Precision Electroweak Measurements with Leptons and Nuclei

Wouter Deconinck (for the Q_{Weak} Collaboration)

August 11, 2017 Lepton/Photon 2017, Sun Yat-Sen University, Guangzhou, China

CHARTERED 1693

Supported by the National Science Foundation under Grant Nos. PHY-1405857, PHY-1714792.

There are Two Main Classes of Standard Model Tests

Energy frontier

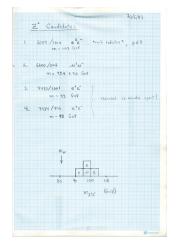
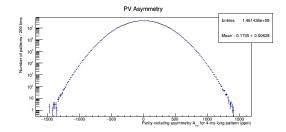



Image credit: James Rohlf, UA1/UA2

Intensity frontier

- = Asymmetry uncertainty $\delta A \propto 1/\sqrt{N}$
- Q_{Weak} experiment: $\delta A \approx 6.3 \, ppb$
- 2.5×10^{16} scattered electrons detected
- Luminosity of about $1.7 \cdot 10^{39} \text{ cm}^{-2} \text{ s}^{-1}$, accumulating 40 fb⁻¹ in 20 seconds

(Every entry in this histogram is 3 million electrons.)

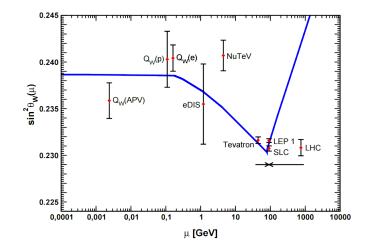
Lepton Photon 2017

Electroweak Interaction

Glashow–Weinberg–Salam theory of weak interaction

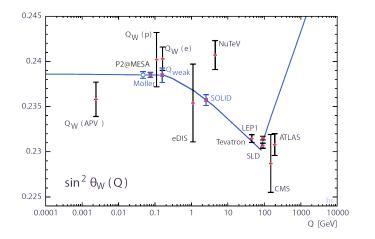
- Gauge symmetry: $SU(2)_L imes U(1)_Y$
- Gauge couplings: g for $SU(2)_L$, g' for $U(1)_Y$

Electroweak symmetry breaking $(B_\mu, W^i_\mu
ightarrow A_\mu, Z^0_\mu, W^\pm_\mu)$


$$\sin^2 \theta_W = rac{g'^2}{g^2 + g'^2} = 0.23129 \pm 0.00005 \, ({
m at} \, M_Z{}^1) pprox rac{1}{4}$$

$$\begin{array}{lll} A_{\mu} &=& \cos \theta_{W} \cdot B_{\mu} + \sin \theta_{W} \cdot W_{\mu}^{3} & (\text{massless}) \\ Z_{\mu}^{0} &=& -\sin \theta_{W} \cdot B_{\mu} + \cos \theta_{W} \cdot W_{\mu}^{3} & (M_{Z} \approx 91.2 \, \text{GeV}) \\ W_{\mu}^{\pm} &=& (W_{\mu}^{1} \mp i W_{\mu}^{2})/\sqrt{2} & (M_{W} = M_{Z} \cos \theta_{W} \approx 80.4 \, \text{GeV}) \end{array}$$

¹Review Particle Physics, J. Erler and A. Freitas, Chin. Phys. C, 40, 100001 (2016)

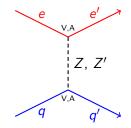

Lepton Photon 2017

Weak Mixing Angle Runs With Energy Scale

(Width of curve indicates theoretical uncertainty in MS.)

Weak Mixing Angle Runs With Energy Scale

Electroweak Interaction


Parity symmetry is violated by $SU(2)_L$

- Weak interaction violates parity
- Electromagnetism conserves parity

Parity-violation neutral current $(g_V - \gamma_5 g_A)$

$$\begin{aligned} \mathcal{L}_{PV}^{NC} &= -\frac{G_F}{\sqrt{2}} \quad \left[g_A^e \left(\bar{e} \gamma_\mu \gamma_5 e \right) \cdot \sum_q g_V^q \left(\bar{q} \gamma^\mu q \right) \right. \\ &+ g_V^e \left(\bar{e} \gamma_\mu e \right) \cdot \sum_q g_A^q \left(\bar{q} \gamma^\mu \gamma_5 q \right) \right] \\ &= -\frac{G_F}{2\sqrt{2}} \quad \left[\sum_q C_{1q} \left(\bar{e} \gamma_\mu \gamma_5 e \right) \cdot \left(\bar{q} \gamma^\mu q \right) \right. \\ &+ \left. \sum_q C_{2q} \left(\bar{e} \gamma_\mu e \right) \cdot \left(\bar{q} \gamma^\mu \gamma_5 q \right) \right] \end{aligned}$$

Several Electroweak Charges are Suppressed

Parity-violating electron scattering couplings

- Weak vector quark coupling: $C_{1q} = 2g_A^e g_V^q (\gamma^{\mu} \text{ on } q \text{ vertex})$
- = Weak axial quark coupling: $C_{2q} = 2g_V^e g_A^q (\gamma^\mu \gamma^5 \text{ on } q \text{ vertex})$

Particle	Electric charge	Weak vector charge $(\sin^2 heta_W pprox rac{1}{4})$
u	$+\frac{2}{3}$	$-2C_{1u} = +1 - \frac{8}{3}\sin^2\theta_W \approx +\frac{1}{3}$
d	$-\frac{1}{3}$	$-2C_{1d} = -1 + rac{4}{3}\sin^2 heta_W pprox -rac{2}{3}$
p(uud)	+1	$Q^p_W = 1 - 4 \sin^2 heta_W pprox 0$
n(udd)	0	$Q_W^n=-1$
е	-1	$Q_W^e = -2g_A^e g_V^e = -1 + 4\sin^2\theta_W \approx 0$

Weak vector charges of the proton and electron approximately zero Accidental suppression of the weak vector charges in Standard Model makes them relatively more sensitive to new physics

Several Electroweak Charges are Suppressed

Parity-violating electron scattering couplings

- Weak vector quark coupling: $C_{1q} = 2g_A^e g_V^q (\gamma^{\mu} \text{ on } q \text{ vertex})$
- Weak axial quark coupling: $C_{2q} = 2g_V^e g_A^q (\gamma^\mu \gamma^5 \text{ on } q \text{ vertex})$

Particle	Electric charge	Weak vector charge $(\sin^2 heta_W pprox rac{1}{4})$
u	$+\frac{2}{3}$	$-2C_{1u} = +1 - \frac{8}{3}\sin^2\theta_W \approx +\frac{1}{3}$
d	$-\frac{1}{3}$	$-2C_{1d} = -1 + \frac{4}{3}\sin^2\theta_W \approx -\frac{2}{3}$
p(uud)	+1	$Q^{p}_{W} = 1 - 4 \sin^2 heta_{W} pprox 0$
n(udd)	0	$Q_W^n=-1$
е	-1	$Q^e_W = -2g^e_A g^e_V = -1 + 4\sin^2 heta_W pprox 0$

Weak vector charge of the neutron is large

Dominance of neutron over proton weak charge means parity-violating scattering sensitive to neutron distributions

Several Electroweak Charges are Suppressed

Parity-violating electron scattering couplings

- Weak vector quark coupling: $C_{1q} = 2g_A^e g_V^q (\gamma^{\mu} \text{ on } q \text{ vertex})$
- Weak axial quark coupling: $C_{2q} = 2g_V^e g_A^q (\gamma^\mu \gamma^5 \text{ on } q \text{ vertex})$

Particle	Electric charge	Weak axial charge $(\sin^2 heta_W pprox rac{1}{4})$
u	$+\frac{2}{3}$	$-2C_{2u} = -1 + 4\sin^2\theta_W \approx 0$
d	$-\frac{1}{3}$	$-2C_{2d} = +1 - 4\sin^2 heta_W pprox 0$

Weak axial charges of quarks approximately zero

Accidental suppression of the weak axial charges in deep-inelastic scattering of quarks

