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There are Two Main Classes of Standard Model Tests

Energy frontier

Image credit: James Rohlf, UA1/UA2

Intensity frontier
• Asymmetry uncertainty δA ∝ 1/

√
N

• QWeak experiment: δA ≈ 6.3 ppb
• 2.5 × 1016 scattered electrons detected
• Luminosity of about 1.7 · 1039 cm−2 s−1,

accumulating 40 fb−1 in 20 seconds

(Every entry in this histogram is 3 million electrons.)
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Electroweak Interaction

Glashow–Weinberg–Salam theory of weak interaction
• Gauge symmetry: SU(2)L × U(1)Y

• Gauge couplings: g for SU(2)L, g ′ for U(1)Y

Electroweak symmetry breaking (Bµ, W i
µ → Aµ, Z 0

µ , W ±
µ )

sin2 θW = g ′2

g2 + g ′2 = 0.23129 ± 0.00005 (at MZ
1) ≈ 1

4

Aµ = cos θW · Bµ + sin θW · W 3
µ (massless)

Z0
µ = −sin θW · Bµ + cos θW · W 3

µ (MZ ≈ 91.2 GeV)

W ±
µ = (W 1

µ ∓ iW 2
µ)/

√
2 (MW = MZ cos θW ≈ 80.4 GeV)

1Review Particle Physics, J. Erler and A. Freitas, Chin. Phys. C, 40, 100001 (2016)
Lepton Photon 2017 Precision Electroweak Measurements 3
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Weak Mixing Angle Runs With Energy Scale

(Width of curve indicates theoretical uncertainty in MS.)
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Weak Mixing Angle Runs With Energy Scale
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Electroweak Interaction

Parity symmetry is violated by SU(2)L

• Weak interaction violates parity
• Electromagnetism conserves parity

Parity-violation neutral current (gV − γ5gA)

LNC
PV = − GF√

2

[
ge

A (ēγµγ5e) ·
∑

q gq
V (q̄γµq)

+ ge
V (ēγµe) ·

∑
q gq

A (q̄γµγ5q)
]

= − GF

2
√

2

[∑
q C1q (ēγµγ5e) · (q̄γµq)

+
∑

q C2q (ēγµe) · (q̄γµγ5q)
]

e e′
V,A

Z , Z ′

V,A

q q′
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Several Electroweak Charges are Suppressed

Parity-violating electron scattering couplings
• Weak vector quark coupling: C1q = 2ge

A gq
V (γµ on q vertex)

• Weak axial quark coupling: C2q = 2ge
V gq

A (γµγ5 on q vertex)

Particle Electric charge Weak vector charge (sin2 θW ≈ 1
4)

u +2
3 −2C1u = +1 − 8

3 sin2 θW ≈ +1
3

d −1
3 −2C1d = −1 + 4

3 sin2 θW ≈ −2
3

p(uud) +1 Qp
W = 1 − 4 sin2 θW ≈ 0

n(udd) 0 Qn
W = −1

e −1 Qe
W = −2ge

Age
V = −1 + 4 sin2 θW ≈ 0

Weak vector charges of the proton and electron approximately zero
Accidental suppression of the weak vector charges in Standard
Model makes them relatively more sensitive to new physics
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Several Electroweak Charges are Suppressed

Parity-violating electron scattering couplings
• Weak vector quark coupling: C1q = 2ge

A gq
V (γµ on q vertex)

• Weak axial quark coupling: C2q = 2ge
V gq

A (γµγ5 on q vertex)

Particle Electric charge Weak vector charge (sin2 θW ≈ 1
4)

u +2
3 −2C1u = +1 − 8

3 sin2 θW ≈ +1
3

d −1
3 −2C1d = −1 + 4

3 sin2 θW ≈ −2
3

p(uud) +1 Qp
W = 1 − 4 sin2 θW ≈ 0

n(udd) 0 Qn
W = −1

e −1 Qe
W = −2ge

Age
V = −1 + 4 sin2 θW ≈ 0

Weak vector charge of the neutron is large
Dominance of neutron over proton weak charge means
parity-violating scattering sensitive to neutron distributions
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Several Electroweak Charges are Suppressed

Parity-violating electron scattering couplings
• Weak vector quark coupling: C1q = 2ge

A gq
V (γµ on q vertex)

• Weak axial quark coupling: C2q = 2ge
V gq

A (γµγ5 on q vertex)

Particle Electric charge Weak axial charge (sin2 θW ≈ 1
4)

u +2
3 −2C2u = −1 + 4 sin2 θW ≈ 0

d −1
3 −2C2d = +1 − 4 sin2 θW ≈ 0

Weak axial charges of quarks approximately zero
Accidental suppression of the weak axial charges in deep-inelastic
scattering of quarks

∆ sin2 θW
sin2 θW

= 1 − 4 sin2 θW
4 sin2 θW

∆suppressed observable
suppressed observable
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Parity-Violating Asymmetries are Typically Small

Asymmetry between left and right incoming electron helicity

APV = σL − σR
σL + σR

with σ =

∣∣∣∣∣∣∣∣∣∣
e e′

γ

q q′

+
e e′

Z
q q′

+ . . .

