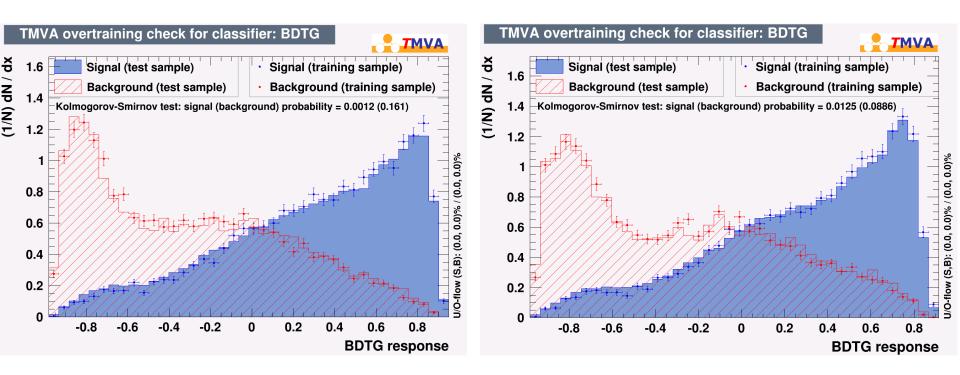
Electron Charge Confusion

Cheng ZHANG


Data Selection and Cut Condition

MC: B1043 electron 50-2000GeV

Cut:

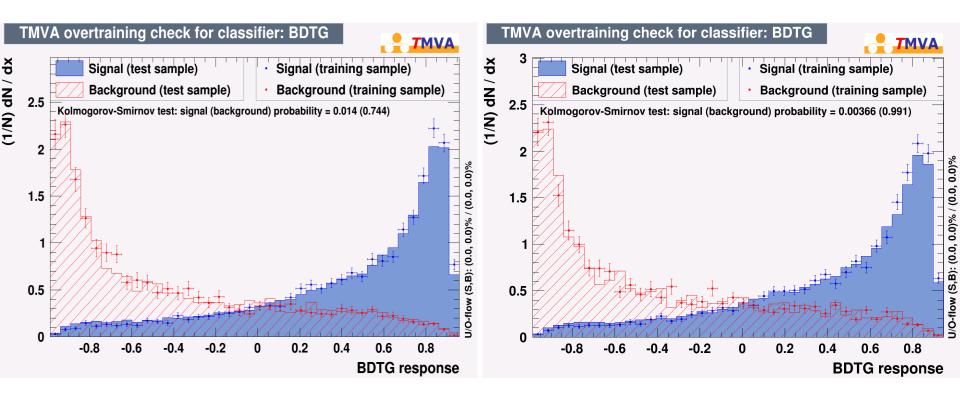
- 1TRD tracker, 1Tracker tracker
- Tracker L1,L9 alignments agree
- Ecal nshower = 1 or 2
- TRD nhits > 14
- Tof betah >= 0.7
- 0.8 < Tracker Inner Q < 1.4
- Tracker chi2y < 10
- trk-ecal match
- Tracker Pattern: FullSpan+InnerL9

Training Result With and Without EOP

BDTG with EOP in Training

BDTG without EOP in Training

MC Reweight

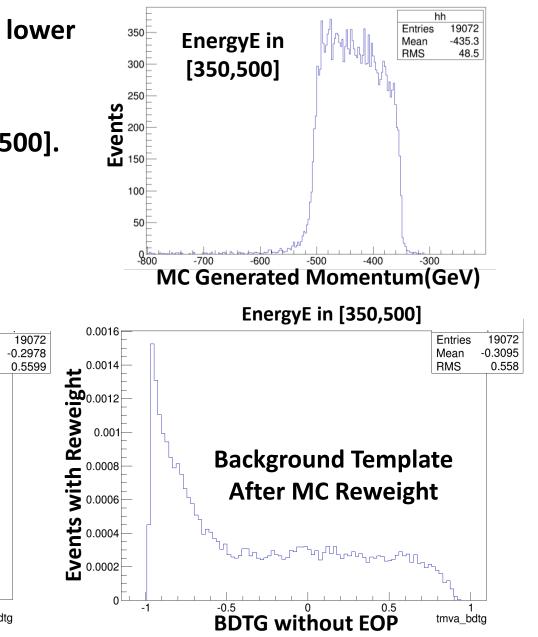

MC generate flux: E⁻¹

Electron flux in primary cosmic rays: E^{-3.2}

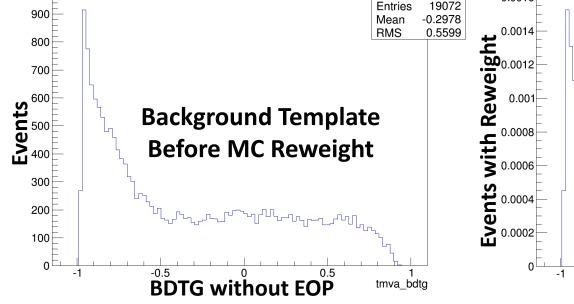
MC reweight correciton: $P_{MCGen}^{-2.2}$

- MC reweight correction in BDT training.
- MC reweight correction in background template.