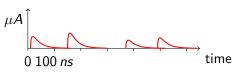
$$\frac{\Delta \sin^2 \theta_W}{\sin^2 \theta_W} = \frac{1 - 4 \sin^2 \theta_W}{4 \sin^2 \theta_W} \frac{\Delta suppressed \ observable}{suppressed \ observable}$$

Parity-Violating Asymmetries are Typically Small

Asymmetry between left and right incoming electron helicity

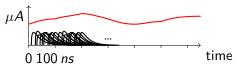
$$A_{PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \quad \text{with} \quad \sigma = \left| \begin{array}{c} e & e' \\ \hline \gamma & + \\ \hline q & q' \end{array} \right|^2 + \left| \begin{array}{c} e & e' \\ \hline \zeta & + \\ \hline q & q' \end{array} \right|^2$$

Interference of photon and weak boson exchange


-1

$$\mathcal{M}^{EM} \propto \frac{1}{Q^2} \qquad \mathcal{M}^{NC}_{PV} \propto \frac{1}{M_Z^2 + Q^2}$$
$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto \frac{\mathcal{M}^{NC}_{PV}}{\mathcal{M}^{EM}} \propto \frac{Q^2}{M_Z^2} \propto G_F Q^2 \approx \mathcal{O}(\text{ppm, ppb}) \text{ when } Q^2 \ll M_Z^2$$

-1


Strategy to Measure Parts-Per-Billion: Integration

Event or counting mode

- Each event individually detected, digitized and read-out
- Selection or rejection possible based on event characteristics
- 100 ns pulse separation limits rate to 10 MHz per detector segment; at least 1 day for 1 ppm precision

Integrating or current mode

- Very high event rates possible, as long as detectors are linear
- But no rejection of background events possible after the fact
- *Q_{Weak}* segment rates 800 MHz; MOLLER segment rates up to 2.5 GHz; P2 up to 0.5 THz

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

Access to weak vector quark charges, measurements of $\sin^2 \theta_W$

Electroweak measurements with electrons (Møller scattering)

- Access to weak electron charge, measurements of $\sin^2 \theta_W$

Electroweak measurements with quarks (deep-inelastic scattering)

Access to weak axial quark charges, measurements of $\sin^2 \theta_W$, measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)

Access to neutron distributions, measurements of neutron skin thickness

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

$$\mathcal{A}_{PV}(p) = \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \left[\frac{\epsilon G_E G_E^Z + \tau G_M G_M^Z - (1 - 4\sin^2\theta_W)\epsilon' G_M G_A^Z}{\epsilon(G_E)^2 + \tau(G_M)^2} \right]$$

In the forward elastic limit $Q^2 \rightarrow 0$, $\theta \rightarrow 0$ (plane wave):

$$A_{PV}(p) \xrightarrow{Q^2 \to 0} \frac{-G_F Q^2}{4\pi \alpha \sqrt{2}} \left[Q_W^p + Q^2 \cdot B(Q^2) \right] \propto Q_W^p \text{ when } Q^2 \text{ small}$$

Precision electroweak Standard Model test of $\sin^2 \theta_W$:

$$A_{PV}(p) \propto -1 + 4 \sin^2 \theta_W$$

• Completed: Q_{Weak} at Jefferson Lab, $\sin^2 \theta_W$ to ± 0.0010

Planned: P2 at Mainz, $\sin^2 \theta_W$ to ± 0.0003

Lepton Photon 2017

Q_{Weak} : First Determination of the Weak Charge of the Proton

First experiment with direct access to proton's weak charge

- Experiment collected data between 2010 and 2012 with toroidal spectrometer and integrating quartz detectors¹
- Preliminary results were published in 2013 based on commissioning data² (4% compared to the independent full data set)
- Today presenting uncertainty for full data set (but not central value)
- Long awaited final results really soon now, I promise
 - Unblinding happened on March 31, 2017
 - Publication and release of unblinded result at PANIC'17 in Beijing:
 - Sunday September 3, 2017, at 12:15pm in PANIC plenary session
 - Monday September 4, 2017, at 11am in JLab colloquium (TBC)

¹ The Qweak Apparatus, NIM A 781, 105 (2015)

²First Determination of the Weak Charge of the Proton, Phys. Rev. Lett. 111, 141803 (2013)

Q_{Weak} : First Determination of the Weak Charge of the Proton

Background treatment in integrating experiments

- Measured asymmetry A_{msr} corrected for all background contributions
 - with their own parity-violating asymmetry A_i (ppm-level)
 - and their dilution in the measured asymmetry f_i (%-level)

$$A_{PV} = R_{total} \frac{\frac{A_{msr}}{P} - \sum f_i A_i}{1 - \sum f_i}$$

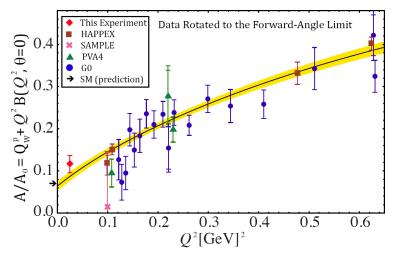
Unprecedented precision comes with inevitable surprises

- Discovered qualitatively new "beamline background"
 - Generated by scattering of helicity-dependent beam halo on clean-up collimator downstream of target and into detector acceptance
- Discovered qualitatively new "rescattering bias"
 - Spin precession of scattered electrons in spectrometer, followed by nuclear transverse spin azimuthal asymmetry when scattering in lead pre-radiators

All uncertainties in ppb	Run 1	Run 2	Combined
Charge Normalization: A _{BCM}	5.1	2.3	
Beamline Background: A _{BB}	5.1	1.2	
Beam Asymmetries: A _{beam}	4.7	1.2	Note:
Rescattering bias: A _{bias}	3.4	3.4	correlations
Beam Polarization: P	2.2	(1.2)	between
Al target windows: A _{b1}	(1.9)	1.9	factors
Kinematics: R_{Q^2}	(1.2)	1.3	
Total of others $< 5\%$, incl ()	3.4	2.5	
Total systematic uncertainty	10.1	5.6	5.8
Total statistical uncertainty	15.0	8.3	7.3
Total combined uncertainty	18.0	10.0	9.3 (p = 86%)

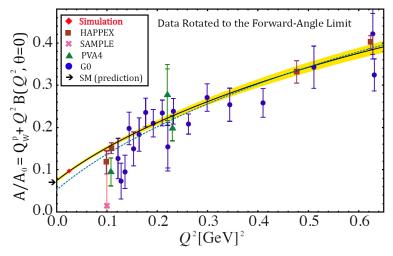
$$\begin{array}{rcl} A_{PV}(4\%) &=& -279 \pm 31(\text{syst}) \pm 35(\text{stat}) = -279 \pm 47(\text{total}) \\ A_{PV}(\text{full}) &=& - \texttt{(b)} \pm 5.8(\text{syst}) \pm 7.3(\text{stat}) = - \texttt{(b)} \pm 9.3(\text{total}) \end{array}$$

Intercept of A_{PV} at $Q^2 \rightarrow 0$ gives weak charge $(Q^2 = 0.025 \text{ GeV}^2)$ $\overline{A_{PV}} = \frac{A_{PV}}{A_0} = Q_W^p + Q^2 \cdot B(Q^2, \theta = 0) \text{ with } A_0 = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}$

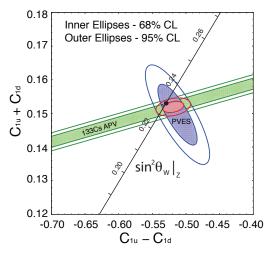

Global fit¹ of all parity-violating electron scattering with 4% data²

- Fit of parity-violating asymmetry data on H, D, 4 He, $Q^{2} < 0.63 \, {
 m GeV}^{2}$
- Free parameters are C_{1u} , C_{1d} , strange charge radius ρ_s and magnetic moment μ_s ($G_{E,M}^s \propto G_D$), and isovector axial form factor $G_A^{Z,T=1}$
 - $Q_W^p(SM) = 0.0710 \pm 0.0007$ (theoretical expectation)
 - $Q_W^p(\text{PVES}) = 0.064 \pm 0.012$ (global fit of 4% data²)
 - After combination with atomic parity-violation on Cs:
 - $C_{1u} = -0.1835 \pm 0.0054$
 - $C_{1d} = 0.3355 \pm 0.0050$