∣∣∣∣∣∣∣∣∣∣

2

Interference of photon and weak boson exchange

MEM ∝ 1
Q2 MNC

PV ∝ 1
M2

Z + Q2

APV = σR − σL
σR + σL

∝ MNC
PV

MEM ∝ Q2

M2
Z

∝ GF Q2 ≈ O(ppm, ppb) when Q2 � M2
Z
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Strategy to Measure Parts-Per-Billion: Integration

Event or counting mode

time0 100 ns

µA

• Each event individually detected,
digitized and read-out

• Selection or rejection possible
based on event characteristics

• 100 ns pulse separation limits rate
to 10 MHz per detector segment;
at least 1 day for 1 ppm precision

Integrating or current mode

time0 100 ns

µA
…

• Very high event rates possible, as
long as detectors are linear

• But no rejection of background
events possible after the fact

• QWeak segment rates 800 MHz;
MOLLER segment rates up to
2.5 GHz; P2 up to 0.5 THz
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Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)
• Access to weak vector quark charges, measurements of sin2 θW

Electroweak measurements with electrons (Møller scattering)
• Access to weak electron charge, measurements of sin2 θW

Electroweak measurements with quarks (deep-inelastic scattering)
• Access to weak axial quark charges, measurements of sin2 θW ,

measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)
• Access to neutron distributions, measurements of neutron skin thickness
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Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

APV (p) = −GF Q2

4πα
√

2

[
εGE GZ

E + τGMGZ
M − (1 − 4 sin2 θW )ε′GMGZ

A
ε(GE )2 + τ(GM)2

]
In the forward elastic limit Q2 → 0, θ → 0 (plane wave):

APV (p) Q2→0−−−−→ −GF Q2

4πα
√

2

[
Qp

W + Q2 · B(Q2)
]

∝ Qp
W when Q2 small

Precision electroweak Standard Model test of sin2 θW :

APV (p) ∝ −1 + 4 sin2 θW

• Completed: QWeak at Jefferson Lab, sin2 θW to ±0.0010
• Planned: P2 at Mainz, sin2 θW to ±0.0003
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QWeak: First Determination of the Weak Charge of the Proton

First experiment with direct access to proton’s weak charge
• Experiment collected data between 2010 and 2012 with toroidal

spectrometer and integrating quartz detectors1

• Preliminary results were published in 2013 based on commissioning
data2 (4% compared to the independent full data set)

• Today presenting uncertainty for full data set (but not central value)

Long awaited final results really soon now, I promise
• Unblinding happened on March 31, 2017
• Publication and release of unblinded result at PANIC’17 in Beijing:

• Sunday September 3, 2017, at 12:15pm in PANIC plenary session
• Monday September 4, 2017, at 11am in JLab colloquium (TBC)

1The Qweak Apparatus, NIM A 781, 105 (2015)
2First Determination of the Weak Charge of the Proton, Phys. Rev. Lett. 111, 141803 (2013)
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QWeak: First Determination of the Weak Charge of the Proton

Background treatment in integrating experiments
• Measured asymmetry Amsr corrected for all background contributions

• with their own parity-violating asymmetry Ai (ppm-level)
• and their dilution in the measured asymmetry fi (%-level)

APV = Rtotal

Amsr
P −

∑
fiAi

1 −
∑

fi

Unprecedented precision comes with inevitable surprises
• Discovered qualitatively new “beamline background”

• Generated by scattering of helicity-dependent beam halo on clean-up
collimator downstream of target and into detector acceptance

• Discovered qualitatively new “rescattering bias”
• Spin precession of scattered electrons in spectrometer, followed by nuclear

transverse spin azimuthal asymmetry when scattering in lead pre-radiators

Lepton Photon 2017 Precision Electroweak Measurements 15



QWeak: First Determination of the Weak Charge of the Proton

All uncertainties in ppb Run 1 Run 2 Combined
Charge Normalization: ABCM 5.1 2.3
Beamline Background: ABB 5.1 1.2
Beam Asymmetries: Abeam 4.7 1.2 Note:
Rescattering bias: Abias 3.4 3.4 correlations
Beam Polarization: P 2.2 (1.2) between
Al target windows: Ab1 (1.9) 1.9 factors
Kinematics: RQ2 (1.2) 1.3
Total of others < 5%, incl () 3.4 2.5
Total systematic uncertainty 10.1 5.6 5.8
Total statistical uncertainty 15.0 8.3 7.3
Total combined uncertainty 18.0 10.0 9.3 (p = 86%)

APV (4%) = −279 ± 31(syst) ± 35(stat) = −279 ± 47(total)
APV (full) = −隐± 5.8(syst) ± 7.3(stat) = −隐± 9.3(total)
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QWeak: First Determination of the Weak Charge of the Proton

Intercept of APV at Q2 → 0 gives weak charge (Q2 = 0.025 GeV2)

APV = APV
A0

= Qp
W + Q2 · B(Q2, θ = 0) with A0 = − GF Q2

4πα
√

2

Global fit1 of all parity-violating electron scattering with 4% data2

• Fit of parity-violating asymmetry data on H, D, 4He, Q2 < 0.63 GeV2

• Free parameters are C1u, C1d , strange charge radius ρs and magnetic
moment µs (Gs

E ,M ∝ GD), and isovector axial form factor GZ ,T=1
A

• Qp
W (SM) = 0.0710 ± 0.0007 (theoretical expectation)

