

北京师范大学天文系

首届LHAAS0合作组会议

2016/08/16

引力波天文学时代已经到来

GW150914

GW151226

Abbott et al. 2016, PRL, 116, 061102

Abbott et al. 2016, PRL, 116, 241103

引力波电磁对应体探测重要意义

GW150914**位置**

定位误差: ~600平方度

Abbott et al. 2016, PRL, 116, 061102

- 美国天文十年发展规划:
 - 引力波及其电磁对应体
- 确认引力波信号的天体起源
- 研究引力波源的天体物理性
 质(比如引力波源的距离、
 宿主星系等)
- 利用引力波源研究宇宙的几 何和动力学(标准铃声)

- 理论研究
 - 理论模型构建;
 - 理论模型例证搜寻;
 - 联合探测实现后的引力波天文学;
- 观测研究
 - •引力波信号 / 电磁信号联合探测观测策略研究;
 - 现有望远镜研究;
 - 未来望远镜展望;
 - GWAC+EP

引力波暂现源电磁信号理论模型

Kiuchi et al. 2010, PRL, 104, 141101)

- 黑洞带电? 双黑洞起源于同一个恒 星? 双黑洞之一携带少量吸积盘?
- 中子星-黑洞并合

- 电磁信号取决于并合中心产物
- 大质量快转磁星?

Bartos, I., Brady, P., Marka, S. 2012, arXiv:1212.2289

双黑洞并合电磁对应体?

GBM detectors at 150914 09:50:45.797 +1.024s

GBM(*Fermi*): 8keV-40MeV; ~70%天区

GW150914-GBM: 引力波信号之后0.4s开始 持续了1s左右的硬X射线源(光子能量大于 50keV)

Connaughton V. 2016, arXiv:1602.03920

- 辐射集中在50Kev以上
- 辐射开始时间在GW150914信号后0.4s
- 持续时间1s左右
- 信号方向与引力波位置误差大致符合
- <u>光度</u>: L~1.8×10⁴⁹ erg/s

双黑洞并合电磁对应体?

GBM detectors at 150914 09:50:45.797 +1.024s

GBM(Fermi): 8keV-40MeV; ~70%天区

GW150914-GBM: 引力波信号之后0.4s开始 持续了1s左右的硬X射线源(光子能量大于 50keV)

Connaughton V. 2016, arXiv:1602.03920

双中子星并合电磁对应体

- 银河系内已发现存在双中子星 系统
- 在双脉冲星系统PSR 1913+16 发现有引力波辐射间接证据 (豪斯、泰勒因此获诺贝尔物 理奖)
- 通过数值模拟,已经发现并合 过程中引力波辐射存在 "chirp" 信号
- 与这类引力波信号成协的电磁 信号是怎样的?

http://physics.aps.org/articles/v3/29 (引自Kiuchi et al. 2010, PRL, 104, 141101)

双中子星并合电磁对应体

短时标伽玛射线暴

多波段暂现源 时标~小时、天、周,甚至年

Li-Paczyński Nova

Li & Paczyński, 1998 光学耀发 时标 ~ 几天

抛射物在星际介质中驱动的外激波

Nakar & Piran, 2011 射电余辉 时标 ~ 几年

Metzger & Berger, 2012

SGRB

所有方向都有X射线辐射!

双中子星并合中心产物

基本假设

- 短伽玛暴(全部或部分)由双中子星并合产生
- 银河系中探测到的双中子星质量分布具有普适性
- 短伽玛暴中观测到"内耗散平台"的样本对应并合产物为大质量中 子星,平台结束对应中子星坍缩成黑洞

主要结论

- 物质状态方程 $M_{\text{max}} = 2.37 M_{\odot} (1 + 1.58 \times 10^{-10} P^{-2.84})$
- 双中子星并合产生40%黑洞, 30%稳定中子星, 30%中子星->黑洞
- 并合产生大质量中子星初始自转周期接近1毫秒;
- 大质量中子星磁场较高: 10¹⁵高斯
- 磁耗散效率很高,大于40%
- 磁星椭率较大, 磁星自转减速由引力波辐射主导

• 理论研究

- 理论模型构建;
- 理论模型例证搜寻;
- 联合探测实现后的引力波天文学;

