Lattice QCD: Flavor Physics and Spectroscopy

Takashi Kaneko (KEK)

XXVIII International Symposium on Lepton Photon Interactions at High Energies, 7 – 11 Aug. 2017 @ SYSU, Guangzhou, China

 $\langle O \rangle = \int [dA] [d\overline{q}] [dq] O \exp [-S_{QCD}]$

control of stat. and sys. uncertainties finite a, L, unphysical $m_u = m_{d'} m_{b'} \cdots$

$$\langle O \rangle = \int [dA] [d\overline{q}] [dq] O \exp [-S_{QCD}]$$

control of stat. and sys. uncertainties finite a, L, unphysical $m_u = m_{d'}, m_{b'}, \cdots$

 $\langle O \rangle = \int [dA] [d\overline{q}] [dq] O \exp [-S_{QCD}]$

control of stat. and sys. uncertainties finite a, L, unphysical $m_u = m_{d'}$, $m_{b'}$, ...

6

control of stat. and sys. uncertainties finite a, L, unphysical $m_u = m_{d'}$, $m_{b'}$, ...

1. Hadron Spectroscopy

interpolating fields w/ given quantum #'s $e.g. O_{\pi} = \overline{u}\gamma_5 d$

$$C_{\alpha\beta}(t) = \left\langle O_{\alpha}(t) O_{\beta}^{\dagger}(0) \right\rangle = \sum_{n} Z_{n\beta}^{*} Z_{n\alpha} \exp\left[-\frac{E_{n}t}{E_{n}}\right], \quad Z_{n\alpha} = \left\langle n \left| O_{\alpha}^{\dagger} \right| 0 \right\rangle$$

3

interpolating fields w/ given quantum #'s e.g. $O_{\pi} = \overline{u}\gamma_5 d$ $C_{\alpha\beta}(t) = \left\langle O_{\alpha}(t) O_{\beta}^{\dagger}(0) \right\rangle = \sum_n Z_{n\beta}^* Z_{n\alpha} \exp\left[-\frac{E_n t}{2}\right], \quad Z_{n\alpha} = \left\langle n \left| O_{\alpha}^{\dagger} \right| 0 \right\rangle$

interpolating fields w/ given quantum #'s e.g. $O_{\pi} = \overline{u}\gamma_5 d$ $C_{\alpha\beta}(t) = \left\langle O_{\alpha}(t) O_{\beta}^{\dagger}(0) \right\rangle = \sum_n Z_{n\beta}^* Z_{n\alpha} \exp\left[-\frac{E_n t}{2}\right], \quad Z_{n\alpha} = \left\langle n \left| O_{\alpha}^{\dagger} \right| 0 \right\rangle$

impressive agreement w/ expr't / guide for "yet un-observed"

interpolating fields w/ given quantum #'s e.g. $O_{\pi} = \overline{u}\gamma_5 d$ $C_{\alpha\beta}(t) = \left\langle O_{\alpha}(t) O_{\beta}^{\dagger}(0) \right\rangle = \sum_n Z_{n\beta}^* Z_{n\alpha} \exp\left[-E_n t\right], \quad Z_{n\alpha} = \left\langle n \left| O_{\alpha}^{\dagger} \right| 0 \right\rangle$

impressive agreement w/ expr't / guide for "yet un-observed"

interpolating fields w/ given quantum #'s e.g. $O_{\pi} = \overline{u}\gamma_5 d$ $C_{\alpha\beta}(t) = \left\langle O_{\alpha}(t) O_{\beta}^{\dagger}(0) \right\rangle = \sum_n Z_{n\beta}^* Z_{n\alpha} \exp\left[-E_n t\right], \quad Z_{n\alpha} = \left\langle n \left| O_{\alpha}^{\dagger} \right| 0 \right\rangle$

impressive agreement w/ expr't / guide for "yet un-observed"

isospin splittings

- % level needed \Rightarrow kaon, g-2 HVP
- $m_u \neq m_d$: straightforward
- EM corrections
 ⇔ QED on finite/periodic lattice
 - boundary condition / photon mass, field \Rightarrow Patella @ Lattice'16

isospin splittings

- ‰ level needed \Rightarrow kaon, g-2 HVP
- $m_u \neq m_d$: straightforward
- EM corrections
 ⇔ QED on finite/periodic lattice