• Qp
W (PVES) = 0.064 ± 0.012 (global fit of 4% data2)

• After combination with atomic parity-violation on Cs:
• C1u = −0.1835 ± 0.0054
• C1d = 0.3355 ± 0.0050

1R. Young, R. Carlini, A.W. Thomas, J. Roche, Phys. Rev. Lett. 99, 122003 (2007)
2First Determination of the Weak Charge of the Proton, Phys. Rev. Lett. 111, 141803 (2013)
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QWeak: First Determination of the Weak Charge of the Proton:

Based on commissioning run data set (4% compared to full data set):
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QWeak: First Determination of the Weak Charge of the Proton:

Uncertainty of the full data set, but with central value fixed at SM:
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QWeak: Determination of the Weak Vector Charge of the Proton

Based on commissioning run data set (4% compared to full data set):
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QWeak: Determination of the Weak Vector Charge of the Proton

Based on commissioning run data set (4% compared to full data set):
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QWeak: Determination of the Weak Vector Charge of the Proton

New global fit of all parity-violating electron scattering with full data set
• Fit of parity-violating asymmetry data on H, D, 4He, Q2 < 0.63 GeV2

• Free parameters were C1u, C1d , strange charge radius ρs and magnetic
moment µs (Gs

E ,M ∝ GD), and isovector axial form factor GZ ,T=1
A

• But also consider improved knowledge of strangeness form factors:
• Without lattice QCD: leave ρs and µs free in Gs

E and Gs
M

• With lattice QCD: using Gs
E and Gs

M from lattice QCD1

QW (p)(4%) = 0.064 ± 0.0120
PRELIM QW (p)(full) = 隐± 0.0047 (Qweak, with LQCD)
PRELIM QW (p)(full) = 隐± 0.0044 (PVES, without LQCD)
PRELIM QW (p)(full) = 隐± 0.0037 (PVES, with LQCD)

1J. Green et al, Phys. Rev. D92, 031501 (2015)
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QWeak: Determination of the Weak Vector Charge of the Proton

From weak charge to sin2 θW with radiative corrections
• Qp

W = (ρNC + ∆e)(1 − 4 sin2 θW (0) + ∆′
e) + �WW + �ZZ + �γZ

• ∆ sin2 θW (MZ ), �WW , �ZZ box diagrams: uncertainties small
• �γZ = 0.00459 ± 0.00044 for QWeak conditions (E = 1.165 GeV)

PRELIM sin2 θW = 隐± 0.0011 (PVES, without LQCD)
PRELIM sin2 θW = 隐± 0.0009 (PVES, with LQCD)
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QWeak: Determination of the Weak Vector Charge of the Proton

PRELIMINARY
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P2: High Precision Measurement of Proton’s Weak Charge

Radiative corrections on weak charge
• Qp

W = (ρNC + ∆e)(1 − 4 sin2 θW (0) + ∆′
e) + �WW + �ZZ + �γZ

• �γZ : relatively large correction and uncertainty1

• Improving measurements of Qp
W benefits from smaller beam energies

ℓ ℓ′

p p′

γ Z + crossed

P2 (ep) Mainz (E=137 MeV)

1M. Gorchtein, C. J. Horowitz, M. J. Ramsey-Musolf, Phys. Rev. C 84, 015502 (2011)
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P2: High Precision Measurement of Proton’s Weak Charge

New Experiment: P2 Experiment in Mainz1

• 155 MeV energy-recovery superconducting accelerator MESA
• Projected precision of sin2 θW of 0.00032 at Q2 = 0.0045 GeV2

• Accelerator commissioning in 2018, experiment data taking in 2020
• Electron polarimetry at 0.5% precision with atomic hydrogen Møller

1J. Univ. Sci. Tech. China 46 (2016) no.6, 481-487
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Weak Mixing Angle Runs With Energy Scale
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Proton’s Weak Charge: If In Agreement with Standard Model

Effective four-point interactions of some higher mass scale1

LPV
e−q = − GF√

2
eγµγ5e

∑
q

C1qqγµq + 1
4

g2

Λ2 eγµγ5e
∑

q
hV

q qγµq

Limits on new physics energy scale if uncertainty ∆Qp
W

Λ
g = 1

2
(√

2GF ∆Qp
W

)−1/2

Assuming ∆Qp
W = 0.005 and central value exactly at SM value:

• Λ
g > 7.4 TeV at 95% C.L.; or Λ > 26.4 TeV for g2 = 4π

For P2 experiment: precision to exclude PV interactions with Λ > 50 TeV

1J. Erler, A. Kurylov, M. Ramsey-Musolf, PRD 68, 016006 (2003)
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Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)
• Access to weak vector quark charges, measurements of sin2 θW

Electroweak measurements with electrons (Møller scattering)
• Access to weak electron charge, measurements of sin2 θW

Electroweak measurements with quarks (deep-inelastic scattering)
• Access to weak axial quark charges, measurements of sin2 θW ,

measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)
• Access to neutron distributions, measurements of neutron skin thickness
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Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with electrons (Møller scattering)

APV (e) = GF Q2

πα
√

2

[ 1 − y
1 + y4 + (1 − y)4

]
Qe

W

Direct connection from asymmetry to weak charge of electron:
• No theoretical uncertainty due to hadronic structure (GE , GM , s)