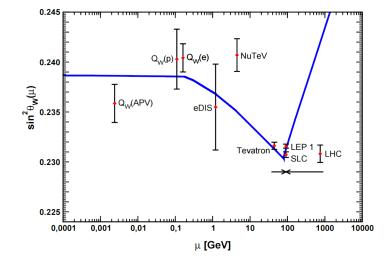
¹R. Young, R. Carlini, A.W. Thomas, J. Roche, Phys. Rev. Lett. 99, 122003 (2007)
 ²First Determination of the Weak Charge of the Proton, Phys. Rev. Lett. 111, 141803 (2013)


Q_{Weak} : First Determination of the Weak Charge of the Proton:

Based on commissioning run data set (4% compared to full data set):



Q_{Weak} : First Determination of the Weak Charge of the Proton:


Uncertainty of the full data set, but with central value fixed at SM:

Based on commissioning run data set (4% compared to full data set):

Based on commissioning run data set (4% compared to full data set):

New global fit of all parity-violating electron scattering with full data set

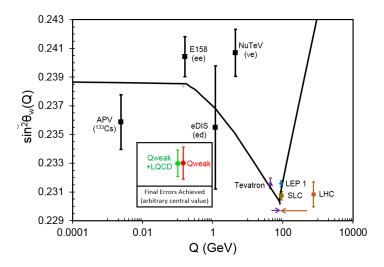
- = Fit of parity-violating asymmetry data on H, D, 4 He, $Q^2 < 0.63 \, {
 m GeV}^2$
- = Free parameters were C_{1u} , C_{1d} , strange charge radius ρ_s and magnetic moment μ_s ($G_{E,M}^s \propto G_D$), and isovector axial form factor $G_A^{Z,T=1}$
- But also consider improved knowledge of strangeness form factors:
 - Without lattice QCD: leave ρ_s and μ_s free in G_E^s and G_M^s
 - With lattice QCD: using G_E^s and G_M^s from lattice QCD¹

 $Q_W(p)(4\%) = 0.064 \pm 0.0120$

PRELIM $Q_W(p)$ (full) = 隐 ± 0.0047 (Qweak, with LQCD)

- PRELIM $Q_W(p)$ (full) = 隐 ± 0.0044 (PVES, without LQCD)
- PRELIM $Q_W(p)$ (full) = 隐 ± 0.0037 (PVES, with LQCD)

¹J. Green et al, Phys. Rev. D92, 031501 (2015)

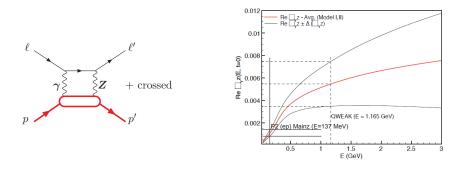

From weak charge to $\sin^2 \theta_W$ with radiative corrections

$$= Q_W^p = (\rho_{NC} + \Delta_e)(1 - 4\sin^2\theta_W(0) + \Delta'_e) + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$$

- $\Delta \sin^2 \theta_W(M_Z)$, \Box_{WW} , \Box_{ZZ} box diagrams: uncertainties small
- = $\Box_{\gamma Z} = 0.00459 \pm 0.00044$ for Q_{Weak} conditions ($E = 1.165 \, \text{GeV}$)

PRELIM $\sin^2 \theta_W =$ 隐 ± 0.0011 (PVES, without LQCD) PRELIM $\sin^2 \theta_W =$ 隐 ± 0.0009 (PVES, with LQCD)

PRELIMINARY

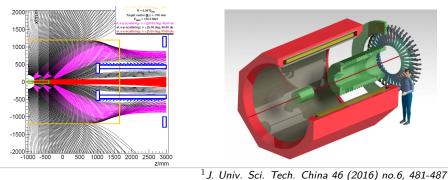

Lepton Photon 2017

P2: High Precision Measurement of Proton's Weak Charge

Radiative corrections on weak charge

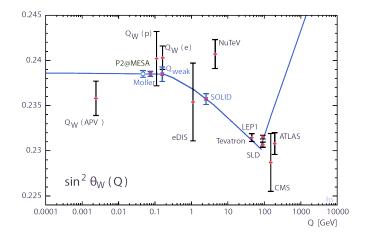
$$Q_W^p = (\rho_{NC} + \Delta_e)(1 - 4\sin^2\theta_W(0) + \Delta'_e) + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$$

- □_{γZ}: relatively large correction and uncertainty¹
- Improving measurements of Q_W^p benefits from smaller beam energies



¹M. Gorchtein, C. J. Horowitz, M. J. Ramsey-Musolf, Phys. Rev. C 84, 015502 (2011)

P2: High Precision Measurement of Proton's Weak Charge


New Experiment: P2 Experiment in Mainz¹

- 155 MeV energy-recovery superconducting accelerator MESA
- Projected precision of $\sin^2 \theta_W$ of 0.00032 at $Q^2 = 0.0045 \, \text{GeV}^2$
- Accelerator commissioning in 2018, experiment data taking in 2020
- Electron polarimetry at 0.5% precision with atomic hydrogen Møller

Lepton Photon 2017

Weak Mixing Angle Runs With Energy Scale

Effective four-point interactions of some higher mass scale¹

$$\mathcal{L}_{e-q}^{PV} = -\frac{G_F}{\sqrt{2}} \overline{e} \gamma_{\mu} \gamma_5 e \sum_{q} C_{1q} \overline{q} \gamma^{\mu} q + \frac{1}{4} \frac{g^2}{\Lambda^2} \overline{e} \gamma_{\mu} \gamma_5 e \sum_{q} h_q^V \overline{q} \gamma^{\mu} q$$

Limits on new physics energy scale if uncertainty ΔQ_W^p

$$\frac{\Lambda}{g} = \frac{1}{2} \left(\sqrt{2} G_F \Delta Q_W^p \right)^{-1/2}$$

Assuming $\Delta Q_W^p = 0.005$ and central value exactly at SM value:

• $\frac{\Lambda}{g} > 7.4 \text{ TeV}$ at 95% C.L.; or $\Lambda > 26.4 \text{ TeV}$ for $g^2 = 4\pi$

For P2 experiment: precision to exclude PV interactions with $\Lambda > 50\,\text{TeV}$

¹J. Erler, A. Kurylov, M. Ramsey-Musolf, PRD 68, 016006 (2003)

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

Access to weak vector quark charges, measurements of $\sin^2 \theta_W$

Electroweak measurements with electrons (Møller scattering)

- Access to weak electron charge, measurements of $\sin^2 \theta_W$

Electroweak measurements with quarks (deep-inelastic scattering)

Access to weak axial quark charges, measurements of $\sin^2 \theta_W$, measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)

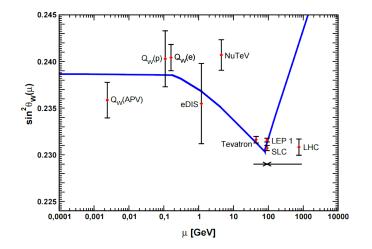
Access to neutron distributions, measurements of neutron skin thickness

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with electrons (Møller scattering)

$$A_{PV}(e) = rac{G_F Q^2}{\pi lpha \sqrt{2}} \left[rac{1-y}{1+y^4+(1-y)^4}
ight] Q_W^e$$

Direct connection from asymmetry to weak charge of electron:


- No theoretical uncertainty due to hadronic structure (G_E , G_M , s) $A_{PV}(e) \propto Q_W^e$

Precision electroweak Standard Model test of $\sin^2 \theta_W$:

$$A_{PV}(e) \propto -1 + 4\sin^2\theta_W$$

- Completed: E158 at SLAC, $\sin^2 \theta_W$ to ± 0.0013
- Planned: MOLLER at Jefferson Lab, $\sin^2 \theta_W$ to ± 0.0003

Weak Mixing Angle Runs With Energy Scale

(Width of curve indicates theoretical uncertainty in MS.)