• boundary condition / photon mass, field \Rightarrow Patella @ Lattice'16

isospin splittings

- ‰ level needed \Rightarrow kaon, g-2 HVP
- $m_u \neq m_d$: straightforward
- EM corrections
 ⇔ QED on finite/periodic lattice

• boundary condition / photon mass, field \Rightarrow Patella @ Lattice'16

1.4 ‰ *n*-*p* splitting reproduced w/ different QED implementations

• finite V multi-particle state \neq V= ∞ in/out state

 $_{V}\left\langle A\left(p\right)B\left(p'\right)|X\left(q\right)\right\rangle \in\mathbb{R}$

strong phase lost! Miani-Testa '90

• finite V multi-particle state \neq V= ∞ in/out state

 $_{V}\left\langle A\left(p\right)B\left(p'\right)|X\left(q\right)\right\rangle \in\mathbb{R}$

strong phase lost! Miani-Testa '90

Iattice correlator does contain information on interaction!

$$\left\langle O_{AB}\left(t\right)O_{AB}^{\dagger}\left(0
ight)
ight
angle$$

$$=\sum_{n} Z_{n}^{AB} \exp\left[-E_{n}t\right]$$

• finite V multi-particle state \neq V= ∞ in/out state

 $_{V}\left\langle A\left(p\right)B\left(p'\right)|X\left(q\right)\right\rangle \in\mathbb{R}$

strong phase lost! Miani-Testa '90

Iattice correlator does contain information on interaction!

$$\left\langle O_{AB}\left(t\right)O_{AB}^{\dagger}\left(0
ight)
ight
angle$$

$$=\sum_{n} Z_{n}^{AB} \exp\left[-E_{n}t\right]$$

$$E_{AB}(p_A, p_B)$$

$$\neq E_A(p_A) + E_A(p_B)$$

scattering matrix encoded in finite V energies ⇒ Lüscher '86, '91

• finite V multi-particle state \neq V= ∞ in/out state

 $_{V}\left\langle A\left(p\right)B\left(p'\right)|X\left(q\right)\right\rangle \in\mathbb{R}$

strong phase lost! Miani-Testa '90

Iattice correlator does contain information on interaction!

$$\left\langle O_{AB}\left(t\right)O_{AB}^{\dagger}\left(0\right)\right\rangle$$

$$=\sum_{n} Z_{n}^{AB} \exp\left[-E_{n}t\right]$$

 $O_{AB}(t) = O_A(0,t)O_B(\mathbf{r},t)$ potential \Rightarrow Ishii et al. '07, HALQCD '12

$$E_{AB}(p_A, p_B)$$

$$\neq E_A(p_A) + E_A(p_B)$$

scattering matrix encoded in finite V energies ⇒ Lüscher '86, '91

$\pi\pi$, ρ and σ

Lüscher method: successfully applied to 1 channel problems

$\pi\pi$, ρ and σ

Lüscher method: successfully applied to 1 channel problems

I=1 $\pi\pi$, *e.g.* RQCD 1512.08678 New!

I=0 *ππ*, HS 1607.05900 New!

$\pi\pi$, ρ and σ

Lüscher method: successfully applied to 1 channel problems

 $I=1 \pi \pi$, e.g. RQCD 1512.08678 New! $I=0 \pi \pi$, HS 1607.05900 New!