APV (e) ∝ Qe
W

Precision electroweak Standard Model test of sin2 θW :

APV (e) ∝ −1 + 4 sin2 θW

• Completed: E158 at SLAC, sin2 θW to ±0.0013
• Planned: MOLLER at Jefferson Lab, sin2 θW to ±0.0003
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Weak Mixing Angle Runs With Energy Scale

(Width of curve indicates theoretical uncertainty in MS.)
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MOLLER: Ultra-Precise Measurement of Electron’s Weak Charge

Most precise measurement of sin2 θW at low energy1

• Elastic scattering of electrons on electrons in hydrogen
• Measurement of the weak charge of the electron Qe

W ≈ 0 at 11 GeV
• Asymmetry APV ≈ 35.6 ppb, with precision δAPV ≈ 0.5 ppb
• Precision δQe

W ≈ ±2.1%, δ sin2 θW = ±0.1% = ±0.00028

Pushing the envelope of intensity
• Even higher luminosity: 85µA on 1.5 m long cryo-target, 5 kW
• Total event rates up to 150 GHz in integrated mode

Pushing the envelope of precision
• Electron beam polarization precision of 0.4% at 11 GeV

1The MOLLER Experiment, arXiv:1411.4088
Lepton Photon 2017 Precision Electroweak Measurements 32

http://arxiv.org/abs/arXiv:1411.4088


MOLLER: Ultra-Precise Measurement of Electron’s Weak Charge

Forward toroidal spectrometer with 7-fold symmetry

28 m

liquid 
hydrogen
target

upstream
toroid

hybrid
toroid

detector
systems

electron
beam

• Long, narrow hybrid toroidal spectrometer system to select forward
events

• Passed Department of Energy CD-0, approximately $25M project
• Anticipated running in the first half of 2020s, hopefully before LHC-HL
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Weak Mixing Angle Runs With Energy Scale
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MOLLER: Ultra-Precise Measurement of Electron’s Weak Charge

MS
)

Z
(M

W
θ2sin

MS
)

Z
(MWθ2sin

0.23 0.231 0.232

Moller ± 0.00028

0,l
fbA 0.23071 ± 0.00053

)τ(PlA 0.23131 ± 0.00041

(SLD)lA 0.23070 ± 0.00026

0,b
fbA 0.23193 ± 0.00029
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Weak Vector Charges: If In Disagreement with Standard Model

Sensitivity to dark Z bosons1 (which accommodated muon g − 2)

mdark Z = 100 MeV

mdark Z = 200 MeV

APVHCsL

Qweak HfirstLE158

SLAC

LEP

Ν-DIS

Moller
MESA

Qweak

''Anticipated sensitivities''

-3 -2 -1 0 1 2 3

0.230

0.232

0.234

0.236

0.238

0.240

0.242

Log10 Q @GeVD

si
n

2
Θ

W
HQ

2
L

1H. Davoudiasl, H.-S. Lee, W. J. Marciano, Phys. Rev. D 89, 095006 (2014)
Lepton Photon 2017 Precision Electroweak Measurements 36

http://dx.doi.org/10.1103/PhysRevD.89.095006


Weak Vector Charges: If In Disagreement with Standard Model
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Weak Vector Charges: If In Disagreement with Standard Model

Dots: MSSM models, Contour: R-parity violating supersymmetry
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Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)
• Access to weak vector quark charges, measurements of sin2 θW

Electroweak measurements with electrons (Møller scattering)
• Access to weak electron charge, measurements of sin2 θW

Electroweak measurements with quarks (deep-inelastic scattering)
• Access to weak axial quark charges, measurements of sin2 θW ,

measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)
• Access to neutron distributions, measurements of neutron skin thickness
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Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with quarks (deep-inelastic scattering)

APV (N) = Q2
[
a1 + a2

1 − (1 − y)2

1 + (1 − y)2

]
For isoscalar targets like deuterium, ignoring strange quarks:

APV (d) = GF Q2

πα
√

2
3
10

[
(2C1u − C1d) + (2C2u − C2d)1 − (1 − y)2

1 + (1 − y)2

]

• Completed: Strange form factors at MIT-Bates, Jefferson Lab, Mainz
• Completed: E122 at SLAC, PV-DIS at Jefferson Lab
• Planned: SoLID at Jefferson Lab
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PV-DIS: Measurement of Weak Axial Quark Couplings

Jefferson Lab 6 GeV spectrometers

• Kinematic conditions determine
coefficient in combination of a1
and a2

• Constraint to a different
orientation in 2C2u − C2d vs
2C1u − C1d

• First evidence at 95% C.L. that
the weak axial quark couplings
C2q are non-zero (even if small)

• Exclusion limits for contact
interactions Λ− > 4.8 TeV and
Λ+ > 5.8 TeV at 95% C.L.