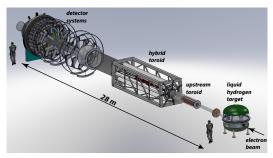
MOLLER: Ultra-Precise Measurement of Electron's Weak Charge

Most precise measurement of $\sin^2 \theta_W$ at low energy¹

- Elastic scattering of electrons on electrons in hydrogen
- Measurement of the weak charge of the electron $Q_W^e \approx 0$ at 11 GeV
 - Asymmetry $A_{PV} \approx 35.6 \text{ ppb}$, with precision $\delta A_{PV} \approx 0.5 \text{ ppb}$
 - Precision $\delta Q_W^e \approx \pm 2.1\%$, $\delta \sin^2 \theta_W = \pm 0.1\% = \pm 0.00028$

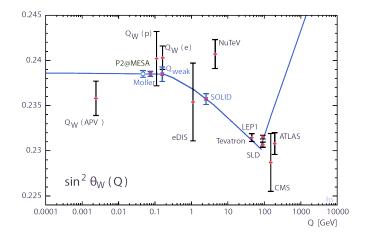
Pushing the envelope of intensity

- Even higher luminosity: $85 \,\mu\text{A}$ on $1.5 \,\text{m}$ long cryo-target, $5 \,\text{kW}$
- Total event rates up to 150 GHz in integrated mode

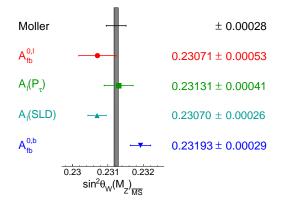

Pushing the envelope of precision

Electron beam polarization precision of 0.4% at 11 GeV

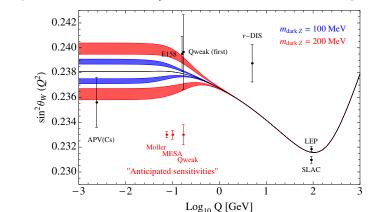
¹The MOLLER Experiment, arXiv:1411.4088


MOLLER: Ultra-Precise Measurement of Electron's Weak Charge

Forward toroidal spectrometer with 7-fold symmetry

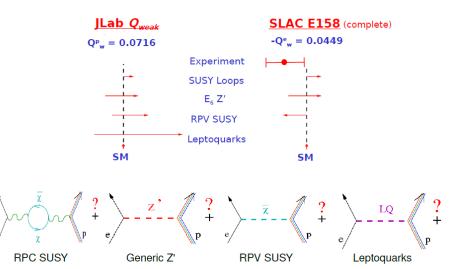


- Long, narrow hybrid toroidal spectrometer system to select forward events
- Passed Department of Energy CD-0, approximately \$25M project
- Anticipated running in the first half of 2020s, hopefully before LHC-HL

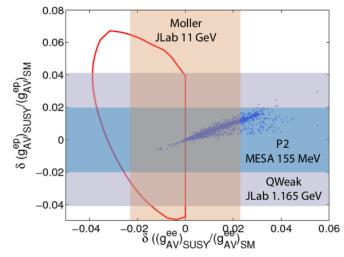

Weak Mixing Angle Runs With Energy Scale

MOLLER: Ultra-Precise Measurement of Electron's Weak Charge

Weak Vector Charges: If In Disagreement with Standard Model


Sensitivity to dark Z bosons¹ (which accommodated muon g - 2)

¹H. Davoudiasl, H.-S. Lee, W. J. Marciano, Phys. Rev. D 89, 095006 (2014)


Lepton Photon 2017

Weak Vector Charges: If In Disagreement with Standard Model

Different experiments sensitive to different extensions

Weak Vector Charges: If In Disagreement with Standard Model

Dots: MSSM models, Contour: R-parity violating supersymmetry

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

Access to weak vector quark charges, measurements of $\sin^2 \theta_W$

Electroweak measurements with electrons (Møller scattering)

- Access to weak electron charge, measurements of $\sin^2 \theta_W$

Electroweak measurements with quarks (deep-inelastic scattering)

Access to weak axial quark charges, measurements of $\sin^2 \theta_W$, measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)

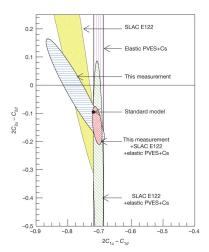
Access to neutron distributions, measurements of neutron skin thickness

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with quarks (deep-inelastic scattering)

$$A_{PV}(N) = Q^2 \left[a_1 + a_2 rac{1 - (1 - y)^2}{1 + (1 - y)^2}
ight]$$

For isoscalar targets like deuterium, ignoring strange quarks:


$$A_{PV}(d) = \frac{G_F Q^2}{\pi \alpha \sqrt{2}} \frac{3}{10} \left[(2C_{1u} - C_{1d}) + (2C_{2u} - C_{2d}) \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \right]$$

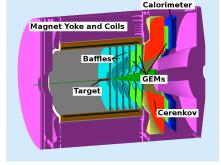
- Completed: Strange form factors at MIT-Bates, Jefferson Lab, Mainz
- Completed: E122 at SLAC, PV-DIS at Jefferson Lab
- Planned: SoLID at Jefferson Lab

PV-DIS: Measurement of Weak Axial Quark Couplings

Jefferson Lab 6 GeV spectrometers

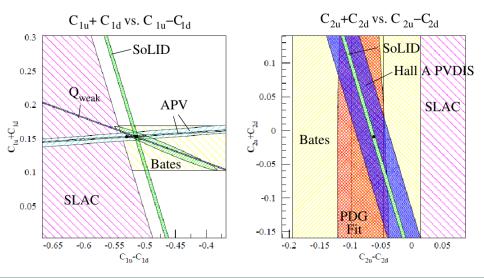
- Kinematic conditions determine coefficient in combination of a₁ and a₂
- Constraint to a different orientation in $2C_{2u} - C_{2d}$ vs $2C_{1u} - C_{1d}$
- First evidence at 95% C.L. that the weak axial quark couplings C_{2q} are non-zero (even if small)

¹Nature 506, p67 (2014)


SoLID: Precision Measurement of Weak Axial Quark Couplings

Solenoidal Large Intensity Device

- 2 GeV
- $2 \, {\rm GeV}^2 < Q^2 < 10 \, {\rm GeV}^2$
- 0.2 < x < 1
- 40% azimuthal acceptance
- $\mathcal{L} \approx 5 \cdot 10^{35} \, \text{s}^{-1} \text{cm}^{-2}$
- Counting mode (PID)


Experimental design

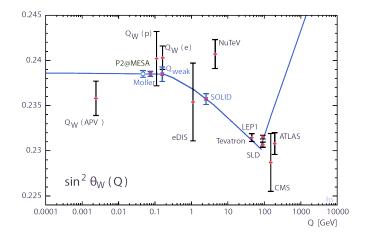
- Counting mode at rate > 200 kHz, 30 independent sectors
- Baffles filter low energy and neutral particles (no line of sight)
- Light gas Čerenkov for 1000–200 : 1 rejection of low-E π^-
- Electromagnetic calorimeter for 50 : 1 π^- rejection

SoLID: Precision Measurement of Weak Axial Quark Couplings

Projected constraints on weak quark couplings

Precision Electroweak Measurements

SoLID: Precision Measurement of Weak Axial Quark Couplings


Multipurpose detector and collaboration

- Additional physics goals for SoLID: J/ψ , SIDIS, transversity
- Large investment, at least \$65M

Involvement of many Chinese groups in SoLID

- 3 proposed experiments have co-spokespersons at Chinese institutions, 10 universities are collaborating institutions
- Significant Chinese contributions in R&D for 3 detector systems
 - Large GEM: USTC, CIAE, Lanzhou, Tsinghua and IMP
 - Shashlyk-style ECal: Shandong, Tsinghua
 - MRPC-TOF: Tsinghua, USTC
- Yearly Hadron-China workshop
- R&D funding from NSFC

Weak Mixing Angle Runs With Energy Scale

SoLID: Measuring Hadronic Structure Through PV-DIS

Analogy with Deep Inelastic Scattering

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \left(\frac{2}{M}F_1(x) \sin^2 \frac{\theta}{2} + \frac{1}{\nu}F_2(x) \cos^2 \frac{\theta}{2}\right)$$