HALQCD method : on-going test on p (Kawai @ Lat'17)

heavy quarkonia / exotics

can decay to various final states \Rightarrow rigorous treatment is still challenging

> see also, Francis et al., 1607.05214 New! "strongly-stable" *udbb*

X(4140)e.g. Padmanath, ··· '15 Lüsch • 2-H

 $Z_b (10650)^+$ $Z_b (10610)^+$

X (3915) e.g. Lang,... '15

e.g. Prelovsek,… '13

Fermilab/MILC '14

X(3872)

 $\Psi(3770)$

e.g. Lang, … '15

 $B\overline{B}$

 $\overline{D}D^* \bullet \bullet \cdot$

Lüscher method

- 2-body coupled channel: OK
- \geq 3-body : active development
- active studies above a few thresholds *e.g.* Lang et al. '15
 - unobserved *M*=3966(20), *Γ*=67(18) MeV
 ⇔ Belle 1704.01872

"alternative $\chi_{c0}(2P)$ candidate"

heavy quarkonia / exotics

 $Z_{b} (10650)^{+}$ $Z_{b} (10610)^{+}$

e.g. Padmanath,… '15

e.g. Prelovsek,… '13

·· '15

Fermilab/MILC '14

X(5568)

X (3915)

X (38/2

 $\Psi(3770)$

e.g. Lang,... '15

 $B\overline{B}$

DL

can decay to various final states \Rightarrow rigorous treatment is still challenging

> see also, Francis et al., 1607.05214 New! "strongly-stable" *udbb*

Lüscher method

- 2-body coupled channel: OK
- \geq 3-body : active development
- active studies above a few thresholds e.g. Lang et al. '15
 - unobserved *M*=3966(20), *Γ*=67(18) MeV
 ⇔ Belle 1704.01872

"alternative $\chi_{c0}(2P)$ candidate"

- $\Gamma = 22(8)$ MeV, J^P unknown
- in $B_s \pi^+$ D0'16, not LHCb'16
- if 4 flavors $\overline{b}s\overline{d}u \oplus J^P = 0^+$

 \Rightarrow decay only into $B_{_S}\pi^+$

- Γ = 22(8) MeV, J^P unknown
- in $B_s \pi^+$ D0'16, not LHCb'16
- if 4 flavors $\overline{b}s\overline{d}u \oplus J^P = 0^+$

 \Rightarrow decay only into $B_{_S}\pi^+$

Lang et al. 1607.03185 New!

- map out finite V energies
- M, Γ , Lüscher formula
 - \Rightarrow energy not found
- deep BK bound state

- Γ = 22(8) MeV, J^P unknown
- in $B_s \pi^+$ D0'16, not LHCb'16
- if 4 flavors $\overline{b}s\overline{d}u \oplus J^P = 0^+$

 \Rightarrow decay only into $B_{_S}\pi^+$

Lang et al. 1607.03185 New!

- map out finite V energies
- M, Γ , Lüscher formula

 \Rightarrow energy not found

• deep BK bound state

- Γ = 22(8) MeV, J^P unknown
- in $B_s \pi^+$ D0'16, not LHCb'16
- if 4 flavors $\overline{b}s\overline{d}u \oplus J^P = 0^+$

 \Rightarrow decay only into $B_{_S}\pi^+$

Lang et al. 1607.03185 New!

- map out finite V energies
- M, Γ , Lüscher formula

 \Rightarrow energy not found

• deep BK bound state

do not support the existence of X(5568) w/ $J^P=0^+$

 $Z_{c}^{+}(3900)$

- $M_{\rm Zc} \sim M(\overline{D}D^*)$ + 20 MeV
- Γ = 40(8) MeV
- $Y(4260) \rightarrow \pi \{J/\psi\pi, \overline{D}D^*\}$ BESIII '13, Belle '13, Xiao et al. '13
- charged, 4 quarks $\overline{c}cu\overline{d}$

•
$$M_{\rm Zc} \sim M(\overline{D}D^*)$$
 + 20 MeV

- Γ = 40(8) MeV
- $Y(4260) \rightarrow \pi \{J/\psi\pi, \overline{D}D^*\}$ BESIII '13, Belle '13, Xiao et al. '13
- charged, 4 quarks $\overline{c}cu\overline{d}$