1Nature 506, p67 (2014)
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SoLID: Precision Measurement of Weak Axial Quark Couplings

Solenoidal Large Intensity Device
• 2 GeV < p < 8 GeV
• 2 GeV2 < Q2 < 10 GeV2

• 0.2 < x < 1
• 40% azimuthal acceptance
• L ≈ 5 · 1035 s−1cm−2

• Counting mode (PID)

Experimental design
• Counting mode at rate > 200 kHz, 30 independent sectors
• Baffles filter low energy and neutral particles (no line of sight)
• Light gas Čerenkov for 1000–200 : 1 rejection of low-E π−

• Electromagnetic calorimeter for 50 : 1 π− rejection
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SoLID: Precision Measurement of Weak Axial Quark Couplings

Projected constraints on weak quark couplings
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SoLID: Precision Measurement of Weak Axial Quark Couplings

Multipurpose detector and collaboration
• Additional physics goals for SoLID: J/ψ, SIDIS, transversity
• Large investment, at least $65M

Involvement of many Chinese groups in SoLID
• 3 proposed experiments have co-spokespersons at Chinese institutions,

10 universities are collaborating institutions
• Significant Chinese contributions in R&D for 3 detector systems

• Large GEM: USTC, CIAE, Lanzhou, Tsinghua and IMP
• Shashlyk-style ECal: Shandong, Tsinghua
• MRPC-TOF: Tsinghua, USTC

• Yearly Hadron-China workshop
• R&D funding from NSFC
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Weak Mixing Angle Runs With Energy Scale
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SoLID: Measuring Hadronic Structure Through PV-DIS

Analogy with Deep Inelastic Scattering
d2σ

dΩdE ′ = α2

4E2 sin4 θ
2

( 2
M F1(x) sin2 θ

2 + 1
ν

F2(x) cos2 θ

2

)

Quark structure through DIS
• F2(x) = x

∑
q e2

q (q + q̄) ≈ 2xF1(x) (Callan-Gross)

Quark structure through PV-DIS: interference of γZ
• F γZ

2 (x) = x
∑

q eqgV
q (q + q̄) → a1(x) ∼

∑
q eqC1q (q + q̄)

• F γZ
3 (x) = x

∑
q eqgA

q (q − q̄) → a3(x) ∼
∑

q eqC2q (q − q̄)
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Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)
• Access to weak vector quark charges, measurements of sin2 θW

Electroweak measurements with electrons (Møller scattering)
• Access to weak electron charge, measurements of sin2 θW

Electroweak measurements with quarks (deep-inelastic scattering)
• Access to weak axial quark charges, measurements of sin2 θW ,

measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)
• Access to neutron distributions, measurements of neutron skin thickness
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Parity-Violating Asymmetry to Access Electroweak Parameters

Weak charge of nuclei (elastic scattering)

QZ ,N
W ≈ ZQp

W + NQn
W = Z(1 − 4 sin2 θW ) + N

• Electron scattering: sensitive to nuclear neutron density distributions

APV (A) = GF Q2

πα
√

2

[
(1 − 4 sin2 θW ) − Fn(Q2)

Fp(Q2)

]

• Atomic parity-violation: constraint on 2C1d + C1u ⊥ 2C1u + C1d for
proton

APV (A) ∝ NQn
W ∝ 2C1d + C1u

• Completed: PREX at Jefferson Lab
• Planned: PREX-II & CREX at Jefferson Lab, C12 at Mainz
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PREX and CREX: Neutron Density Distributions for Astrophysics

Standard Jefferson Lab spectrometers
• PREX-I: 1 GeV beam energy on Pb, reached systematic goals, but

statistics limited: Rn is different from Rp at 95% C.L.
• PREX-II: scheduled for ‘soon’, recently completed experimental

readiness reviews (2018)
• CREX on Calcium to run in same experiment run group

Constraints on equation of state of
neutron matter

• Pressure as function of density,
P(ρ)

• Impact from Rn − Rp on neutron
star radii
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Precision Electroweak Measurements with Lepton and Nuclei

So much to present, so little time…
I hope to have given you a flavor of the electron scattering subfield
maybe most closely relevant to high energy physics, and I apologize
for any areas left out of this short presentation.

Parity-violating electron scattering can explore the tiny effects of
the electroweak sector by leveraging the enormous number of
detected electrons, sometimes in a more general way than
electroweak factories (e.g. Z-pole).

In particular, the QWeak experiment recently completed an
ambitious determination of sin2 θW with a total uncertainty of
±0.0010 and sensitivity to physics at the multi-TeV scale.
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Additional Material
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The Qweak Experiment
Uncertainties

Parity-Violating and Parity-Conserving Nuclear Asymmetries
Main Detectors
Tracking Detectors
Beam Polarimetry
Aluminum Walls
Helicity-Correlated Beam Properties
Inelastic Transitions
Transverse Asymmetries
Data Quality

Precision Polarimetry
Atomic Hydrogen Polarimetry

Radiative Corrections
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First Determination of Proton’s Weak Charge

QWeak Experiment: Collimator-Magnet-Collimator1

Triple Pb Collimator

          System

LH  Target

    Drift

Chambers

8 Quartz Bar Detectors

   Trigger

Scintillators
     8 Segment

Toroidal Magnet

High Density Shield Wall

2

1The Qweak Apparatus, NIM A 781, 105 (2015)
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First Determination of Proton’s Weak Charge

QWeak Experiment: Collimator-Magnet-Collimator1

1The Qweak Apparatus, NIM A 781, 105 (2015)
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QWeak: Largest Uncertainties in Preliminary QWeak Result

Commissioning run (4%)
All uncertainties in ppb ∆Acorr δ(APV )
Beam polarization P -21 5
Kinematics Rtotal 5 9
Dilution 1/(1 −

