GAMMA-RAY BURSTS 在100 GEV 的輻射

P.H. Thomas Tam (譚栢軒,中山大学)

collaborators: XiangYu Wang (NJU), Qingwen Tang (NCU) H.E.S.S. collaboration, FAN

南开大学 2016.8.15-18

Contents

- * Fermi-LAT Observations of GRBs
- * Photons with the highest energy (-100 GeV) from GRBs
- * Ground-based observations of GRBs
- * LHAASO opportunities of GRBs

What are GRBs?

- * Intense bursts of gamma-rays
- * Duration: -10ms hundreds of seconds
- * happen at a random position on the sky never repeat

11 months Fermi LAT count map

0

ο.

0

0

Circles:

~550 GBM GRB (since Aug 2008) In Field-of-view of LAT (<70°): 275 27 LAT GRB (7 LAT LLE-only GRB) Out of the FOV

0.0

Squares: LAT detections LAT does not see GeV emission from most GRBs (see, e.g., Ackermann et al., 2012)

o

0 00

0

as of 2011-01-20

credit: N. Omodei

What have H.E.S.S./MAGIC/ VERITAS/HAWC seen?

GeV emission during afterglow

Abdo et al. (2010)

Swenson et al. (2010)

Very bright GRB 130427A

10-100 GeV photons

GRB 130427A emits many high-energy gamma-rays during the prompt & afterglow period

* a 95 GeV photon arrived at T_{\circ} + 243s, corresponding to an intrinsic photon energy 128 GeV at z=0.34

Fan, Tam, et al. (2013)

Ackermann et al. (2014)

$t-T_0$ (sec)	Power Law (PL) Γ	$\Gamma_1 \ (E < E_{\rm b})$	Broken Power Law (BPL) $\Gamma_2 \ (E > E_b)$	$E_{\rm b}~({ m GeV})$	$\begin{array}{c} \text{Improvement of BPL over PL}^{\text{a}} \\ (\sigma) \end{array}$
$\begin{array}{r} 0-20\\ 20-138\\ 138-750\\ 3000-80,000\\ 138-80,000\end{array}$	$\begin{array}{r} -2.0{\pm}0.2\\ -1.9{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\end{array}$	$-2.2 \pm 0.1 \\ -2.6 \pm 0.7 \\ -2.3 \pm 0.2$	 -1.4 ± 0.2 -1.4 ± 0.2 -1.4 ± 0.1	$4.3{\pm}2.0$ $1.1{\pm}0.9$ $2.5{\pm}1.1$	 2.5 2.9 3.5
^a calculated a	s $\sqrt{2 \times [\log(\mathcal{L}_{BPL})]}$	$(-\log(\mathcal{L}_{\mathrm{PL}}))]$		Signific	ance of broken power la
Power la	w index does	n't change!	Tam et al. (2	013)	over power law

extended emission mechanism

- * Synchrotron emission (e.g., Kumar & Barniol 2009, Ghisellini et al. 2010)
- * but there exists a maximum synchrotron energy, it is hard to explain the >10 GeV photons

$$\begin{split} \epsilon_{\rm syn,M} &\sim 100 \ {\rm MeV} \ \Gamma(1+z)^{-1} \\ &\sim \begin{cases} 20 \ {\rm GeV} \ E_{\rm k,54}^{1/8} n_{-2}^{-1/8} t_2^{-3/8} (\frac{1+z}{1.34})^{-5/8}, {\rm ISM}; \\ 15 \ {\rm GeV} \ E_{\rm k,54}^{1/4} A_{*,-2}^{-1/4} t_2^{-1/4} (\frac{1+z}{1.34})^{1/4}, \ {\rm wind}; \end{cases} \end{split}$$

Fan, Tam, et al. (2013) also see Ackermann et al. (2013)

Inverse Compton emission can explain the extra hard component

Liu et al. (2013)

GRB 131231A

Probably the strongest case for IC emission, besides 130427A

- * But the very high-energy photons come from the afterglow phase,
- * and the 95 GeV photon was detected at 243s after the trigger
- * Is there any ~100 GeV during the prompt emission?