Prelovsek et al. '13, '15 Cheng et al. '14

- Lüscher approach
- map out finite V energies

 $Z_c^+(3900)$

- $M_{\rm Zc} \sim M(\overline{D}D^*)$ + 20 MeV
- Γ = 40(8) MeV
- $Y(4260) \rightarrow \pi \{J/\psi\pi, \overline{D}D^*\}$ BESIII '13, Belle '13, Xiao et al. '13
- charged, 4 quarks $\overline{c}cu\overline{d}$

- Prelovsek et al. '13, '15 Cheng et al. '14
- Lüscher approach
- map out finite V energies

no extra energy level ~ Zc(3900), kinematical origin?

$Z_c^+(3900)$

HALQCD 1602.03465 New!

- HALQCD method
- weak couplings among

 $J/\Psi \pi - J/\Psi \pi \quad \rho \eta_c - \rho \eta_c$ $\overline{D}D^* - \overline{D}D^* \quad J/\Psi \pi - \rho \eta_c$

strong \Rightarrow peaks in J/ $\psi\pi$, DD* $\overline{D}D^* - J/\Psi\pi \quad \overline{D}D^* - \rho\eta_c$
$Z_c^+(3900)$

HALQCD 1602.03465 New!

- HALQCD method
- weak couplings among $J/\Psi \pi - J/\Psi \pi \quad \rho \eta_c - \rho \eta_c$ $\overline{D}D^* - \overline{D}D^* \quad J/\Psi \pi - \rho \eta_c$

strong \Rightarrow peaks in J/ $\psi\pi$, DD* $\overline{D}D^* - J/\Psi\pi \quad \overline{D}D^* - \rho\eta_c$

$Z_c^+(3900)$

HALQCD 1602.03465 New!

- HALQCD method
- weak couplings among $J/\Psi \pi - J/\Psi \pi \quad \rho \eta_c - \rho \eta_c$ $\overline{D}D^* - \overline{D}D^* \quad J/\Psi \pi - \rho \eta_c$

strong \Rightarrow peaks in J/ $\psi\pi$, DD* $\overline{D}D^* - J/\Psi\pi \quad \overline{D}D^* - \rho\eta_c$

• no S-matrix pole $\sim Z_c^+$

$Z_c^+(3900)$

HALQCD 1602.03465 New!

- HALQCD method
- weak couplings among $J/\Psi \pi - J/\Psi \pi \quad \rho \eta_c - \rho \eta_c$ $\overline{D}D^* - \overline{D}D^* \quad J/\Psi \pi - \rho \eta_c$

strong \Rightarrow peaks in J/ $\psi\pi$, DD* $\overline{D}D^* - J/\Psi\pi \quad \overline{D}D^* - \rho\eta_c$

• no S-matrix pole $\sim Z_c^{+}$

suggesting Zc(3900), as a threshold cusp need physical M_{π} simulation

summary on spectroscopy

- spectrum below thresholds
 - fully realistic simulations, impressive agreement w/ expr't
- finer structure
- QED on the lattice, % isospin splittings becoming accessible
- heavy quarkonia / exotics
 - framework ready for coupled 2-body channels
 - shed light on states above a few thresholds
 - simulations are still unphysical set-up, single a, large M_{π}
 - states above more thresholds technically challenging
 - general framework for 3-body under active construction

2. Flavor Physics

kaon physics

"gold-plated" : w/o initial/final state interaction : 0.3-1.3%

kaon physics

"gold-plated" : w/o initial/final state interaction : 0.3-1.3%

Moulson @ CKM'16

kaon physics

"gold-plated" : w/o initial/final state interaction : 0.3-1.3%

Moulson @ CKM'16

 \Rightarrow isospin corrections / hadronic decays

IR singularity!