Quark structure through $\ensuremath{\text{DIS}}$

$$F_2(x) = x \sum_q e_q^2 (q + \bar{q}) \approx 2x F_1(x)$$
 (Callan-Gross)

Quark structure through **PV-DIS**: interference of γZ

$$F_2^{\gamma Z}(x) = x \sum_q e_q g_q^V(q + \bar{q}) \rightarrow a_1(x) \sim \sum_q e_q C_{1q}(q + \bar{q})$$

$$F_3^{\gamma Z}(x) = x \sum_q e_q g_q^A(q - \bar{q}) \rightarrow a_3(x) \sim \sum_q e_q C_{2q}(q - \bar{q})$$

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

Access to weak vector quark charges, measurements of $\sin^2 \theta_W$

Electroweak measurements with electrons (Møller scattering)

- Access to weak electron charge, measurements of $\sin^2 \theta_W$

Electroweak measurements with quarks (deep-inelastic scattering)

Access to weak axial quark charges, measurements of $\sin^2 \theta_W$, measurements of weak structure functions

Electroweak measurements with nuclei (elastic scattering)

Access to neutron distributions, measurements of neutron skin thickness

Parity-Violating Asymmetry to Access Electroweak Parameters

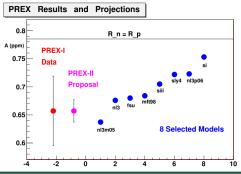
Weak charge of nuclei (elastic scattering)

$$Q^{Z,N}_W pprox Z Q^p_W + N Q^n_W = Z(1-4\sin^2 heta_W) + N$$

Electron scattering: sensitive to nuclear neutron density distributions

$$A_{PV}(A) = \frac{G_F Q^2}{\pi \alpha \sqrt{2}} \left[\left(1 - 4\sin^2 \theta_W \right) - \frac{F_n(Q^2)}{F_p(Q^2)} \right]$$

Atomic parity-violation: constraint on $2C_{1d} + C_{1u} \perp 2C_{1u} + C_{1d}$ for proton


$$A_{PV}(A) \propto NQ_W^n \propto 2C_{1d} + C_{1u}$$

- Completed: PREX at Jefferson Lab
- Planned: PREX-II & CREX at Jefferson Lab, C12 at Mainz

PREX and **CREX**: Neutron Density Distributions for Astrophysics

Standard Jefferson Lab spectrometers

- PREX-I: 1 GeV beam energy on Pb, reached systematic goals, but statistics limited: R_n is different from R_p at 95% C.L.
- PREX-II: scheduled for 'soon', recently completed experimental readiness reviews (2018)
- CREX on Calcium to run in same experiment run group

Constraints on equation of state of neutron matter

- Pressure as function of density, $P(\rho)$
- Impact from R_n R_p on neutron star radii

Lepton Photon 2017

So much to present, so little time ...

I hope to have given you a flavor of the electron scattering subfield maybe most closely relevant to high energy physics, and I apologize for any areas left out of this short presentation.

Parity-violating electron scattering can explore the tiny effects of the electroweak sector by leveraging the enormous number of detected electrons, sometimes in a more general way than electroweak factories (e.g. Z-pole).

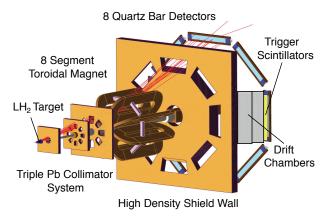
In particular, the Q_{Weak} experiment recently completed an ambitious determination of $\sin^2 \theta_W$ with a total uncertainty of ± 0.0010 and sensitivity to physics at the multi-TeV scale.

Additional Material

The Qweak Experiment Uncertainties

Parity-Violating and Parity-Conserving Nuclear Asymmetries

Main Detectors Tracking Detectors Beam Polarimetry Aluminum Walls Helicity-Correlated Beam Properties Inelastic Transitions Transverse Asymmetries Data Quality


Precision Polarimetry Atomic Hydrogen Polarimetry

Radiative Corrections

Lepton Photon 2017

First Determination of Proton's Weak Charge

Q_{Weak} Experiment: Collimator-Magnet-Collimator¹

¹*The Qweak Apparatus, NIM A 781, 105 (2015)*

Precision Electroweak Measurements

First Determination of Proton's Weak Charge

*Q*_{Weak} Experiment: Collimator-Magnet-Collimator¹

¹The Qweak Apparatus, NIM A 781, 105 (2015)

Precision Electroweak Measurements

	Commissioning run (4%)			
All uncertainties in ppb	ΔA_{corr}	$\delta(A_{PV})$		
Beam polarization P	-21		5	
Kinematics <i>R_{total}</i>	5		9	
Dilution $1/(1 - \sum f_i)$	-7			
Beam asymmetry	-40		13	
Transverse pol. A_T	0		5	
Detector non-linearity	0		4	
Backgrounds:		$\delta(f_i)$	$\delta(A_i)$	
Aluminum (<i>b</i> ₁)	-58	4	8	
Beamline (b_2)	11	3	23	
Neutrals (b_3)	0	1	1	
Inelastic (<i>b</i> ₄)	1	1	1	

	Full data run 1		Full data run 2			
All uncertainties in ppb	ΔA_{corr}	δ (A	PV)	ΔA_{corr}	$\delta(A)$	$A_{PV})$
Beam polarization P	-23		2	-21		1
Kinematics <i>R_{total}</i>	7		2	5		2
Dilution $1/(1-\sum f_i)$	-6			-6		
Beam asymmetry	21		5	0		1
Transverse pol. A_T	0		1	0		1
Detector non-linearity	0		1	0		1
Charge normalization	0		5	0		2
Rescattering bias	4		3	4		3
Beamline (b_2)	4		5	-3		1
Backgrounds:		$\delta(f_i)$	$\delta(A_i)$		$\delta(f_i)$	$\delta(A_i)$
Aluminum (<i>b</i> 1)	-37	1	2	-38	1	2
Neutrals (b_3)	0.5	< 1	< 1	0.5	< 1	< 1
Inelastic (b_4)	0.6	< 1	< 1	0.6	< 1	< 1

	Run 1		Run 2	
All uncertainties in ppb	$\delta(A_{PV})$	fraction	$\delta(A_{PV})$	fraction
Charge Normalization: A _{BCM}	5.1	25%	2.3	17%
Beamline Background: A _{BB}	5.1	25%	1.2	5%
Beam Asymmetries: A _{beam}	4.7	22%	1.2	5%
Rescattering bias: A _{bias}	3.4	11%	3.4	37%
Beam Polarization: P	2.2	5%	< 5%	
Al target windows: A_{b1}		< 5%	1.9	12%
Kinematics: R_{Q^2}		< 5%	1.3	5%
Total of others	3.4	11%	2.5	20%
Combined in quadrature	10.1		5.6	

	Run 1	Run 2
All uncertainties in ppb	$\delta(A_{PV})$	$\delta(A_{PV})$
Charge Normalization: A _{BCM}	5.1	2.3
Beamline Background: A _{BB}	5.1	1.2
Beam Asymmetries: A _{beam}	4.7	1.2
Rescattering bias: A _{bias}	3.4	3.4
Beam Polarization: P	2.2	(1.2)
Al target windows A_{b1}	(1.9)	1.9
Kinematics: R_{Q^2}	(1.2)	1.3
Total of others $< 5\%$, incl ()	3.4	2.5
Combined in quadrature	10.1	5.6

Period	$\Delta A(\text{stat})$	$\Delta A(syst)$	ΔA (total)
Commissioning result: $A_{PV} = -279$	35	31	47
Run 1	15.0	10.1	18.0
Run 2	8.3	5.6	10.0
Precision result:	7.3	5.8	9.3

The *Q_{Weak}* **Experiment:** Main **Detector**

Azimuthal array of Čerenkov detector

- $\,$ 8 fused silica radiators, 2 m long \times 18 cm \times 1.25 cm
- Pb preradiator tiles to suppress low-energy/neutral yield
- 5 inch PMTs with gain of 2000, low dark current
- 800 MHz electron rate per bar, defines counting noise

The *Q_{Weak}* Experiment: Kinematics in Event Mode

Reasons for a tracking system?