Second component during prompt phase

10

(a)

GRB 090902B

GRB 090510

Abdo et al. (2009)

-10 sec after trigger

vF_v (erg/cm²/s) 10⁻⁵ 10⁻⁶ 107 Time-integrated photon spectrum (0.5 s - 1.0 s) 10-4 (b) 10⁻⁵ vF_v (erg/cm²/s) 10-6 0.5 s - 0.6 s: Band (B s - 0.9 s: Band 10 0.8 s - 0.9 s; Band (6 f 0.9 s - 1.0 s: PL (LAT d 10⁷ 10² 10³ 10⁵ 10⁶ 104 10 10 Energy (keV) 10 GeV

Ackermann, et al. 2010

-1 sec after trigger

Second component during prompt phase

GRB 090902B

GRB 090510

Fermi的限制

- * 在10 GeV以上, Fermi-LAT已经看到了与伽玛暴相关的约十个 光子,包括一个来自GRB 080916C(z=4.35)的27.4 GeV光子(从 源出发时是147 GeV),和GRB 130427A的一个95 GeV的光 子,证明伽玛暴能产生约100 GeV的极高能伽玛光子!
- * 随着时间的推移, Fermi-LAT将在未来几年看到更多10 GeV以 上光子。但Fermi-LAT受制于有限的可接收面积(约0.8平方米), 将来也始终无法很好的得到10 GeV以上的伽玛辐射谱和光变。
- * 要大幅提升可探测的极高能的伽玛光子数,就必须仰赖地面伽玛射线探测器。

Why bother the very highenergy photons of GRBs?

- ***** Because LHAASO is upcoming!
- * The radiation mechanism is still under debate
- * The energy band where extragalactic background light (EBL) attenuation starts to modify the intrinsic spectra of the sources (e.g., AGN, GRBs)
- * At these energies, GRBs can be seen at distances further than those of AGN, because of the EBL

Extragalactic background Light

γ-γ interaction high-energy photons will suffer absorption by EBL

 $\gamma = \left(\begin{array}{c} \gamma \\ \theta \\ \gamma \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \end{array} \right) \left(\left(\begin{array}{c} \theta \end{array} \right) \left(\left(\begin{array}{c} \theta \end{array} \right) \left(\begin{array}{c} \theta \end{array} \right)$

$$F_{\text{obs}}(E) = F_{\text{int}}(E) \cdot e^{-\tau(E)}$$

early redshift information crucial ! Detection --> UL of z

Aharonian et al. (HESS), Nature, 2006

一點回顧……

- * 对于伽玛暴及其馀辉,地面伽玛射线探测器已经从事了约二十年的观测,还没实现首次显着性足够高的伽玛暴探测。
- * 比较着名的有:
 MILAGRITO对于970417A的观测(2.7σ),
 国内的则有羊八井ASγ对于991208的观测,后者还被看到类似
 GRB 990123的可见光馀辉幂律陡降,红移0.706(1.88σ)
- * Not even H.E.S.S. II/VERITAS/HAWC
- * 原因包括灵敏度不够、观测延迟时间太长,伽玛射线被河外背景 光(Extragalactic Background Light)吸收等(Xue, Tam, et al., 2009).

H.E.S.S. (High-energy stereoscopic system)

The H.E.S.S. site in Namibia

180 m

A system of 4 air Cherenkov telescopes situated in *Namibia*, southern Africa

(23°16' S, 16°30' E) 1800 m above sea level

energy range > 100 GeV

complete array operating since early 2004

HESS-observed GRBs

Table 1. Properties of GRBs observed with H.E.S.S. from March 2003 to October 2007.