Carrasco et al. '15

 $\Delta [\Gamma_{Kl2} / \Gamma_{\pi l2}] = -0.0137 (13) \iff -0.0112 (21) (ChPT)$

higher orders involve unknown LECs

 $\Delta [\Gamma_{Kl2} / \Gamma_{\pi l2}] = -0.0137(13) \iff -0.0112(21) (ChPT)$

higher orders involve unknown LECs

systematically improvable / application to semileptonic decays

 $K \rightarrow \pi \pi$

 $K \rightarrow \pi \pi$

RBC/UKQCD '15

 $re[\varepsilon'/\varepsilon] \times 10^{4} = 16.6(2.3) \text{ (ex)}$ $\Leftrightarrow 1.4(5.2)(4.4) \text{ (LQCD)}$

 $im[A_0] \times 10^{11} = -1.9(1.2)(1.1) \text{GeV}$ $\Leftrightarrow -6.7(5.6) \text{ (Ishizuka et al. '15)}$

 $K \rightarrow \pi \pi$

 $K \rightarrow \pi \pi$

 $K \rightarrow \pi \pi$

 \Rightarrow significant reduction in a few years (?)

 $2\mathcal{H}_{w}$ insertions \Rightarrow long distance ε_{K} ; $K \rightarrow \pi v v$, $\pi ll \ RBC/UKQCD '17$

"relativistic QCD action"

- $m_c \ll a^{-1} \lesssim m_b \Rightarrow m_Q \ll m_b$
- good for charm
- bottom needs inter-/ extra-polation to m_b

[GeV²

"relativistic QCD action"

- $m_c \ll a^{-1} \leq m_b \Rightarrow m_O \ll m_b$
- good for charm
- bottom needs inter-/ extra-polation to m_{h}

EFT-based (HQET, NRQCD)

- directly at m_{cl} m_{bl}
 - \Rightarrow recent FFs, B_P 's
- need matching to QCD, often perturbative

[GeV

"relativistic QCD action"

- $m_c \ll a^{-1} \leq m_b \Rightarrow m_O \ll m_b$
- good for charm
- bottom needs inter-/ extra-polation to m_{h}

 $\Rightarrow @ m_h \text{ in 5-10 yrs(?)}$

EFT-based (HQET, NRQCD)

- directly at m_{cl} m_{bl}
 - \Rightarrow recent FFs, B_{p} 's
- need matching to QCD, often perturbative

Flavor Lattice Averaging Group (FLAG) 1607.00299

+ RBC/UKQCD 1701.02644 New! + ETM 1603.04306 New!

Flavor Lattice Averaging Group (FLAG) 1607.00299

• $f_{D(s)}$: fully controlled, $\Delta f_{D(s)} \sim 0.6\% \iff \Delta \Gamma/2 \sim 2\%$ (hfag '16)

Flavor Lattice Averaging Group (FLAG) 1607.00299

• $f_{D(s)}$: fully controlled, $\Delta f_{D(s)} \sim 0.6\% \Leftrightarrow \Delta \Gamma/2 \sim 2\%$ (HFAG '16) • $f_{B(s)}$: $\Delta f_{B(s)} \leq 2\% \Leftrightarrow \Delta BR/2 \sim 3\%$ (Belle II, 50 ab⁻¹)

Flavor Lattice Averaging Group (FLAG) 1607.00299

- $f_{D(s)}$: fully controlled, $\Delta f_{D(s)} \sim 0.6\% \iff \Delta \Gamma/2 \sim 2\%$ (hfag '16)
- $f_{B(s)}$: $\Delta f_{B(s)} \leq 2\% \iff \Delta BR/2 \sim 3\%$ (Belle II, 50 ab⁻¹)
- competitive to expr't / isospin corr.s becoming relevant