∑
fi) -7

Beam asymmetry -40 13
Transverse pol. AT 0 5
Detector non-linearity 0 4
Backgrounds: δ(fi) δ(Ai)
Aluminum (b1) -58 4 8
Beamline (b2) 11 3 23
Neutrals (b3) 0 1 1
Inelastic (b4) 1 1 1
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QWeak: Largest Uncertainties in Precision QWeak Result

Full data run 1 Full data run 2
All uncertainties in ppb ∆Acorr δ(APV ) ∆Acorr δ(APV )
Beam polarization P -23 2 -21 1
Kinematics Rtotal 7 2 5 2
Dilution 1/(1 −

∑
fi) -6 -6

Beam asymmetry 21 5 0 1
Transverse pol. AT 0 1 0 1
Detector non-linearity 0 1 0 1
Charge normalization 0 5 0 2
Rescattering bias 4 3 4 3
Beamline (b2) 4 5 -3 1
Backgrounds: δ(fi) δ(Ai) δ(fi) δ(Ai)
Aluminum (b1) -37 1 2 -38 1 2
Neutrals (b3) 0.5 < 1 < 1 0.5 < 1 < 1
Inelastic (b4) 0.6 < 1 < 1 0.6 < 1 < 1
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QWeak: Largest Uncertainties in Precision QWeak Result

Run 1 Run 2
All uncertainties in ppb δ(APV ) fraction δ(APV ) fraction
Charge Normalization: ABCM 5.1 25% 2.3 17%
Beamline Background: ABB 5.1 25% 1.2 5%
Beam Asymmetries: Abeam 4.7 22% 1.2 5%
Rescattering bias: Abias 3.4 11% 3.4 37%
Beam Polarization: P 2.2 5% < 5%
Al target windows: Ab1 < 5% 1.9 12%
Kinematics: RQ2 < 5% 1.3 5%
Total of others 3.4 11% 2.5 20%
Combined in quadrature 10.1 5.6
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QWeak: Largest Uncertainties in Precision QWeak Result

Run 1 Run 2
All uncertainties in ppb δ(APV ) δ(APV )
Charge Normalization: ABCM 5.1 2.3
Beamline Background: ABB 5.1 1.2
Beam Asymmetries: Abeam 4.7 1.2
Rescattering bias: Abias 3.4 3.4
Beam Polarization: P 2.2 (1.2)
Al target windows Ab1 (1.9) 1.9
Kinematics: RQ2 (1.2) 1.3
Total of others < 5%, incl () 3.4 2.5
Combined in quadrature 10.1 5.6
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QWeak: Largest Uncertainties in Precision QWeak Result

Period ∆A(stat) ∆A(syst) ∆A(total)
Commissioning result: APV = −279 35 31 47
Run 1 15.0 10.1 18.0
Run 2 8.3 5.6 10.0
Precision result: 7.3 5.8 9.3
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The QWeak Experiment: Main Detector
Azimuthal array of Čerenkov detector

• 8 fused silica radiators, 2 m long × 18 cm × 1.25 cm
• Pb preradiator tiles to suppress low-energy/neutral yield
• 5 inch PMTs with gain of 2000, low dark current
• 800 MHz electron rate per bar, defines counting noise
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The QWeak Experiment: Kinematics in Event Mode

Reasons for a tracking system?
• Determine Q2, note: Ameas ∝ Q2 ·

(
Qp

W + Q2 · B(Q2)
)

• Main detector light output and Q2 position dependence
• Contributions from inelastic background events

Instrumentation of only two octants
• Horizontal drift chambers for front region (Va Tech)
• Vertical drift chambers for back region (W&M)
• Rotation allows measurements in all eight octants

Track reconstruction
• Straight tracks reconstructed in front and back regions
• Front and back partial tracks bridged through magnetic field
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The QWeak Experiment: Improved Beam Polarimetry

Requirements on beam polarimetry
• Largest experimental uncertainty in QWeak experiment
• Systematic uncertainty of 1% (on absolute measurements)

Upgrade existing Møller polarimeter (~e + ~e → e + e)
• Scattering off atomic electrons in magnetized iron foil
• Limited to separate, low current runs (I ≈ 1µA)

Construction new Compton polarimeter (~e + ~γ → e + γ)
• Compton scattering of electrons on polarized laser beam
• Continuous, non-destructive, high precision measurements
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The QWeak Experiment: Improved Beam Polarimetry

Compton polarimeter
• Beam: 150µA at 1.165 GeV
• Chicane: interaction region 57 cm below straight beam line
• Laser system: 532 nm green laser

• 10 W CW laser with low-gain cavity
• Photons: PbWO4 scintillator in integrating mode
• Electrons: Diamond strips with 200µm pitch
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Data Quality: Slow Helicity Reversal

λ/2-plate and Wien filter changes
• Insertable λ/2-plate (IHWP) in injector allows ‘analog’ flipping helicity

frequently
• Wien filter: another way of flipping helicity (several weeks)
• Each ‘slug’ of 8 hours consists of same helicity conditions
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Ancillary Measurements: Aluminum Target Walls

Aluminum asymmetry (preliminary)

• Asymmetry consistent with order of
magnitude expected

• Asymmetry: few ppm
• Dilution f of 3%
• Correction ≈ 20%

Dilution measurement
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Helicity-Correlated Beam Properties Are Understood

