超新星遗迹伽玛射线 辐射与LHAASO观测

南京大学天文与空间科学学院 陈 阳

宇宙线: 2012年被《Science》列为8大 天文学之谜

Science News Reports on the Top Mysteries

Get a year of Science and AAAS membership. Join today!

SCIENCE PODCAST Interview with the Editor

Deputy News Editor Robert Coontz discusses the most confounding problems of astronomy.

Spectrum of CRs

 Below 'knee': galactic origin (Gal.E.den. > SMC E.den)

Two great ideas in a single short paper

COSMIC RAYS FROM SUPER-NOVAE

BY W. BAADE AND F. ZWICKY

MOUNT WILSON OBSERVATORY, CARNEGIE INSTITUTION OF WASHINGTON AND CALI-FORNIA INSTITUTE OF TECHNOLOGY, PASADENA

Communicated March 19, 1934

happenings in a super-nova now confronts us. With all reserve we advance the view that a super-nova represents the transition of an ordinary star into a *neutron star*, consisting mainly of neutrons. Such a star may possess a very small radius and an extremely high density. As neutrons can be packed much more closely than ordinary nuclei and electrons, the "gravitational packing" energy in a *cold* neutron star may become very large, and, under certain circumstances, may far exceed the ordinary nuclear packing fractions. A neutron star would therefore represent the most stable configuration of matter as such. The consequences of this hypothesis will be developed in another place, where also will be mentioned some observations that tend to support the idea of stellar bodies made up mainly of neutrons.

D. Conclusions.-From the data available on super-novae we conclude

(1) Mass may be *annihilated* in bulk. By this we mean that an assembly of atoms whose total mass is M may lose in the form of electromagnetic radiation and kinetic energy an amount of energy E_T which probably cannot be accounted for by the liberation of known nuclear packing fractions. Several interpretations of this result are possible and will be published in another place.

(2) The hypothesis that super-novae emit cosmic rays leads to a very satisfactory agreement with some of the major observations on cosmic rays.

Baade & Zwicky (1934) : SN \rightarrow CRs & NS

Galactic acceleration sources

Pulsar wind nebulae

SNR shock wave enables Diffusive shock acceleration (DSA)

Fermi acceleration
 Converging flows
 Particle diffusion

 (How possible, in a collisionless plasma?

Scattering on MHD waves

Evidence for rel. e's: Synchrotron X-rays from Shell-type SNRs

Kepler

• Power-law filaments;

Up to

 $E_{\rm e} \sim 10^{14} \, {\rm eV} \ (100 \, {\rm TeV})$

Outer thin filaments: accelerated relativistic particles (nonthermal emission)

Synchrotron radiation

However, evidence for p's, the main-part of CRs? Y-rays: leptonic or hadronic?

 Extended γ -rays, generated from⁵ leptonic or hadronic ^{∞43} interaction? Their ratio? Leptonic: Inverse Compton, non-thermal bremsstrahlung Hadronic: p-p collision → Π⁰ decay