- = Determine Q^2 , note: $A_{meas} \propto Q^2 \cdot \left(Q^p_W + Q^2 \cdot B(Q^2)
 ight)$
- Main detector light output and Q² position dependence
- Contributions from inelastic background events

Instrumentation of only two octants

- Horizontal drift chambers for front region (Va Tech)
- Vertical drift chambers for back region (W&M)
- Rotation allows measurements in all eight octants

Track reconstruction

- Straight tracks reconstructed in front and back regions
- Front and back partial tracks bridged through magnetic field

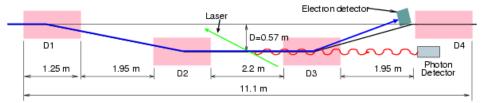
The Q_{Weak} Experiment: Improved Beam Polarimetry

Requirements on beam polarimetry

- Largest experimental uncertainty in Q_{Weak} experiment
- Systematic uncertainty of 1% (on absolute measurements)

Upgrade existing Møller polarimeter $(\vec{e} + \vec{e} \rightarrow e + e)$

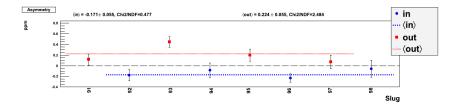
- Scattering off atomic electrons in magnetized iron foil
- Limited to separate, low current runs ($I \approx 1 \, \mu A$)


Construction new Compton polarimeter $(\vec{e} + \vec{\gamma} \rightarrow e + \gamma)$

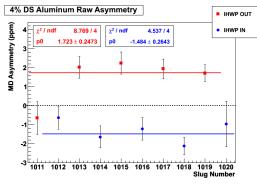
- Compton scattering of electrons on polarized laser beam
- Continuous, non-destructive, high precision measurements

The *Q_{Weak}* Experiment: Improved Beam Polarimetry

Compton polarimeter


- Beam: 150 μA at 1.165 GeV
- Chicane: interaction region 57 cm below straight beam line
- Laser system: 532 nm green laser
 - 10 W CW laser with low-gain cavity
- Photons: PbWO₄ scintillator in integrating mode
- Electrons: Diamond strips with 200 μ m pitch

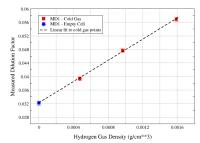
Data Quality: Slow Helicity Reversal


$\lambda/2\text{-plate}$ and Wien filter changes

- = Insertable $\lambda/2$ -plate (IHWP) in injector allows 'analog' flipping helicity frequently
- Wien filter: another way of flipping helicity (several weeks)
- Each 'slug' of 8 hours consists of same helicity conditions

Ancillary Measurements: Aluminum Target Walls

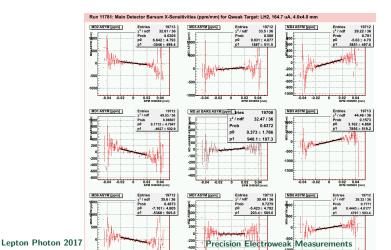
Aluminum asymmetry (preliminary)



 Asymmetry consistent with order of magnitude expected

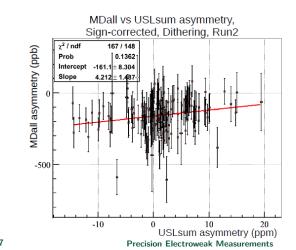
- Asymmetry: few ppm
- Dilution f of 3%
- Correction pprox 20%

Dilution measurement



Helicity-Correlated Beam Properties Are Understood

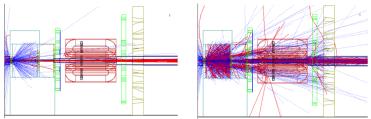
Measured asymmetry depends on beam position, angle, energy


- Well-known and expected effect for PVES experiments
- "Driven" beam to check sensitivities from "natural" jitter

However, Some Beamline Background Correlations Remain

After regression, correlation with background detectors

- Luminosity monitors & spare detector in super-elastic region
- Background asymmetries of up to 20 ppm (that's huge!)

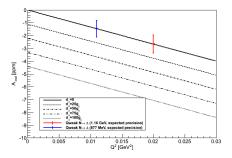


Lepton Photon 2017

Beamline Background Correlations Remain

Hard work by grad students: now understood, under control

- Partially cancels with slow helicity reversal (half-wave plate)
- Likely caused by large asymmetry in small beam halo or tails
- Scattering off the beamline and/or "tungsten plug"



Qualitatively new background for PVES experiments at JLab

- Second regression using asymmetry in background detectors
- Measurements with blocked octants to determine dilution factor $(f_{b_2}^{MD} = 0.19\%)$ Lepton Photon 2017 Precision Electroweak Measurements

Ancillary Measurements: Inelastic Transitions

$N ightarrow \Delta$ asymmetry (projected)

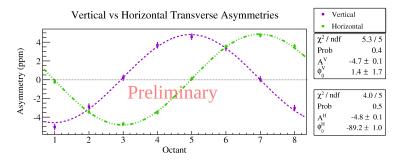
- Expected precision 1 ppm
- $Q^2 = 0.025 \, \text{GeV}^2$

- Expected asymmetry: few ppm
- Dilution f of 0.1%
- Correction pprox 1%

Simulation benchmark (preliminary)

Precision Electroweak Measurements

Ancillary Measurements: Transverse Asymmetry

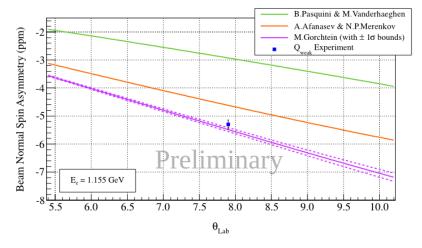

Transverse single spin asymmetries

- Some transverse polarization, slightly broken azimuthal symmetry
- Measure with transversely polarized beam (H or V)
- Parity-conserving T-odd transverse asymmetry of order ppm

$$B_n = \frac{2\Im(T_{1\gamma}^* \cdot T_{2\gamma})}{|T_{1\gamma}|^2}$$

- Access to imaginary part of 2-photon exchange amplitude $T_{2\gamma}$
 - elastic $\vec{e}p$ in H, C, Al at E = 1.165 GeV
 - inelastic $ec{e}p
 ightarrow \Delta$ in H, C, Al at $E=0.877\,{
 m GeV}$ and $1.165\,{
 m GeV}$
 - elastic $\vec{e}e$ in H at E = 0.877 GeV
 - deep inelastic $\vec{e}p$ in H at W = 2.5 GeV
 - pion electro-production in H at $E = 3.3 \,\text{GeV}$

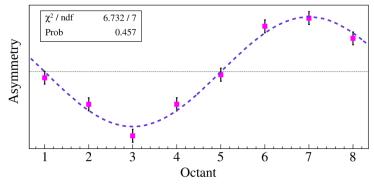
Ancillary Measurements: Transverse Asymmetry on H


- Shown asymmetries not corrected for backgrounds or polarization
- Preliminary transverse asymmetry in *ep* in hydrogen:

 $B_n=-5.35\pm0.07(ext{stat})\pm0.15(ext{syst})\, ext{ppm}$

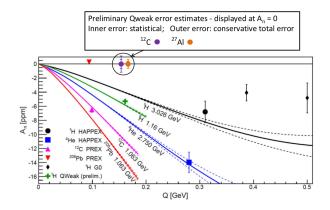
More precise than any other measurement by a factor 5

Ancillary Measurements: Transverse Asymmetry on H


Theoretical interpretation

Precision Electroweak Measurements

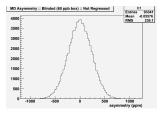
Ancillary Measurements: Transverse Asymmetry on C, Al


Aluminum: non-zero transverse asymmetry (uncorrected data)

- Aluminum target was alloy with 10% contamination
- Needs corrections for quasielastic and inelastic scattering, and for nuclear excited states(?)