Measured asymmetry depends on beam position, angle, energy
• Well-known and expected effect for PVES experiments
• “Driven” beam to check sensitivities from “natural” jitter
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However, Some Beamline Background Correlations Remain

After regression, correlation with background detectors
• Luminosity monitors & spare detector in super-elastic region
• Background asymmetries of up to 20 ppm (that’s huge!)
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Beamline Background Correlations Remain
Hard work by grad students: now understood, under control

• Partially cancels with slow helicity reversal (half-wave plate)
• Likely caused by large asymmetry in small beam halo or tails
• Scattering off the beamline and/or “tungsten plug”

Qualitatively new background for PVES experiments at JLab
• Second regression using asymmetry in background detectors
• Measurements with blocked octants to determine dilution factor

(f MD
b2

= 0.19%)
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Ancillary Measurements: Inelastic Transitions

N → ∆ asymmetry (projected)

• Expected precision 1 ppm
• Q2 = 0.025 GeV2

• Expected asymmetry: few ppm
• Dilution f of 0.1%
• Correction ≈ 1%

Simulation benchmark (preliminary)
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Ancillary Measurements: Transverse Asymmetry

Transverse single spin asymmetries
• Some transverse polarization, slightly broken azimuthal symmetry
• Measure with transversely polarized beam (H or V)
• Parity-conserving T-odd transverse asymmetry of order ppm

Bn =
2=(T ∗

1γ · T2γ)
|T1γ |2

• Access to imaginary part of 2-photon exchange amplitude T2γ

• elastic ~ep in H, C, Al at E = 1.165 GeV
• inelastic ~ep → ∆ in H, C, Al at E = 0.877 GeV and 1.165 GeV
• elastic ~ee in H at E = 0.877 GeV
• deep inelastic ~ep in H at W = 2.5 GeV
• pion electro-production in H at E = 3.3 GeV
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Ancillary Measurements: Transverse Asymmetry on H

• Shown asymmetries not corrected for backgrounds or polarization
• Preliminary transverse asymmetry in ~ep in hydrogen:

Bn = −5.35 ± 0.07(stat) ± 0.15(syst) ppm
• More precise than any other measurement by a factor 5
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Ancillary Measurements: Transverse Asymmetry on H

Theoretical interpretation
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Ancillary Measurements: Transverse Asymmetry on C, Al

Aluminum: non-zero transverse asymmetry (uncorrected data)

• Aluminum target was alloy with 1̃0% contamination
• Needs corrections for quasielastic and inelastic scattering, and for

nuclear excited states(?)
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Ancillary Measurements: Transverse Asymmetry on C, Al

Projected uncertainties for C and Al transverse asymmetries

• Theory from Phys. Rev. C77, 044606 (2008)
• Pb data from PRL 109, 192501 (2012)
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Data Quality: Understanding the Asymmetry Width

Asymmetry width

Battery width

Measurement
• 240 Hz helicity quartets

(+ − −+ or − + +−)
• Uncertainty = RMS/

√
N

• 200 ppm in 4 milliseconds
• < 1 ppm in 5 minutes

Asymmetry width
• Pure counting statistics ≈ 200 ppm
• + detector resolution ≈ 90 ppm
• + current monitor ≈ 50 ppm
• + target boiling ≈ 57 ppm
• = observed width ≈ 233 ppm
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Data Quality: Helicity-Correlated Beam Properties

Natural beam motion
• Measured asymmetry

correlated with beam
position and angles

• Linear regression:
Ac =

∑
i

∂A
∂xi

∆xi
i = x , y , x ′, y ′,E

Driven beam motion
• Deliberate motion
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Natural beam motion
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• Deliberate motion
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Helicity-Correlated Beam Properties Are Understood

Excellent agreement between natural and driven beam motion

• Figure includes about 50%
of total dataset for QWeak
experiment

• No other corrections applied
to this data
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Sensitivity to New Physics

Lower bound on new physics (95% CL) Constraints from
• Atomic PV:

Λ
g > 0.4 TeV

• PV electron
scattering:
Λ
g > 0.9 TeV

Projection QWeak

• Λ
g > 2 TeV

• 4% precision
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Sensitivity to New Physics

Lower bound on new physics (95% CL) Constraints from
• Atomic PV:
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scattering:
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• Λ
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Sensitivity to New Physics
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Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge uud
Qp

W = −2(2C1u + C1d)

Early experiments
• SLAC and APV

Electron scattering
• HAPPEx, G0
• PVA4/Mainz
• SAMPLE/Bates

QWeak experiment
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Parity-Violating Electron Scattering: Quark Couplings
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Precision Electroweak Experiments: JLab 12 GeV

MOLLER Experiment
Source ∆APV
Mom. transfer Q2 0.5%
Beam polarization 0.4%
2nd order beam 0.4%
Inelastic ep 0.4%
Elastic ep 0.3%

SoLID PV-DIS Experiment
Source ∆APV
Beam polarization 0.4%
Rad. corrections 0.3%
Mom. transfer Q2 0.5%
Inelastic ep 0.2%
Statistics 0.3%

Precision beam polarimetry is crucial to these experiments.
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Precision Electroweak Experiments: Polarimetry

