Event Selection and Reconstruction in PandaX

谢鹏伟

上海交通大学

CONTENTS

SIGNAL IDENTIFICATION

S1/S2 DIFFERENTIAL VARIABLES

Single electron S2

- Normally, S1 is narrow than S2.
- For small S2, use number of spikes to identify them.

S1/S2 DISCRIMINATION

10% width of S1 centers at ~180ns

S2 width correlate with drift time and gas gap. For small s2, the 10% width do not work anymore.

01

S1/S2 DISCRIMINATION

02

Position Reconstruction

Separation between S2 and S1

X,Y: Center of Gravity X,Y: Template Matching X,Y:
Photon
acceptance
function

²¹⁰Po ON TEFLON WALL

CENTER OF GRAVITY

02

TEMPLATE MATCHING

Generate massive templates from light simulation

Find the maximum likelihood number

$$L(p_i; n_i) = \prod_{i=1}^{r} p(n_i) = \prod_{i=1}^{r} \frac{e^{-Np_i}(Np_i)^{n_i}}{n_i!}$$

TEMPLATE MATCHING

Poor construction for fringe events.

5.5mm for S2~1000PE

Was selected in phase-i(1-inch PMTs in top array)

PHOTON ACCEPTANCE FUNCTION

Difficulties for position construction

1 3" PMT

optimizing photon collection, but naively causing coarse quantization

Procedures for PAF

1) Fit function for PAF, the input position is from COG

$$\eta(r) = A \cdot \exp\left(-\frac{a \cdot \rho}{1 + \rho^{1-\alpha}} - \frac{b}{1 + \rho^{-\alpha}}\right), \quad \rho = \frac{r}{r_0}$$

Complicated optics

particularly due to the photon reflections on the PTFE reflector

PHOTON ACCEPTANCE FUNCTION

- 2) Maximum likelihood to determine a new position
- 3) Iterations

$$ec{r}^{(0)} = ec{r}_{\mathrm{CoG}}$$
 $\eta_i^{(1)} \longrightarrow ec{r}^{(1)}$
 $\eta_i^{(2)} \longrightarrow ec{r}^{(2)}$
 \vdots
Converge

Events Distribution from LRF[®] Position

Events Distribution from LRF[®]

V. N. Solovov *et al, IEEE* doi: 10.1109/TNS.2012.2221742

PHOTON ACCEPTANCE FUNCTION

With consideration of reflection.

02/

COMPARISION OF THREE WAYS

Choose PAF!

To be improve: fix saturation.

03 QUALITY CUTS

Reject runs with shot runtime, hot spot etc.

Manually remove files with abnormal trigger rate, dark rate and efficiency

Remove triggers within 10 ms to previous triggers

NOISE REMOVAL

S1 CONCIDENCE

s1 charge vs. fired pmts

S1 PATTERN

Charge from largest bottom channel vs total charge

S1NOISEFILTERS

Remove ripple-like electronic noise

S2T/BRATIO

Remove abnormal S2

SELECTION WINDOW

Random coincident
S1 and single
electron S2

OTHER

"S1" number<3 etc

S1 COINCIDENCE CUT

S1 charge per PMT vs S1 charge(left) and drift time(right).

S1 PATTERN CUT

Applied in phase-I to remove X-events.

WAVY S1 FILTERS

Used to be the most serious noise Two cuts are applied to remove those wavy noise.

- Based on overshoot
 Less than 0.4 of the height of S1
- 2) Based on difference of charge calculation from two methods
 - Charge calculated by integrating PMT hits.
 - Charge calculated by integrating summed waveform.

WAVY S1 FILTERS

S2 T/B RATIO

The average number is 2 which conforms with MC.

03

SELECTION WINDOW

S1: 3 fired PMTs, [3,45] PE Limited by dark rates

S2: [100,10000] PE Limited by floating small S2.

NR 99.99% Acceptance line

Isolated S1

Spectrum

Search "s1" before s1-only events

Collective pattern

Evolution

Cause

PMT Sparking Electrodes Sparking S1 from "dead" region etc.

Isolated S2

-10 -15 -20 -25 -30F 0 10 20 30 40 50 60 70 80 90 100 time (10 ns)

No s1 before s2

Spectrum

Evolution

Cause

Real S1 quenched.

Lots of events
generated from gate

RANDOM COINCIDENT EVENTS

Randomly pairing

Isolated S1:1.8HZ

Isolated S2:1500/day

Accidental events: 4.3

in 98.7 days

04

BOOSTED DECISION TREE

- Seek additional suppression of accidental background using a multivariate approach (BDT)
- Training and test samples: randomly paired coincident events (background) and AmBe low energy events (signal)
- Variables:
 - S1 charge, S2 charge, drift time
 - S2 pulse shape symmetry, S2 Top/Bottom ratio
 - S2 width, S2 10% width, S2 rising edge
 - S2 charge pattern
 - S1 charge pattern
 - "gate charge"

BOOSTED DECISION TREE

S2 pulse shape symmetry

BOOSTED DECISION TREE

"Gate charge"

BOOSTED DECISION TREE

- Accidental S1 and S2 lack intrinsic correlations
- Single S2 likely originated from the gate grid (small width)

BDT EFFICIENCY

BDT removes the accidental events by more than a factor of 3, while maintaining an average 90% efficiency

NR EFFICIENCY

05 FINAL CANDIDATES

Cut	#Events	Rate[HZ]
All	24502402	3.56
Single site	9783090	1.42
Quality cuts	5160513	0.75
Low energy window	131097	1.91*10 ⁻²
Fiducial Volume	398	5.79*10 ⁻⁵
BDT cut	389	5.66*10 ⁻⁵

THANKS!