• 观测研究

- •引力波信号/电磁信号联合探测观测策略研究;
- 现有望远镜研究;
- 未来望远镜展望;
 - GWAC+EP

NS-NS: 电磁辐射信号例证搜寻(1) ———帕洛玛暂现源工厂相对论暂现源

0.4

3

0.26

0.03

0.09

PTF11agg

观测特征

- 没有任何高能对应体
- · 光学信号按<mark>幂指数</mark>函数下降
- 射电信号先上升后下降
- · 射电观察表明该事件起源于相对 论运动物体

X.-F. Wu, H. Gao, X. Ding et al. 2013 ApJ

3.2

0.3

NS-NS: 电磁辐射信号例证搜寻(3) ————GRB060614、GRB050907余辉晚期红外增亮

GRB060614

Jin et al. 2016, Arxiv 1603.07869

双中子星并合,中心遗迹为磁星 (1)两极形成相对论喷流,产生短暴; 其余方面有非相对论物质抛射(光深>1); 磁星磁偶极辐射(Poynting flux, e+e-); (2)两极闭合,抛射物光深>1; (3) 抛射物光深<1。

(1) 短暴X射线延展辐射:磁星偶极辐射磁 耗散;磁星自转减慢时标:约100秒;

(2)100秒-1天X辐射:两极闭合,抛射物光 深>1:

(3) 1天左右的X增亮: 抛射物光深<1, 磁偶极 耗散残余辐射(t⁻²);

(4) 1天左右光学增亮: merger-nova

Gao et al., 2015, ApJ, 807, 163

• 理论研究

- 理论模型构建;
- 理论模型例证搜寻;
- 联合探测实现后的引力波天文学;

• 观测研究

- •引力波信号/电磁信号联合探测观测策略研究;
- 现有望远镜研究;
- 未来望远镜展望;
 - GWAC+EP

联合探测实现后的引力波天文学(1)

1) 精确定位引力波暂现源,进而确定引力波暂现源的天体物理起源;

- 2)为光学射电等其他波段提供位置信息,促成对引力波暂现源的多波段观测;
- 3) 通过多波段观测证认宿主星系,进而确定引力波源的红移;
- 4)通过引力波数据与电磁观测数据结合,打破引力波探测中相关参数的兼并性问题,如距离和指向角之间的兼并;

联合探测实现后的引力波天文学(2)

1) 引力波暂现源是否存在电磁对应体,其辐射性质如何(双黑洞并合?);

- 2) 中子星-黑洞、双中子星并合事件是否真的是短伽玛射线暴的起源?
- 3) 双中子星并合中心产物究竟是<mark>黑洞还是磁星</mark>,或者两者<mark>比例</mark>究竟是多少?(高压高密状态物质状态方程)

4)如果并合产物确定为磁星,利用电磁辐射的流量值推算出磁星的磁场与自转 周期,可以对中子星表面磁场放大机制、自转能损耗机制等开展深入研究;

联合探测实现后的引力波天文学(3)

1)通过<u>独立测量的红移-</u>距离关系来研究宇宙的膨胀行为; 2)如果有30个左右的联合探测事件,就能将哈勃常数限制到~1%的精度,与JWS T的预期成果媲美。

Network	LIGO+Virgo (LLV)	LLV+LIGO India	LLV+KAGRA	LLV+LIGO India+KAGRA
NS-NS Isotropic	5.0% (15)	3.3% (20)	3.2% (20)	2.1% (30)
NS-NS Beamed	1.1% (19)	1.0% (26)	1.0% (25)	0.9% (30)
NS-BH Isotropic	4.9% (16)	3.5% (21)	3.6% (19)	2.0% (30)
NS-BH Beamed	1.2%~(18)	1.0%~(25)	1.1% (24)	0.9%~(30)
				Nissanke et al. 2013

Table 2 Systematics error budget on Ho: past, present, and future

Known	Key Project	Revisions	Anticipated	Basis
Systematics	(2001)	(2007/2009)	Spitzer/JWST	
(1) Cepheid Zero Point	± 0.12 mag	± 0.06 mag	± 0.03 mag	Galactic Parallaxes
(2) Metallicity	± 0.10 mag	± 0.05 mag	± 0.02 mag	IR + Models
(3) Reddening	± 0.05 mag	± 0.03 mag	± 0.01 mag	IR 20-30 × Reduced
(4) Transformations	± 0.05 mag	± 0.03 mag	± 0.02 mag	Flight Magnitudes
Final Uncertainty	± 0.20 mag	± 0.09 mag	± 0.04 mag	Added in Quadrature
Percentage Error on Ho	$\pm 10\%$	± 5%	±2%	Distances

Freedman & Madore 2010

联合探测实现后的引力波天文学(4)

利用引力波信号与电磁信号到达时间差限制引力子质量;
 利用引力波信号与电磁信号到达时间差检验爱因斯坦等效原理,开展"银河系比萨斜塔"实验

中性粒子在真空引力场中运动,与粒子的内禀性质(结构、成分)无关。

• 理论研究

- 理论模型构建;
- 理论模型例证搜寻;
- •联合探测实现后的引力波天文学;