semileptonic decays

$B \rightarrow \pi l v$: new analysis by FLAG '16

semileptonic decays

$B \rightarrow \pi l v$: new analysis by FLAG '16

• expect new studies *e.g.* $B \rightarrow \pi l v$ JLQCD, FNAL/MILC @ Lat'17

- BSM, rare decays : *e.g.* $B \rightarrow \pi f_T$ FNAL/MILC 1507.01618
- $B \rightarrow D^*$ @ nonzero recoil $(d\Gamma/dw \propto (w^2-1)^{1/2})$ (cf. FNAL/MILC @ Lat'17)

semileptonic decays

$B \rightarrow \pi l v$: new analysis by FLAG '16

• expect new studies $e.g. B \rightarrow \pi l v$ JLQCD, FNAL/MILC @ Law =

- BSM, rare decays : *e.g.* $B \rightarrow \pi f_T$ FNAL/ in a few years ...
- $B \rightarrow D^*$ @ nonzero recoil $(d\Gamma/dw \propto (w^2 1)^{1/2})$ (cf. FNAL/MILC @ Lat'17)

exclusive vs inclusive

other excl. modes may help / inclusive decays on the lattice?

non "conventional" modes

RBC/UKQCD 1501.05373

HPQCD 1703.09728 New!

non "conventional" modes

RBC/UKQCD 1501.05373

HPQCD 1703.09728 New!

- statistics + systematics : equally or better controlled
- key = feasibility of precision experiments: σ , BGs, ν

baryon decays

semileptonic decays provide independent determination of $|V_{aa'}|$

- Detmold et al. '15: $\Lambda_b \rightarrow plv, \Lambda_c lv \Rightarrow |\mathbf{V}_{cb}|/|\mathbf{V}_{ub}|$
- Meinel 1611.09696 New!: $\Lambda_c \rightarrow \Lambda l v \Rightarrow |\mathbf{V}_{cs}|$

baryon decays

semileptonic decays provide independent determination of $|V_{aa'}|$

- Detmold et al. '15: $\Lambda_b \rightarrow plv, \Lambda_c lv \Rightarrow |\mathbf{V}_{cb}|/|\mathbf{V}_{ub}|$
- Meinel 1611.09696 New!: $\Lambda_c \rightarrow \Lambda l v \Rightarrow |V_{cs}|$

 $\Lambda_b \rightarrow \Lambda ll$ rare decays

• FFs \Rightarrow dBR/dq² and angular observables

Detmold-Meinel 1602.01399 New!

baryon decays

21

semileptonic decays provide independent determination of $|V_{aa'}|$

- Detmold et al. '15: $\Lambda_b \rightarrow plv, \Lambda_c lv \Rightarrow |\mathbf{V}_{cb}|/|\mathbf{V}_{ub}|$
- Meinel 1611.09696 New!: $\Lambda_c \rightarrow \Lambda l v \Rightarrow |\mathbf{V}_{cs}|$

baryon decays

semileptonic decays provide independent determination of $|V_{aa'}|$

- Detmold et al. '15: $\Lambda_b \rightarrow plv, \Lambda_c lv \Rightarrow |\mathbf{V}_{cb}|/|\mathbf{V}_{ub}|$
- Meinel 1611.09696 New!: $\Lambda_c \rightarrow \Lambda l v \Rightarrow |\mathbf{V}_{cs}|$

 \Rightarrow systematics to be checked, possible in relatively short term

D, B strong decays : framework under development (long term)

D, B strong decays : framework under development (long term) Hashimoto 1703.01881 New! $|\mathcal{M}|^2 = |V_{\perp}|^2 G_r^2 M_r l^{\mu\nu} W \iff T = i \int d^4 x e^{-iqx} \langle B | T [J^{\dagger}(x) J(0)] B \rangle$

$$J_{\mu\nu} = V_{qb} | G_F M_B l V_{\mu\nu} \Leftrightarrow I_{\mu\nu} = l J d x \ell \int |I [J_{\mu}(x) J_{\nu}(0)] | D$$