Map of TeV Sources

by Apr. 2015

> 20 SNRs

mostly associated with molecular clouds

▲ Name -	▲ <u>RA</u> ▼	▲ Dec -	▲ Type ▼	▲ Date →	▲ Dist -	Catalog -
			Shell	-		Default Catalog
Tycho	00 25 27	+64 10 50	Shell	2010.05	3.5 kpc	Default Catalog
IC443	06 16 51	+22 30 11	Shell	2007.05	1.5 kpc	Default Catalog
RX J0852.0-4622	08 52 00	-46 22 00	Shell	2005.02	0.2 kpc	Default Catalog
RCW 86	14 42 42.96	-62 26 41.6	Shell	2008.10	2.5 kpc	Default Catalog
SN 1006 SW	15 02 03.2	-41 07 05	Shell	2008.12	2.2 kpc	Default Catalog
SN 1006 NE	15 04 03.4	-41 48 11	Shell	2008.12	2.2 kpc	Default Catalog
RX 11713 7-3946	17 13 33.6	-39 45 36	Shell	2000.02	1 kpc	Default Catalog
CTB 37B	17 13 57 6	-38 12 00	Shell	2006.01	13.2 knc	Default Catalog
HESS 11731-347	17 32 03	-34 45 18	Shell	2007.07	1012 100	Default Catalog
CNP C106 2±02 7	22 27 50	+60 52 27	Chall	2007.07	0.0 kpc	Default Catalog
Cossionaia A	22 27 39	+00 32 37	Shell	2009.07	2.4 kpc	Default Catalog
	23 23 13.0	+36 48 20	Sitell	2001.04	3.4 KPC	Default Catalog
1-11						
Name 🚽	A RA -	▲ Dec -	▲ Type -	▲ Date -	- Dist -	▲ Catalog
			SNR/Molec. Cloud	-		Default Catalog 💌
CTB 37A	17 14 19	-38 34 00	SNR/Molec. Cloud	2008.11	7.9 kpc	Default Catalog
SNR G349.7+00.2	17 17 57.8	-37 26 39.6	SNR/Molec. Cloud	2013.07	11.5 kpc	Default Catalog
HESS J1745-303	17 45 02.4	-30 22 12	SNR/Molec. Cloud	2006.01		Default Catalog
HESS J1800-240B	18 00 26.4	-24 02 20.4	SNR/Molec. Cloud	2008.04	2 kpc	Default Catalog
<u>N 28</u>	18 01 42.2	-23 20 06.0	SNR/Molec. Cloud	2008.04	2 kpc	Default Catalog
HESS J1800-240A	18 01 57.8	-23 57 43.2	SNR/Molec. Cloud	2008.04	2 kpc	Default Catalog
<u>N 51</u>	19 22 55.2	+14 11 27.6	SNR/Molec. Cloud	2008.10	4.3 kpc	Default Catalog
1-7						
▲ <u>Name</u> ▼	▲ <u>RA</u> ▼	▲ <u>Dec</u> ◄	▲ <u>Type</u> ▼	▲ <u>Date</u> -	► Dist -	▲ <u>Catalog</u> ◄
			SNR/Molec. Cloud			Newly Announced 📼
LMC N132D	05 25 02.20	-69 38 39.0	SNR/Molec. Cloud	2014.10		Newly Announced
SNR G318.2+00.1	14 57 46	-59 28 00	SNR/Molec. Cloud	2010.12		Newly Announced
W 49B	19 11 06.63	09 05 34.0	SNR/Molec. Cloud	2010.12		Newly Announced
1-3						
- <u>Name</u> -	▲ <u>RA</u> ▼	■ Dec ■	Type ▼	▲ Date ▼	▲ Dist ▼	🔺 Catalog 📼
			Composite SNR	-		Default Catalog
SNR G015.4+00.1	18 18 04.8	-15 28 01	Composite SNR	2011.12	4.8 kpc	Default Catalog
1-1						

Fermi gammarays sources

Fermi-LAT allsky map of the gammaray sky (Knödlseder et al. 2010)

* Nova

IC 443

○ SNR

+ Galaxy

2FGL (2012): 89 sources overlap with SNRs

3FGL (2015)

