER: underlying framework
• External Libraries: frequently used third-party software or tools

SNiPER (Software for Non-collider
Physics ExpeRiment)

Generator Analysis

Simulation

Calibration

Reconstruction

Offline
External Libraries (EI)
ROOT Geant4 Boost CLHEP

 HepMC Python …..

2016-8-26 3

Functionalities of Lodestar
uManagement of the offline data processing procedures

• Generator, simulation, reconstruction, analysis etc.
• Modular management
• Process/Sequence management

uManagement of the event data
• Event Data Model
• Data Input/output
• Data storage

uProviding common services or tools during processing
• HisogramSvc, RandomSvc, DatabaseSvc, etc.

uProviding friendly user interfaces
• Easy to develop user code
• Configure jobs

2016-8-26 4

Software Environments
uProgramming Language：hybrid programming of C++ and Python

• C++: main part implementation
• Python: job configuration interface

uPackages management tool: CMT (Configuration Management Tool)
• Help developers to manage packages easily
• Help users to setup the environment for running the application easily

uOperation System: Linux
• Official support: Scientific Linux (Now SL 6+ gcc4.4)
• More OS will be tested and supported according to needs

uCodes Management: SVN
• Keep history of codes evolution
• Synchronization and sharing between developers
• Tag and release

2016-8-26 5

Procedure of Offline Data Processing
uManagement of the offline data processing, including generator, simulation,

reconstruction, analysis etc.

l The data processing procedures are
developed based on the Algorithm,
Service and Tool in SNiPER

l Each procedure usually consists of
one or several algorithms, e.g.

− direction reconstruction
− energy reconstruction

l Each procedure reads event data
from previous step and produces its
event data for the next one

Generator

Simulation

Reconstruction

Analysis

GenEvent

SimEvent

RecEvent

PhyEvent
2016-8-26 6

Procedure of Offline Data Processing
uManagement of the offline data processing, including generator, simulation,

reconstruction, analysis etc.

Generator

Simulation

Reconstruction

Analysis

GenEvent

SimEvent

RecEvent

PhyEvent

l The event data produced by
algorithms is saved in Event
Data Model objects

l Event Data Model objects are
stored in a place named as
DataStore

l Data Model objects can be
converted into persistent form
and saved into files

2016-8-26 7

Design of the LHAASO Event Data Model
u LHAASO EDM is designed based on

ROOT

u EventObject inherits from TObject

u Each process defines their EDM Objects

u EDM for each process is split into two
parts in order to achieve quick event
selection:
l HeaderObject
For the tag information
l EventObject
For the full event data

u TRelations: Matching between Headers
(optional)

2016-8-26 8

Introduction to SNiPER
u What does SNiPER do?

SNiPER

Users’ algorithm :
1. get data from DataStore
2. execute calculation
3. put results back to DataStore

② DataStore management
-Manage event data
-Send data to algorithms
-Get results from algorithms

Do not care where the data
comes from

Do not care where the
data will go

User’s Application Layer

Core Software Layer

Python UI Layer run a batch job or interactively debug a module

③ Application management
-Load and plugin algorithms
-Manage and execute algorithms

① Framework architecture management
- Interfaces, Services , Input/Output, UI, Logging, etc.

2016-8-26 9

Main components of SNiPER
From Users’ point of view:

• Algorithm

• Service

• Task

• Incident

• DataStore

u Algorithm, Service and Task follow modular design
ð Dynamically Loadable Element (DLElement)
ð Low couplings between each other
ð Support parallel development of applications

2016-8-26 10

Algorithm and Service
u Algorithm: The smallest unit of users’ codes:

• perform event calculation , i.e.
− Position reconstruction
− Correlation analysis

• SNiPER provides user interface (AlgBase)
− User’s algorithm must inherit from AlgBase