• 观测研究

- •引力波信号 / 电磁信号联合探测观测策略研究;
- 现有望远镜研究;
- 未来望远镜展望;
 - GWAC+EP

• 理论研究

- 理论模型构建;
- 理论模型例证搜寻;
- 联合探测实现后的引力波天文学;

• 观测研究

•引力波信号/电磁信号联合探测观测策略研究;

• 现有望远镜研究;

- 未来望远镜展望;
 - GWAC+EP

Chu, Howell, Rowlinson, Gao et al., 2016, MNRAS

高能探测器

Instrument	Energy Range	${ m FoV} [{ m deg}^2]$	$\begin{array}{c} \text{Sensitivity} \\ [\text{erg}\text{sec}^{-1}\text{cm}^{-2}] \end{array}$	Exposure Time	Response Time	Ref
Swift - BAT	$15-300 \mathrm{keV}$	4600	1.2×10^{-8}	-	Coincident Observation	[1]
Swift - XRT §	$0.3-10 \ \mathrm{keV}$	0.15	6×10^{-12}	10	1-2 hours	[1]
Fermi - GBM	$8\mathrm{keV}$ –40 MeV	30000	4×10^{-8}	-	Coincident Observation	[2]
Fermi - LAT†	$0.02\text{-}300\mathrm{GeV}$	8000	1.4×10^{-7}	100s	30s post GBM trigger	[2]
CTA b	$0.03-100~{\rm TeV}$	$6-8{ m deg}^2$	6×10^{-9} @ 25GeV	1000s	20-60secs	[3]
CTA (Survey mode) b	$0.03-100~{\rm TeV}$	$\sim 1000 \mathrm{deg}^2$	6×10^{-8} @ 25GeV	1000s	20-60secs	[3]
H.E.S.S. b	$0.05-20~{\rm TeV}$	15	$\sim 6 \times 10^{-8}$ @ 25GeV	1000s	30s	[3]
SVOM - ECLAIRS	4-250 keV	89	$7.2 imes 10^{-10}$	1000s	$\sim 1\text{-}2 \text{ hours}$	[4]
SVOM - MXT	$0.2-10 \ \mathrm{keV}$	64 arcmin	5.6×10^{-11}	10s	\sim 1-2 hours	[4]

光学望远镜

Telescope	FoV $[deg^2]$	Limiting Magnitude R-band	Exposure	Ref
TAROT	3.5	18	60	[1]
SkyMapper	5.7	21	110s	[2]
Zadko	0.15	21	180s	[3]
Pan-STARRS	7.0	24	30s	[4]
GOTO	18.0 - 36.0	21	$5\mathrm{m}$	[5]
BlackGEM	40.0	22	$5\mathrm{m}$	[6]
Zwicky Transient Facility (ZTF)	47	20.5-21	30s	[7]
Ground based Wide-Angle Camera (GWAC)	8000	16	10s	[8]

Chu, Howell, Rowlinson, Gao et al., 2016, MNRAS

射电望远镜

Name	Frequency Range	FOV (sq-degs) [sq-degs]	limiting flux density	Response Time	Ref
MWA ASKAP LOFAR LBA (Inner) LOFAR HBA (Core) APERTIF	80-300 MHz 700 MHz-1.8 GHz 10-90 MHz 110-250 MHz 1-1.7 GHz	$\begin{array}{c} 610{\rm deg}^2@150{\rm MHz}\\ 30{\rm deg}^2@1.4{\rm GHz}\\ 450{\rm deg}^2@60{\rm MHz}\\ 48{\rm deg}^2@180{\rm MHz}\\ 8{\rm deg}^2@1{\rm GHz}\ ({>}100{\rm deg}^2)\natural\end{array}$	20 mJy $640 \mu \text{Jy beam}^1 (10 \text{s int})$ 5 mJy @60 MHz 0.6 mJy @180 MHz $0.1 \mu \text{Jy}$	< 10s of secs < mins < min < min	$[1] \\ [2] \\ [3] \\ [3] \\ [4] $

现有望远镜 / 探测器可能实现γ射线(如果存在的话)与射电辐射信号探测

SIGNAL TYPE	TARGET	TIME RANGE (s)	Gamma		X-ray	Optical/IR	Radio	
			High (> 10 MeV)	Low (< 10 MeV)	-		High (> 1 GHz)	Low (< 1 GHz)
Jet Related	SGRB Prompt	0-5	\checkmark	 ✓ 	?	?		
	SGRB Afterglow	10 ->	 ✓ 		 ✓ 	✓	 ✓ 	?
	Reverse Shock	60-10000	?	?	?	?	1	?
Isotropic Ejecta	Kilonova	1000 ->			?	~		
Related	Ejecta Afterglow	10000 ->			?	?	?	?
Other Signals	Magnetar Wind Dissipation	1-1000	?	1	~	?	?	?
	FRB (early)	-5 -10					?	?
	FRB (late)	10-10000					?	?