Description	Identified		Associated	
	Designator	Number	Designator	Number
Pulsar, identified by pulsations	PSR	137	•••	
Pulsar, no pulsations seen in LAT yet			\mathbf{psr}	29
Pulsar wind nebula	PWN	9	pwn	2
Supernova remnant	SNR	12	\mathbf{snr}	11
Supernova remnant / Pulsar wind nebula	• • •		spp	51
Globular cluster	GLC	0	glc	15
High-mass binary	HMB	3	hmb	0
Binary	BIN	1	bin	0
Nova	NOV	1	nov	0
Star-forming region	SFR	1	\mathbf{sfr}	0
Compact Steep Spectrum Quasar	\mathbf{CSS}	0	CSS	1
BL Lac type of blazar	BLL	18	bll	642
FSRQ type of blazar	FSRQ	38	\mathbf{fsrq}	447
Non-blazar active galaxy	AGN	0	agn	3
Radio galaxy	RDG	3	rdg	13
Seyfert galaxy	SEY	0	sey	1
Active galaxy of uncertain type	AGU	5	agu	578
Normal galaxy (or part)	GAL	2	gal	6
Starburst galaxy	SBG	0	\mathbf{sbg}	4
Narrow line Seyfert 1	NLSY1	2	nlsy1	3
Soft spectrum radio quasar	SSRQ	0	ssrq	3
Total		232	>	1809
Unassociated			149636062	992

total: 232+1809+992 = 3033

SNRs (>30, actually)

Identifications (12 extended sources):

2FGL (6): IC 443, W28, W30, W44, W51C, Cygnus Loop (W78)

new (6): S147, Puppis A, Vela Jr., RX J1713.7-3946, Gamma Cygni (W66), HB21

Associations (12):
 Tycho, Cas A, Kes 17, CTB 33 (G337.0-0.1), CTB 37A,
 G349.7+0.2, MSH 17-39, W41, 3C 391, W49B, CTB 109, SN1006

G296.5+10.0, G166.0+4.3, HB9 (G160.9+2.6)	Araya, M. (2013, 2014, MNRAS)
Kes 79	Auchettl, K. et al., (2014, ApJ, 783, 32)
RCW 103, Kes 27, SN1006	Xing, Y. et al. (2014, 2015, ApJ)
RCW 86	Yuan, Q. et al. (2014, ApJ, 785, L22)
Kes 41	Liu, B. et al. (2015, ApJ, 809, 102)
G338.3-00.0, G338.5+00.1	Lemoine-Goumard et al. (2014, ApJ, 794, 16)
3C397	Clark, C.J. et al. (2015, ApJL, arxiv:1508.00779)

The products of pp collision $p + p \rightarrow p + p + p + a(\pi^+ + \pi^-) + b\pi^0$ $p + p \rightarrow p + n + \pi^+ + a(\pi^+ + \pi^-) + b\pi^0$ $p + p \rightarrow n + n + 2\pi^+ + a(\pi^+ + \pi^-) + b\pi^0$

(*a* and *b*: integers)

$$n(\pi^0) \sim n(\pi^+) \sim n(\pi^-)$$

Best target: molecular clouds!

MCs near SNRs: a probe for accelerated CR protons

I. In situ interaction

- A. New CRs are produced in the SNRs
- Inoue et al. 2010; Fang & Zhang 2010
- Malkov et al. 2011
- B. pre-exsiting CRs (compressed/reaccelerated) with 'crushed' MCs
- Blandford & Cowie 1982; Uchiyama et al. 2010
- Tang & Chevalier 2014;

MCs near SNRs: a probe for accelerated CR protons

II. Illumination by escaped protons

Aharonian & Atoyan 1996 Gabici et al. 2009 Li, H. & Chen, Y. 2010, 2012 Ohira et al. 2011

【Science】2013年度十大科学突破

Runners Up

Fermi (Ackermann, M. et al. 2013, Science): W44 & IC443 AGILE (Giuliani, A. et al. 2011, ApJ, 742, L30): W44

<u>SNRs in molecular environment</u>

• Molecular gas takes up 1/2 mass of ISM

 Most core-collapse SNe are located close to GMCs -- their birth places (e.g. Huang & Thaddeus 1986)

Among >~270 Galactic SNRs, which are interacting with MCs?
 Green + (1997): 1720MHz OH masers, 17 SNRs
 Seta + (1998): CO or H₂ along LOS towards ~20 SNRs, no direct evidence
 Jiang, Chen + (2010): A detailed summary from literature,
 ≥ 34 interacting SNRs, possibly up to 70
 with 6 kinds of evidence summarized