hadronic tensor $W = -\pi^{-1} \operatorname{im} |T|$

forward scattering ME

D, B strong decays : framework under development (long term) Hashimoto 1703.01881 New! $\left|\mathcal{M}\right|^{2} = \left|V_{qb}\right|^{2} G_{F}^{2} M_{B} l^{\mu\nu} W_{\mu\nu} \iff T_{\mu\nu} = i \int d^{4} x \, e^{-iqx} \left\langle B \left| T \left[J_{\mu}^{\dagger} \left(x \right) J_{\nu} \left(0 \right) \right] \right| B \right\rangle$ hadronic tensor $W = -\pi^{-1} \operatorname{im}[T]$ forward scattering ME μ=ν=0 exploratory $\exists \bullet B_s \rightarrow X_c lv @ q^2 = 0$ **q**²=(0~3) "(0) [GeV⁻¹ $(2\pi/La)^{2}$ _attice • marginal agreement w/ O(1/M, α_s^0) HQE • $q^2 \neq 0$, $B \rightarrow X_c$, X_u $\omega = M_{B} - q^{0} \left[\text{GeV} \right]$ 0.5

LQCD @ unphysical kinematics

 $v \cdot q > (v \cdot q)_{\max}$

contour integral using expr'tal data $\left(v \cdot q > \sqrt{q^2}\right)$ and pQCD $\left(v \cdot q \le \sqrt{q^2}\right)$

$$T(v \cdot q) = \frac{1}{\pi} \int_{-\infty}^{(v \cdot q)_{\max}} d(v \cdot q') \frac{\operatorname{im} \left[T(v \cdot q)\right]}{v \cdot q' - v \cdot q}$$

a key = contour integral under BGs and experimental cuts

see also Hansen, Meyer, Robaina 1704.08993 New!

B meson mixing

FNAL/MILC 1602.03560 New!

• x2-3 improvement: more realistic (stat., a^{-1} , M_{π}), renorm.

B meson mixing

FNAL/MILC 1602.03560 New!

- x2-3 improvement: more realistic (stat., a^{-1} , M_{π}), renorm.
- 2σ tension in $\Delta M_{d'} \Delta M_{d'} / \Delta M_s \Rightarrow$ independent calculations?

B meson mixing

FNAL/MILC 1602.03560 New!

- x2-3 improvement: more realistic (stat., a^{-1} , M_{π}), renorm.
- 2σ tension in $\Delta M_{d'} \Delta M_{d'} / \Delta M_s \Rightarrow$ independent calculations?
- BSM and D-mixing MEs available FNAL/MILC 1706.04622 New!

muon g-2: HVP

- $R(e^+e^- \rightarrow hadrons) \Rightarrow \Delta a_{\mu}^{\text{HVP}} \sim 0.6\%$
- purely theoretical estimate?

muon g-2: HVP

- $R(e^+e^- \rightarrow hadrons) \Rightarrow \Delta a_{\mu}^{\text{HVP}} \sim 0.6\%$
- purely theoretical estimate?

muon g-2: HVP

- $R(e^+e^- \rightarrow hadrons) \Rightarrow \Delta a_{\mu}^{\text{HVP}} \sim 0.6\%$
- purely theoretical estimate?

new results to control

- stat. error
- $a \neq 0$, $V \neq \infty$, m_q
- isospin
- charm

(also papers/talks by ETM, PACS, Golterman et al.)

- $a \neq 0$, $V \neq \infty$, m_a
- isospin

• charm

(also papers/talks by ETM, PACS, Golterman et al.)

achieving 1 - 2% accuracy

combined w/ expr't data

- $R(e^+e^- \rightarrow hadrons) \Rightarrow \Delta a_{\mu}^{\text{HVP}} \sim 0.6\%$
- purely theoretical estimate?

muon g-2: LbL

- 4 point function
- model estimate $a_{\mu}^{\text{LbL}} = 10.5(2.6) \times 10^{-10}$
- dominant contributions in QCD in progress

muon g-2: LbL

- 4 point function
- model estimate $a_{\mu}^{\text{LbL}} = 10.5(2.6) \times 10^{-10}$
- dominant contributions in QCD in progress

Gerardin et al. 1607.08174 New!