Response fast enough		Fast response	1	Observed
FoV within range		FoV too small	~	Observed
Response too slow		Response too slow	2	Predicted
FoV within range		+ FoV too small	f	
	Response fast enough FoV within range Response too slow FoV within range	Response fast enough FoV within range Response too slow FoV within range	Response fast enough FoV within range Fast response FoV too small Response too slow FoV within range Response too slow + FoV too small	Response fast enough FoV within rangeFast response FoV too smallResponse too slow FoV within rangeResponse too slow + FoV too small

现有望远镜/探测器对GW150914电磁对应体搜寻结果 Xin & Meng 2016

and the first of the			观测时间(相	覆盖		₽
堅匹號/ ↔	视场 🕶	波段 🕶	对 GW150914	GW150914 的	观测结果 🕶	
探測器 ◀			爆发时刻) ↩	天区 🖓		
					弱信号	₽
GBM ◆ ²	>2pi 弧度 🕶	8KeV-30MeV 4	无时延 ◀	70% 🕶	GW150914-G	
					BM, 🕶	
Intergral/SP1 •	256 平方度 🕶	18KeV-8MeV 🕶	无时延 ◀	100% 🕶	无⊷	₽
IceCube/ +	2pi 平方	中学了口	T-0+77 -1	100% -7	T . 1	•
Antares 🕶	弧度↩	中做于♥	无可姓↓	100%	元₽	
LAT 🕶	2.5 弧度 🕶	20MeV-300GeV 4	- 43	0 🕶	无⊷	₽
BAT 🕶	1.4 弧度 🕶	15KeV-15KeV 🕶	- 43	0.0% 🕶	无⊷	₽
XRT 🕶	23.6角分 🕶	0.3KeV-10KeV 4	2 天后 🕶	2.0% 🕶	无⊷	₽
UVOT 🕶	17 角分 🕶	170nm-600nm 🕶	2 天后 📲	[~] 0. 0% ≁ ²	无⊷	•
iPTF + ²	2.6度 🕶	光学波段 🕶	3 天后 🕶	2.3% 🕶	无⊷	•
<u>DECam</u> ← ²	2.2度 🕶	光学波段 ↩	4 天后 🕶	3.0% 🕶	无⊷	•
Pan- <u>Starrs</u> • J	3度↩	光学波段 ↩	4 天后 ↩	4. 2% ↔	无⊷	•

• 理论研究

- 理论模型构建;
- 理论模型例证搜寻;
- •联合探测实现后的引力波天文学;

• 观测研究

- •引力波信号/电磁信号联合探测观测策略研究;
- 现有望远镜研究;
- 未来望远镜展望;
 - GWAC+EP

未来望远镜展望:SVOM地面阵列 (GWAC)

望远镜数目: 36*2(4个/单元) 综合视场: 5000*2平方度 极限星等: 15.0-16.0等 (5-10秒)

双中子星并合高能辐射 Δ -resonance condition: $E_p E_\gamma \sim \frac{m_\Delta^2 - m_p^2}{2} \Gamma^2 = 0.147 \text{ GeV}^2 \Gamma^2$ $p\gamma \to (\Delta^+ \to) \begin{cases} n\pi^+ \to n\mu^+\nu_\mu \to ne^+\nu_e \bar{\nu}_\mu \nu_\mu, & 1/2 \\ p\pi^0 \to p\gamma\gamma, & 1/2 \end{cases}$ Shocked **Ejecta** ISM $E_{\gamma} \sim PeV$ $f_{\nu} \sim f_{\nu} \sim 10^{-5} \text{ GeV cm}^{-2}$ Cascade EM Gao et al, 2013, PRD, 88, 043010 100GeV[|] LAT $A_{eff} \sim 10^4 \, cm^2$ 单个事件: $N_{ice} \sim 10^{-3}$ /event 对TeV光子背景的贡献? Atwood+, 2009

FIG. 1. Examples of the evolution of neutrino energy ϵ_{ν} and neutrino fluence f_{ν} for different dynamics: Case I (dash-dot), Case II (solid) and Case III (dash). Blue lines represent ϵ_{ν} and green lines show f_{ν} . Model parameters: $n_0 = 1, \eta = 0.1$, $\sigma_0 = 10^7$ and $R_0 = 10^7$. Assuming the NS+NS merger event happens at 300Mpc.

Gao+, 2013, PRD, 88, 043010

Ξ² φ_v(v)[GeV cm⁻²]