Criterions & list of SNR-MC association 64 (Jiang, Chen+ 2010) + 6 (Jeong+ 2012)

Name	Other Name	Type ^a	Evidence ^b	Referencec	Group ^d	γ -ray detection ^e (Reference ^f)	34 confirmed
G0.0+0.0	Sgr A East	TC	OH maser, CS MA & LB, H ₂	1, 2, 3, 4, 5	Y	HESS(67)	
G1.05-0.1	Sgr D SNR	S	OH maser	2,6	Y	T DISCOUNT A PROVIDED TO	
G1.4-0.1		S	OH maser	2,6	Y		
G5.4-1.2	Milne 56	C?	OH maser	7	Y		Evidence [.]
G5.7-0.0		?	OH maser	7	Y	HESS(68)	
G6.4-0.1	W28	TC	OH maser, CO MA & LB, H2 MA, NIR	2, 8, 9, 10	Y	EGRET(69), HESS(68)	1 17203 (11 011
G8.7-0.1	W30	TC	OH maser	7	Y	HESS(70)	1.1/20MHZ <u>OH</u>
G9.7-0.0		S	OH maser	7	Y	California da California da Antonio Conserva	magers
G16.7+0.1		С	OH maser, CO MA	2, 11, 12	Y		<u>11145015</u>
G18.8+0.3	Kes 67	S	CO MA & LB, CO ratio	13, 14	Y		
G21.8-0.6	Kes 69	TC	OH maser, CO MA & LB, HCO ⁺ , H ₂	2, 11, 15, 16	Y		2.Molecular line
G29.7-0.3	Kes 75	С	CO MA & LB	17	Y		hreadening (ID)
G31.9+0.0	3C 391	TC	OH maser, molecular MA & LB, H2, NIR	2, 18, 19, 20	Y		broadening (<u>LB</u>)
G32.8-0.1	Kes 78	S	OH maser	21	Y		
G34.7-0.4	W44	TC	OH maser, molecular LB, H2 MA,	2, 8, 10,	Y	EGRET(69)	3 High line ratio e
			NIR, CO ratio	22		914-11-04 <i>1</i> 2	
G39.2-0.3	3C 396	С	H2 & NIR MA, CO MA & LB	16, 23, 24	Y		CO2-1/CO1-0
G41.1-0.3	3C 397	TC	CO MA & LB	25	Y		
G49.2-0.7	W51	TC	OH maser, CO MA & LB, HCO ⁺ LB	2, 11, 26	Y	HESS(71), Milagro(72)	A NID [FoII]
G54.4-0.3	HC40	S	CO MA & LB, IR MA	27, 28	Y		4. <u>MIX</u> [I'M],
G89.0+4.7	HB21	TC	CO MA & LB, CO ratio, H2, NIR	29, 30, 31	Y		vibrational
G109.1-1.0	CTB 109	S	CO MA & LB	32	Y		
G189.1+3.0	IC 443	TC	OH maser, CO ratio, H ₂ ,	2, 8, 22, 33,	Y	EGRET(69), MAGIC(73)	/rotational H ₂
			molecular MA & LB	34, 35		Milagro(72), VERITAS(74)	
						AGILE(75)	5 Specific (Spitzer
G304.6+0.1	Kes 17	S	H ₂ , IR MA & colors	16, 28	Y		5.speeme (spitzer
G332.4-0.4	RCW 103	S	IR MA & colors, NIR, H ₂ & HCO ⁺ MA	28, 36, 37	Y		IR colors
G337.0-0.1	CTB 33	S	OH maser	18	Y		
G337.8-0.1	Kes 41	S	OH maser	21	Y		6 Marphalagy
G346.6-0.2		S	OH maser, H2, IR colors	21, 16, 28	Y		o.morphology
G347.3–0.5		S?	CO MA & LB	38	Y	CANGAROO(76) HESS(77), Fermi(78)	agreement (<u>MA</u>) o
G348.5-0.0		S?	OH maser, H ₂ , IR MA	2, 16, 28	Y		spatial features
G348.5+0.1	CTB 37A	S	OH maser, CO MA	2, 12, 18	Y	HESS(79)	Spanne round to
G349.7+0.2		S	OH maser, CO MA & LB, CO ratio.	2, 18, 13,	Y	18. E.S.	
			H ₂ , IR MA	16, 28			
G357.7+0.3	Square Nebula	S	OH maser	2,6	Y		
G357.7-0.1	MSH 17-39	TC	OH maser, CO & H2 MA	2, 18, 39	Y		
G359.1-0.5		TC	OH maser, CO & H2 MA	2, 40, 41, 42	Y	HESS(80)	