GRB	Satellite	Trigger	$R.A.^{a}$	Decl.a	Error ^a	Energy band	Fluence ^b	T_{90}^{b}	$X^cO^cR^c$	z
		number			(")	(keV)	(10 ⁻⁸ erg cm ⁻	$(s)^{-2}$ (s)		
071003	Swift	292934	20h07m24s25	+10°56′48″8	5.7	15 - 150	830	~150	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	1.604 ^e
070808	Swift	287260	00 ^h 27 ^m 03 ^s .36	+01°10'34.''8	1.9	15 - 150	120	~32	$\sqrt{\sqrt{-1}}$	
070724A	Swift	285948	01 ^h 51 ^m 13.96	-18°35'40.'1	2.2	15 - 150	3	~0.4	$\sqrt{\times \times}$	0.457 ^f
070721B	Swift	285654	02 ^h 12 ^m 32 ^s .95	-02°11′40.′6	0.9	15 - 150	360	~340	√ √ ×	3.626 ^g
070721A	Swift	285653	00 ^h 12 ^m 39 ^s .24	-28°22'00.'6	2.3	15 - 150	7.1	3.868	$\sqrt{}$.	
070621	Swift	282808	21h35m10.14	-24°49'03''1	2	15 - 150	430	33	$\sqrt{\times}$.	
070612B	Swift	282073	17 ^h 26 ^m 54 ^s .4	-08°45'08.''7	4.7	15 - 150	168	13.5	$\sqrt{\times}$.	
070429A	Swift	277571	19 ^h 50 ^m 48.8	-32°24'17''9	2.4	15 - 150	91	163.3	$\sqrt{}$.	
070419B	Swift	276212	21h02m4957	-31°15'49''7	3.5	15 - 150	736	236.4	$\sqrt{}$.	
070209	Swift	259803	03h04m50s	-47°22'30''	168	15 - 150	2.2	0.09	××.	$0.314?^{h}$
061110A	Swift	238108	22h25m09%9	-02°15'30''7	3.7	15 - 150	106	40.7	√√.	0.758^{i}
060526	Swift	211957	15 ^h 31 ^m 18'.4	+00°17'11".0	6.8	15 - 150	126	298.2	$\sqrt{\sqrt{2}}$.	3.21 ^j
060505	Swift	208654	22h07m0450	-27°49'57''8	4.7	15 - 150	94.4	~4	$\sqrt{\sqrt{2}}$.	0.0889^{k}
060403	Swift	203755	18 ^h 49 ^m 21 ^s .80	+08°19'45"3	5.5	15 - 150	135	30.1	$\sqrt{\times}$.	
050801	Swift	148522	13h36m35s	-21°55′41″	1	15 - 150	31	19.4	√ √ ×	1.56^{l}
050726	Swift	147788	13h20m12s30	-32°03'50''8	6	15 - 150	194	49.9	$\sqrt{}$.	
050509C	HETE-II	H3751	12h52m53.94	-44°50'04''1	1	2-30	60	25	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	
050209	HETE-II	U11568	08 ^h 26 ^m	+19°41′	420	30-400	200	46	. × .	
041211Bm	HETE-II	H3622	06h43m12s	+20°23'42"	80	30-400	1000	>100	. × .	
041006	HETE-II	H3570	00 ^h 54 ^m 50°.23	+01°14'04.'9	0.1	30-400	713	~20	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	0.716"
030821	HETE-II	H2814	21 ^h 42 ^m	-44°52	0	30-400	280	23		
030329	HETE-II	H2652	10 ^h 44 ^m 49 ^s .96	+21°31′17″44	10^{-3}	30-400	10760	33	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	0.1687^{p}

Aharonian...Tam...(2009)

CT5, the 28-m dish telescope

CT1-4, the original 13-m telescopes

Lower the energy threshold

- H.E.S.S. phase I
 - four 12m telescopes
 - FoV 5 deg
 - energy threshold 100 GeV
 - angular resolution < 0.1 deg</p>

- H.E.S.S. phase II
 - four 12m telescopes
 - one 28m telescope (FoV 3.5 deg)
 - energy threshold O(30 GeV)
 - angular resolution from 0.4 deg to less than 0.1 deg

H.E.S.S. phase I

2002-2012

H.E.S.S. phase II

2012-now

H.E.S.S. II Rapid Repointing System

* Fully automatic, no human-in-loop

* In order to minimise this delay, 2 major improvements have been made for CT5 over the original 4 telescope array

1. the telescope drive system of CT5 is significantly updated over that of the original H.E.S.S. system, allowing a full rotation of the telescope (360 in azimuth) in 3.5 minutes

2. CT5 is able to point in reverse-mode, allowing the telescope to slew through zenith, resulting in significantly faster repointing for some GRBs, where otherwise a large azimuthal slew would be required

HAWC simulated light

curve

- * With less than 1/3 of the array active, the HAWC observatory limits for GRB 130702A, which is at a close redshift of z = 0.145
- * Simulated HAWC light curve of GRB 090510

What have H.E.S.S./MAGIC/ VERITAS/HAWC seen?

Short GRBs and gravitational wave

* NS-NS mergers are progenitors of short GRBs

- * NS-NS mergers produce gravitational wave bursts, detectable by LIGO/Virgo, etc., before GRBs
- * Only wide-field detectors can observe this g-wave precursor before GRBs
- * LHAASO's has a irreplaceable role here!

◆ IACTs: H.E.S.S., VERITAS, MAGIC, ...

- Good angular resolution (~0.1°);
- Fair background rejection power;
- Short duty cycle (~10%);
- Narrow FOV (<5°);</p>
- Low energy threshold (~100 GeV);
- Mainly focused on deep observation.

Ground particle array: ASγ, ARGO-YBJ, Milagro, HAWC, ...

- Not-so-good angular resolution (~0.5°);
- Poor background rejection power (but much elaborated in water Cherenkov);
- Full duty cycle (>95%, ~10× IACT);
- Wide FOV (>2/ 3π , ~150× IACT);
- ♦ High energy threshold → improved by construction at high altitude (~1 TeV);
- Good at sky survey, extended sources and flares.

LHAASO opportunities

* Best instrument to observe GRB prompt emission (and before)

Maybe a good early science project