Н

μ

RBC/UKQCD 1610.04603 New!

muon g-2: LbL

- 4 point function
- model estimate $a_{\mu}^{\text{LbL}} = 10.5(2.6) \times 10^{-10}$
- dominant contributions in QCD in progress

Gerardin et al. 1607.08174 New!

Н

μ

RBC/UKQCD 1610.04603 New!

 $a_{\mu}^{\text{LbL}} = 6.50(0.83)_{\text{stat}} \times 10^{-10}$

good consistency / systematically improvable

summary

- substantial progress for the search of new physics in collaboration with flavor factories (Belle II, LHCb, BESIII, …)
- "gold-plated" quantities: calculated with fully controlled errors expecting more studies on semileptonic, rare decays, mixing
- continuous efforts for $K \rightarrow \pi \pi$ framework under active development for D (and B)
- new ideas for inclusive decays
 more R&D both in theory and experiment sides

Backup slides

isospin splittings

isospin splittings

• $m_u^{} \neq m_d^{}$: straightforward

‰ level needed

isospin splittings

• $m_u \neq m_d$: straightforward

% level needed

² ⁴ MeV ⁴ MeV ⁴ MeV ⁴ Physical point ² MeV ¹ MeV ¹ Inverse β decay region helium stars; inverse β decays ⁴

- EM corrections
 - ⇔ QED on finite/periodic lattice
 - boundary condition (QED_c)
 - photon mass (QCD_m)
 - photon field ($QED_{\{TL,L,SF\}}$)
 - \Rightarrow Patella @ Lattice'16

C boundary condition: Polley '93

EM correction

finite volume effects on M_{K0} and M_{K0}^2 - M_{K+}^2

BMW, 1406.4088

kaon (semi)leptonic decays

- precision frontier: $\Delta MEs \sim 0.3\% \Leftrightarrow \Delta(BR,\tau,SU(2)) \sim 0.2-0.6\%$
- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 1 = -5(5) \times 10^{-4} \implies \text{NP} @ O(10) \text{ TeV}$
- FF shape (ETM'16, JLQCD'17) / isospin correction (next)

FF shape

slopes of $K \rightarrow \pi l v$ FFs

Λ_b decays

Hashimoto @ Lattice '17

Decay amplitude: $|\mathcal{M}|^2 = |V_{aQ}|^2 G_F^2 M_B l^{\mu\nu} W_{\mu\nu}$ (function of $v \cdot q$ and q^2) Structure function: $W_{\mu\nu} = \sum_{\nu} (2\pi)^3 \delta^4 (p_B - q - p_X) \frac{1}{2M_B} \langle B(p_B) | J^{\dagger}_{\mu}(0) | X \rangle \langle X | J_{\nu}(0) | B(p_B) \rangle$ $\int_{i}^{L} Im T_{i} = W_{i}$ v•q $T(v \cdot q) = \frac{1}{\pi} \int_{-\infty}^{(v \cdot q)_{\max}} d(v \cdot q') \frac{\mathrm{Im}T(v \cdot q')}{v \cdot q' - v \cdot q}$ expr't (unphysical cut) including $\frac{1}{2M_B}(M_B^2 + q^2 - m_X^2)$ $\frac{1}{2M_B}((2M_B + M_X)^2 - q^2 - M_B^2)$ $|\mathbf{V}_{cb}|^2$ calculable on the lattice in the unphysical kinematical regime Matrix element: $T_{\mu\nu} = i \int d^4x \, e^{-iqx} \frac{1}{2M_B} \langle B | T\{J^{\dagger}_{\mu}(x) J_{\nu}(0)\} B \rangle$ June 21, 2017 S. Hashimoto (KEK/SOKENDAI) Page 7