y-ray SNRs -- OH masers correlation

Known SNR Masers and Coincident y-ray Sources

l	b	SNR	Diameter (')	Distance (kpc)	L_{GeV} (erg s ⁻¹)	$\alpha_{\rm GeV}$	$\begin{array}{c} L_{TeV} \\ (erg \ s^{-1}) \end{array}$	α_{TeV}	Ref.
				Group /	A				
6.4	-0.1	W28	42	2.0	4.8e35	2.1	1.5e33	2.7	1,2
34.7	-0.4	W44	30	2.5	4.1e35	1.9			1
49.2	-0.7	W51 C	30	6	1.7e36		1.5e33		3,4
189.1	+3.0	IC 443	50	1.5	1.0e35	2.0	1.2e33	3.1	1,5,6
0 3				Group I	3				
0.0	+0.0	SgrA East	2.5	8.5	1.2e37	1.7	1.3e36	2.2	
5.7	-0.0	1.1	9	3.2	22.2		0.8e33	2.3	2
8.7	-0.1	W30	45	3.9			1.7e34	2.7	
337.8	-0.1	Kes 41	5	12.3	4.2e36	2.5			
348.5	+0.1	CTB 37A	10	11.3	3.5e36	2.3	5.3e33	2.3	7
359.1	-0.5		10	5.0	1.2e36	2.2	7.5e32	2.7	8

Hewitt et al. (2009)

222.14	0.0		10	510	
				Group C	
1.0	-0.1	Sgr D SNR	8	8.5	
1.4	-0.1		10	8.5	
5.4	-1.2	Duck	35	5.2	
9.7	-0.0		11	4.7	
16.7	+0.1		4	2/14	
21.8	-0.6	Kes 69	20	5.2	
31.9	-0.0	3C 391	8	9	
32.8	-0.1	Kes 78	20	5.5/8.5	
337.0	-0.1	CTB 33	3	11	
346.6	-0.2		8	11	
348.5	-0.0		10	13.7	
349.7	+0.2		2	>11	
357.7	+0.3	Square	24	6.4	
357.7	-0.1	Tornado	5	>6	

Π⁰ break后,还需大量的工作.....

● < GeV,其它更多的"interacting SNRs"都有 "П⁰ break" 吗?

● > GeV, 伽玛射线谱的形态、走势(特别是 到10^14 eV)? 决定性的辐射机制?

.

9 SNRs interacting with MCs (Li & Chen 2012)

高能能谱截断?

• No energy cutoff at >10 TeV for known TeV SNRs. Any higher? Sign of E_{max} ?

• "Accumulative diffusion model" predicts for 4 SNRs:

γ-ray SNR原型: RXJ1713-3946

- 强-轻子混合模型,黑线 (Zhang & Chen 16)
- 轻子模型: 绿线

●北天SNR普测,特别对SNR-MC系统

•区分轻强子作用

•探索高能粒子高端能量截断

Hadronic vs. leptonic: RX J1713-3946