• One data processing (or Task) consists of one or more algorithms

u Service: Usually a piece of codes for common use:
• Histogram Service
• Random Service
• Geometry Service
• ROOT Input/Output services, etc.
• User interface, SvcBase , is provided by SNiPER

− New services must inherit from it
2016-8-26 11

Task
u A lightweight application manager:

l Manage its Algorithms/Services
l Perform sequential Algorithm execution
l Manage DataStore and input/output systems etc.

u A job may have more than one Tasks
l TopTask and SubTask

u Each task can be configured individually
u Both sequential and jump executions are

implemented
• SubTask can be executed by firing Incident

TopTask SubTask SubSubTask

 Fire Incident
Fire Incident

2016-8-26 12

Data Store and Data Input/output
u DataStore is the dynamically allocated memory place to hold event data

l Managed by SNiPER service: DataStoreMgr

u Applications (in terms of algorithms) get/put event data from DataStore
l Smart pointers are provided to perform

u DataStore is automatically configured with Data I/O Service
l Before/after event processing, event data will be input/output

Data Store
(MEMORY)

Simulation

Reconstruction

Analysis

DISK

DISK

DataInputSvc

DataOutputSvc

Other Svc
Other Svc

Other Svc

DataStoreMgr

DataStoreMgr

2016-8-26 13

Python User Interface
uPython binding is used to configure/run

SNiPER jobs
l Based on Boost.Python
l Take advantage of the flexibility of Python
l In place of the txt job option files

u Task, Algorithm, Service are all
configurable in Python

• Import SniperPython modules
• Create Task
• Set up Algorithms, Services, etc.

Use property to configure the run
time variables

• Invoke the task

Source Code
(C++)

Auto/Manual

Auxiliary Code
(C++)

Library
(libX.so)

Library for Python
(libXPython.so)

User’s
Python Script

2016-8-26 14

Development Status of Lodestar
u Lodestar has been built on SNiPER
uBasic tools for the offline data processing applications are ready to use:

l Event Data Model
l DataStore
l Data I/O (ROOT I/O, Corsika Input)
l G4Svc for Geant4-based simulation

u Some applications have been moved to Lodestar:
l KM2A fast simulation
l WFCTA simulation
l G4Argo: toy example for the G4-based simulation

uResults are compared to make sure the software runs correctly

2016-8-26 15

Applications
• KM2A fast simulation (from LIU Ye)

• Implemented with KM2ADetSimAlg and KM2ARecAlg
• Some comparison of the results:

2016-8-26 16

Applications
• WFCTA Simulation (from Ma Lingling)

• Implemented with WFCTADetSimAlg
• Some comparison of the results:

Lodestar Origin

Corex, corey 30857.314453,
21321.181641

30857.314453,
21321.181641

Zenith, azimuth 38.221312, 4.110079 38.221312, 4.110079

Total photon 720363989.469576 720363989.469576

Photons arriving telescope 2204600 2204600

Photon after reflecting 1432315 1432315

Photon after ray tracing 220824 220824

2016-8-26 17

Applications
u To help developers to build the Geant4-based simulation software, a detsim

framework is built in Lodestar:
uComponents:

• DetSimAlg: Common algorithm of Geant4 detector simulation
• G4Svc: Interface to the Geant4 core
• DetSimFactory: Build all the detector simulation options

Generator
Geometry
User-actions

2016-8-26 18

Applications
uG4Argo is provided as an example (From Guo Yiqing and Tian Zhen):

• Use ArgoSimFactory to build all simulation options
• Support input event splitting
• Some comparison of the results:

2016-8-26 19

Summary
uWe have introduced:

• Overview of the LHAASO Offline Software infrastructure and its functionalities
• SNiPER framework
• Several application examples moved into Lodestar

uNext to do:
• Further improvements of Lodestar needs more considerations and discussions
• Many tools and services to be added
• Lots of existing packages to be moved to Lodestar
• Build our SVN/Trac server
• Lots of implementation work to do…
• …

2016-8-26 20