Compton Polarimetry
• ~e~γ → eγ (polarized laser)
• Detection e and/or γ
• Only when beam energy above

few hundred MeV
• High photon polarization but low

asymmetry
• Total systematics ∼ 1%

• laser polarization
• detector linearity

Møller Polarimetry
• ~e~e → ee (magnetized Fe)
• Low current because temperature

induces demagnetization
• High asymmetry but low target

polarization
• Levchuk effect: scattering off

internal shell electrons
• Intermittent measurements at

different beam conditions
• Total systematics ∼ 1%
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Atomic Hydrogen Polarimetry

New polarimetry concept1

• 300 mK cold atomic H
• 8 T solenoid trap
• 3 · 1016 atoms/cm2

• 3 · 1015−17 atoms/cm3

• 100% polarization of e

Advantages
• High beam currents
• No Levchuk effect
• Non-invasive, continuous

1E. Chudakov, V. Luppov, IEEE Trans. on Nucl. Sc. 51, 1533 (2004).
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Atomic Hydrogen Polarimetry: 100% Polarization of e

Hyperfine Splitting in Magnetic Field
• Energy splitting of ∆E = 2µB:

↑ / ↓= exp(−∆E/kT ) ≈ 10−14

• Low energy states with |sesp〉:
• |d〉 = |↑⇑〉
• |c〉 = cos θ |↑⇓〉 + sin θ |↓⇑〉
• |b〉 = |↓⇓〉
• |a〉 = cos θ |↓⇑〉 − sin θ |↑⇓〉
• with sin θ ≈ 0.00035

• Pe(↓) ≈ 1 with only 105 dilution from
|↑⇓〉 in |a〉 at B = 8 T

• Pp(⇑) ≈ 0.06 because 53% |a〉 and 47%
|b〉

• Force ~∇(−~µ · ~B) will pull
|a〉 and |b〉 into field
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Atomic Hydrogen Polarimetry: Expected Contaminations

Without beam
• Recombined molecular hydrogen suppressed by coating of cell with

superfluid He, ∼ 10−5

• Residual gasses, can be measured with beam to < 0.1%

With 100 µA beam
• 497 MHz RF depolarization for 200 GHz |a〉 → |c〉 transition, tuning of

field to avoid resonances, uncertainty ∼ 2 · 10−4

• Ion-electron contamination: builds up at 20%/s in beam region, cleaning
with ~E field of ∼ 1 V/cm, uncertainty ∼ 10−5
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Atomic Hydrogen Polarimetry: Projected Uncertainties

Projected Systematic Uncertainties ∆Pe in Møller polarimetry
Source Fe-foil Hydrogen
Target polarization 0.63% 0.01%
Analyzing power 0.30% 0.10%
Levchuk effect 0.50% 0.00%
Deadtime 0.30% 0.10%
Background 0.30% 0.10%
Other 0.30% 0.00%
Unknown unknowns 0.00% 0.30%(?)
Total 1.0% 0.35%
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Atomic Hydrogen Polarimetry: Collaboration with Mainz

P2 Experiment in Mainz: Weak Charge of the Proton
• “QWeak experiment” with improved statistical precision
• Dedicated 200 MeV accelerator MESA under construction
• Required precision of electron beam polarimetry < 0.5%
• Strong motivation for collaboration on a short timescale (installation in

2017)
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Parity-Violating Electron Scattering: Running of Weak Mixing Angle

Running of sin2 θW (Qp
W = 1 − 4 sin2 θW )

• Higher order loop diagrams
• sin2 θW varies with Q2
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The QWeak Experiment: Main Detector

Low noise electronics
• Event rate: 800 MHz/PMT
• Asymmetry of only 0.2 ppm
• Low noise electronics (TRIUMF)

I-V Preamplifier 18-bit 500 kHz sampling ADC
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The QWeak Experiment: Systematic Uncertainties

Reminder: weak vector charges
• Proton weak charge Qp

W ≈ −0.072
• Neutron weak charge Qn

W = −1

Sources of neutron scattering
• Al target windows
• Secondary collimator events
• Small number of events, but huge

false PV asymmetry

Al target windows
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Electroweak Interaction: Running of Weak Mixing Angle

Atomic parity-violation on 133Cs
• Porsev, Beloy, Derevianko1: Updated calculations in many-body atomic

theory
• Experiment: QW (133Cs) = −73.25 ± 0.29 ± 0.20
• Standard Model: QW (133Cs) = −73.16 ± 0.03

NuTeV anomaly
• Reported 3σ deviation from Standard Model
• Erler, Langacker: strange quark PDFs
• Londergan, Thomas2: charge symmetry violation, mu 6= md

• Cloet, Bentz, Thomas3: in-medium modifications to PDFs, isovector
EMC-type effect

1Phys. Rev. Lett. 102 (2009) 181601
2Phys. Rev. D67 (2003) 111901

3Phys. Lett. B693 (2010) 462-466
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NuTeV Nuclear Correction
Isovector EMC effect1 affects NuTeV point2
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1I. Cloët, W. Bentz, A. M. Thomas, Phys. Rev. Lett. 102, 252301 (2009)
2W. Bentz, Phys. Lett. B693, 462-466 (2010)
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NuTeV Nuclear Correction
Isovector EMC effect1 affects NuTeV point2
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Other Experiments
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