Ancillary Measurements: Transverse Asymmetry on C, Al

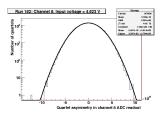
Projected uncertainties for C and Al transverse asymmetries



Theory from Phys. Rev. C77, 044606 (2008)
Pb data from PRL 109, 192501 (2012)

Lepton Photon 2017

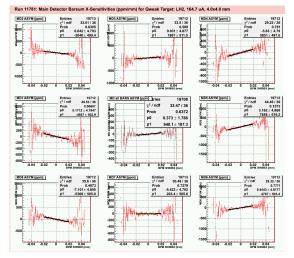
Data Quality: Understanding the Asymmetry Width


Asymmetry width

Measurement

- 240 Hz helicity quartets
 (+ -+ or + +-)
- Uncertainty = RMS/\sqrt{N}
- 200 ppm in 4 milliseconds
- < 1 ppm in 5 minutes</p>

Battery width

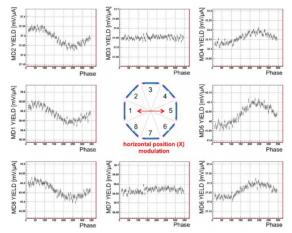

Asymmetry width

- Pure counting statistics pprox 200 ppm
- + detector resolution pprox 90 ppm
- + current monitor pprox 50 ppm
- + target boiling pprox 57 ppm
- = observed width pprox 233 ppm

Data Quality: Helicity-Correlated Beam Properties

Natural beam motion

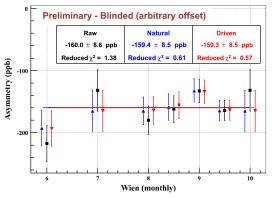
- Measured asymmetry correlated with beam position and angles
- Linear regression: $A_c = \sum_i \frac{\partial A}{\partial x_i} \Delta x_i$ i = x, y, x', y', E


Data Quality: Helicity-Correlated Beam Properties

Natural beam motion

- Measured asymmetry correlated with beam position and angles
- Linear regression: $A_c = \sum_i \frac{\partial A}{\partial x_i} \Delta x_i$ i = x, y, x', y', E

Driven beam motion

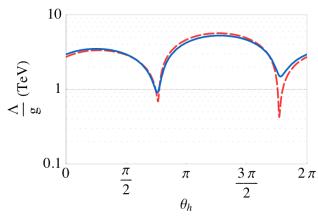

Deliberate motion

Helicity-Correlated Beam Properties Are Understood


Excellent agreement between natural and driven beam motion

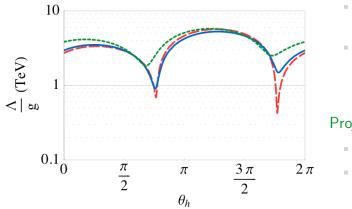
Run2 measured asymmetry

- Figure includes about 50% of total dataset for Q_{Weak} experiment
- No other corrections applied to this data


Lower bound on new physics (95% CL)

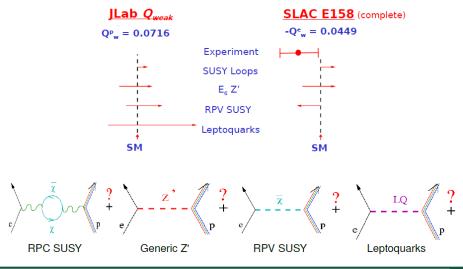
Constraints from

• Atomic PV: $\frac{\Lambda}{g} > 0.4 \ TeV$


Lower bound on new physics (95% CL)

Constraints from

- Atomic PV: $\frac{\Lambda}{g} > 0.4 \ TeV$
- PV electron scattering: $\frac{\Lambda}{g} > 0.9 \ TeV$


Lower bound on new physics (95% CL)

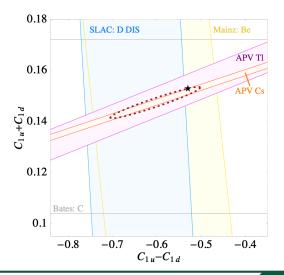
Constraints from

- Atomic PV: $\frac{\Lambda}{g} > 0.4 \ TeV$
- PV electron scattering: $\frac{\Lambda}{g} > 0.9 \ TeV$
- Projection Q_{Weak} = $\frac{\Lambda}{g} > 2 TeV$ = 4% precision

Different experiments sensitive to different extensions

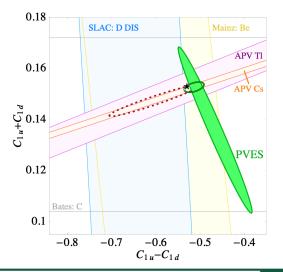
Lepton Photon 2017

Precision Electroweak Measurements


Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge uud

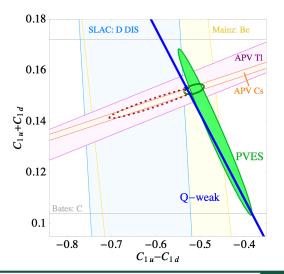
 $Q_W^p = -2(2C_{1u} + C_{1d})$


Early experiments

SLAC and APV

Parity-Violating Electron Scattering: Quark Couplings

- Weak vector charge *uud* $Q^{p}_{W} = -2(2C_{1u} + C_{1d})$
- Early experiments
 - SLAC and APV
- Electron scattering
 - HAPPEx, G0
 - PVA4/Mainz
 - SAMPLE/Bates



Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge *uud* $Q_{W}^{p} = -2(2C_{1u} + C_{1d})$

- Early experiments
 - SLAC and APV
- Electron scattering
 - HAPPEx, G0
 - PVA4/Mainz
 - SAMPLE/Bates

 Q_{Weak} experiment

Precision Electroweak Experiments: JLab 12 GeV

MOLLER Experiment

Source	ΔA_{PV}
Mom. transfer Q^2	0.5%
Beam polarization	0.4%
2 nd order beam	0.4%
Inelastic <i>ep</i>	0.4%
Elastic <i>ep</i>	0.3%

SoLID PV-DIS Experiment

Source	ΔA_{PV}
Beam polarization	0.4%
Rad. corrections	0.3%
Mom. transfer Q^2	0.5%
Inelastic <i>ep</i>	0.2%
Statistics	0.3%

Precision beam polarimetry is crucial to these experiments.

Precision Electroweak Experiments: Polarimetry

Compton Polarimetry

- $ec{e}ec{\gamma}
 ightarrow e\gamma$ (polarized laser)
- Detection $e \; {\rm and}/{\rm or} \; \gamma$
- Only when beam energy above few hundred MeV
- High photon polarization but low asymmetry
- Total systematics $\sim 1\%$
 - laser polarization
 - detector linearity

Møller Polarimetry

- $\vec{e}\vec{e}
 ightarrow ee$ (magnetized Fe)
- Low current because temperature induces demagnetization
- High asymmetry but low target polarization
- Levchuk effect: scattering off internal shell electrons
- Intermittent measurements at different beam conditions
- Total systematics $\sim 1\%$

Atomic Hydrogen Polarimetry

New polarimetry concept¹

- 300 mK cold atomic H
- 8 T solenoid trap
- = $3 \cdot 10^{16} \text{ atoms/cm}^2$
- $3 \cdot 10^{15-17} \text{ atoms/cm}^3$
- 100% polarization of e

Advantages

- High beam currents
- No Levchuk effect
- Non-invasive, continuous

30K

0.3K

beam

Solenoid 8T

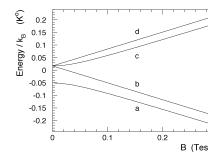
Storage Cell

Precision Electroweak Measurements

Atomic Hydrogen Polarimetry: 100% Polarization of e

Hyperfine Splitting in Magnetic Field

- Energy splitting of $\Delta E = 2\mu B$: $\uparrow / \downarrow = \exp(-\Delta E/kT) \approx 10^{-14}$
- Low energy states with $|s_e s_p\rangle$:


$$\begin{array}{l} |d\rangle = |\uparrow\uparrow\rangle \\ |c\rangle = \cos\theta \left|\uparrow\downarrow\rangle + \sin\theta \left|\downarrow\uparrow\rangle \\ |b\rangle = |\downarrow\downarrow\rangle \end{array}$$

$$|a\rangle = \cos \theta |\downarrow \uparrow \rangle - \sin \theta |\uparrow \downarrow \rangle$$

with sin heta pprox 0.00035

•
$$P_e(\downarrow) \approx 1$$
 with only 10^5 dilution from $|\uparrow\downarrow\rangle$ in $|a\rangle$ at $B = 8$ T