BDT Training with MC Reweight

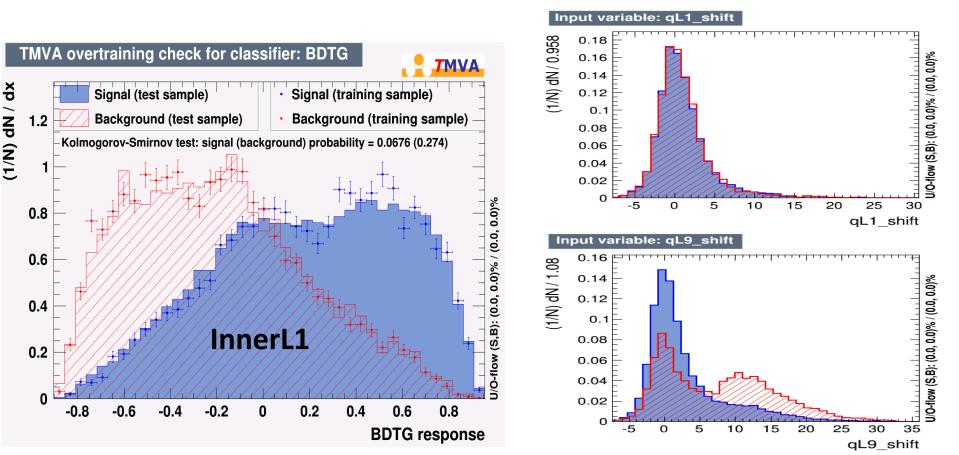


BDTG with EOP in Training


BDTG without EOP in Training

Background Template with MC Reweight

- The ECAL energy resolution is lower than 2% after 100GeV.
- The range of MC generated momentum is almost in [350,500].
- The influence of MC reweight correction is quite small for background template.



EnergyE in [350,500]

About Tracker Pattern InnerL1

- 3 Traker Pattern: InnerL1, FullSpan, InnerL9 (TotalMC events: 1740467; InnerL1: 198042; InnerL9: 794695; FullSpan: 747730)
- Code in /afs/cern.ch/user/c/czhang/public/CCEleCode_AllP at make the BDT training for each kind of tracker pattern, which could be used for test.
- The data with InnerL1 tracker pattern has the worst BDT training result. Mainly due to L1 charge has quite small contribution to BDT training.

Introduce of Electron charge confusion Code

<InDataDir> is the directory of Your Data.

<InDataName> is the name of Your Data.

Energy independence correction:

- Directory: Codedir/ValueDis : ValueDisTrkPat.C operateCutFlu xTrkPat.sh
- Directory: Codedir/ValueDis/Draw : RunTrkPat.C operateTrkP at.sh

[1] cd ./ValueDis; sh operateCutFluxTrkPat.sh Orignal corrMCISS InnerL9 all <InDataDir> <InDataName>

[2] cd ./ValueDis/Draw; sh operateTrkPat.sh OrignalStatisRig InnerL9 corrMCISS <InDataName>

[3] cd ./ValueDis; sh operateCutFluxTrkPat.sh IndepentStatisRig corrMCISS InnerL9 all <InDataDir> <InDataName> ==> Create filter data after energy correction. < Filter Data with correction >

BDT training:

Directory: Codedir/ BDTtraining : ROOTCC.C operateTraining.sh Directory: Codedir/ BDTtraining : TMVACCFilter.C operateTMVA CCFilter_MultiRun.sh

[4] cd ./BDTtraining; sh operateTraining.sh TightcorrMCISS
InnerL9 reweight <InDataName> ==>Training and get weights
[5] cd ./BDTtraining; sh operateTMVACCFilter_MultiRun.sh
TightcorrMCISS InnerL9 all reweight <InDataName> ==>Create
tmva_bdtg for all events with cut. <Finnal result>

Code operation

- Just use the weights already in the code, only thing need to do is run the EXE/operate.sh.(Process:
 [3],[5])
- Make BDT training to get the weights and create tmva_bdtg for each events: Process [3], [4], [5].
- Process with changing cut: change cut in ./ValueDis/ValueDisTrkPat.C ---> [1],[2],[3] or just [3] is fine ---> [4] ---> [5].