=
$$P_p(\Uparrow) pprox 0.06$$
 because 53% $|a
angle$ and 47% $|b
angle$

Force $\vec{\nabla}(-\vec{\mu} \cdot \vec{B})$ will pull $|a\rangle$ and $|b\rangle$ into field

Atomic Hydrogen Polarimetry: Expected Contaminations

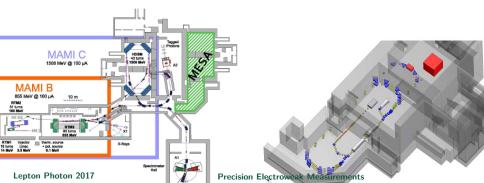
Without beam

- $\,$ Recombined molecular hydrogen suppressed by coating of cell with superfluid He, $\sim 10^{-5}$
- Residual gasses, can be measured with beam to < 0.1%

With 100 $\mu \rm A$ beam

- 497 MHz RF depolarization for 200 GHz $|a\rangle \rightarrow |c\rangle$ transition, tuning of field to avoid resonances, uncertainty $\sim 2 \cdot 10^{-4}$
- = lon-electron contamination: builds up at 20%/s in beam region, cleaning with \vec{E} field of $\sim 1 \,\text{V/cm}$, uncertainty $\sim 10^{-5}$

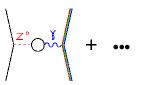
Atomic Hydrogen Polarimetry: Projected Uncertainties


Projected Systematic Uncertainties ΔP_e in Møller polarimetry

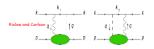
Source	Fe-foil	Hydrogen
Target polarization	0.63%	0.01%
Analyzing power	0.30%	0.10%
Levchuk effect	0.50%	0.00%
Deadtime	0.30%	0.10%
Background	0.30%	0.10%
Other	0.30%	0.00%
Unknown unknowns	0.00%	0.30%(?)
Total	1.0%	0.35%

Atomic Hydrogen Polarimetry: Collaboration with Mainz

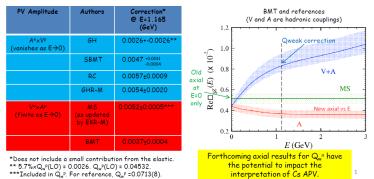
P2 Experiment in Mainz: Weak Charge of the Proton


- "*Q_{Weak}* experiment" with improved statistical precision
- Dedicated 200 MeV accelerator MESA under construction
- Required precision of electron beam polarimetry < 0.5%
- Strong motivation for collaboration on a short timescale (installation in 2017)

Parity-Violating Electron Scattering: Running of Weak Mixing Angle


Running of $\sin^2 \theta_W \left(Q_W^p = 1 - 4 \sin^2 \theta_W \right)$

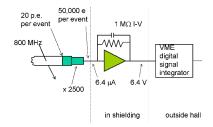
- Higher order loop diagrams
- $\sin^2 \theta_W$ varies with Q^2


yZ Box Corrections near 1.16 GeV

In 2009, Gorchtein and Horowitz showed the vector hadronic contribution to be significant and energy dependent.

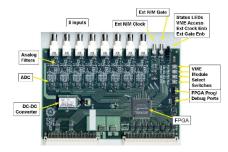
This soon led to more refined calculations with corrections of ~8% and error bars ranging from $\pm 1.1\%$ to $\pm 2.8\%.$

It will probably also spark a refit of the global PVES database used to constrain G_{E}^{s} , G_{M}^{s} , G_{A} .


yZ Box Corrections near 1.16 GeV A Partial Bibliography

PV Amplitude	Authors	Reference
A°×V° (vanishes as E→0)	GН	Gorchtein & Horowitz, PRL 1 02 , 091806 (2009)
	SBMT	Sibirtsev, Blunden, Melnitchouk, andThomas, PRD 82 , 013011 (2010)
	RC	Rislow & Carlson, PRD 83 , 113007 (2011)
	GHR-M	Gorchtein, Horowitz, and Ramsey-Musolf, PRC 84 , 015502 (2011)
V ^e ×A ^p (finite as E→0)	MS	Marciano and Sirlin, PRD 27 , 552 (1983), PRD 29 , 75 (1984)
	EKR-M	Erler, Kurylov, and Ramsey-Musolf, PRD 68 , 016006 (2003)
	BMT	Blunden, Melnitchouk, and Thomas, PRL 107 , 081801 (2011)

The Q_{Weak} Experiment: Main Detector


Low noise electronics

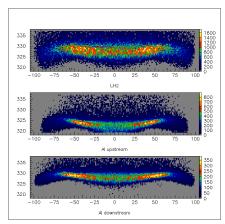
- Event rate: 800 MHz/PMT
- Asymmetry of only 0.2 ppm
- Low noise electronics (TRIUMF)

I-V Preamplifier

18-bit 500 kHz sampling ADC

Precision Electroweak Measurements

The *Q_{Weak}* Experiment: Systematic Uncertainties


Reminder: weak vector charges

- Proton weak charge $Q_W^p pprox -0.072$
- Neutron weak charge $Q_W^n = -1$

Sources of neutron scattering

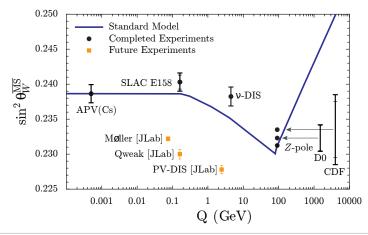
- Al target windows
- Secondary collimator events
- Small number of events, but huge false PV asymmetry

Al target windows

Electroweak Interaction: Running of Weak Mixing Angle

Atomic parity-violation on ¹³³Cs

- Porsev, Beloy, Derevianko¹: Updated calculations in many-body atomic theory
- Experiment: $Q_W(^{133}Cs) = -73.25 \pm 0.29 \pm 0.20$
- Standard Model: $Q_W(^{133}Cs) = -73.16 \pm 0.03$

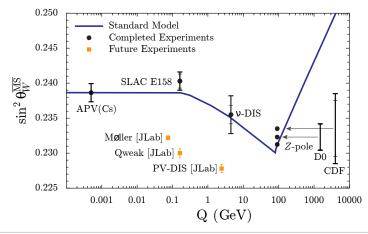

NuTeV anomaly

- Reported 3σ deviation from Standard Model
- Erler, Langacker: strange quark PDFs
- Londergan, Thomas²: charge symmetry violation, $m_u \neq m_d$
- Cloet, Bentz, Thomas³: in-medium modifications to PDFs, isovector EMC-type effect

¹Phys. Rev. Lett. 102 (2009) 181601
 ²Phys. Rev. D67 (2003) 111901
 ³Phys. Lett. B693 (2010) 462-466

NuTeV Nuclear Correction

Isovector EMC effect¹ affects NuTeV point²

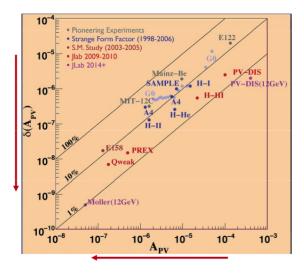

¹I. Cloët, W. Bentz, A. M. Thomas, Phys. Rev. Lett. 102, 252301 (2009) ²W. Bentz, Phys. Lett. B693, 462-466 (2010)

Lepton Photon 2017

Precision Electroweak Measurements

NuTeV Nuclear Correction

Isovector EMC effect¹ affects NuTeV point²



¹I. Cloët, W. Bentz, A. M. Thomas, Phys. Rev. Lett. 102, 252301 (2009) ²W. Bentz, Phys. Lett. B693, 462-466 (2010)

Lepton Photon 2017

Precision Electroweak Measurements

Other Experiments

