Soft QCD Measurements at LHC

Marek Taševský

Institute of Physics, Academy of sciences, Prague, Czech Republic
On behalf of the LHC experiments
(ALICE, ATLAS, CMS, LHCb, LHCf, TOTEM)

- \triangleright characterized by a soft scale (low p_T)
- > applied to describe
- the part of the scattering that dominates at soft scale

立國

- hadronization
- > not uniform description, variability in modeling

Measurements

Soft scale → processes with large cross sections:

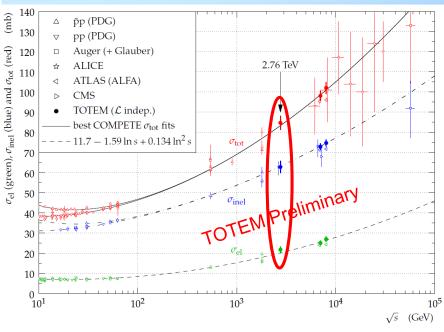
- ☐ Inclusive cross sections
- Inclusive & Identified particle spectra
- Underlying event
- Particle correlations
- ☐ Similarities between pp / pPb / PbPb

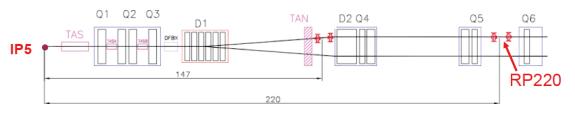
Phenomenology

Multi-parton interactions (MPI)
Colour coherence / reconnection
Hadronization (line, ropes, helix)
Hydrodynamics / Gluon saturation

Very interesting links between

so different fields

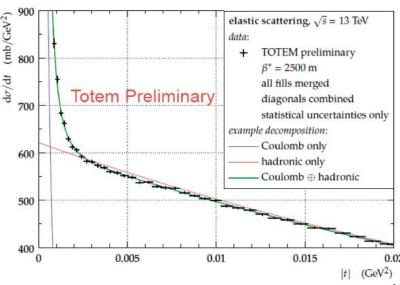

Heavy ions


rays

Cosmic

Proton-

Inclusive (total & elastics) pp cross-sections



TOTEM, ALFA(ATLAS): dedicated forward proton detectors (~220-240 m from interaction point)

- very close to beam (\sim few mm dep. on LHC optics (β^*))
- the larger β^* , the lower t
- dedicated runs: various collision energies, negligible pile-up
 β* range: 11m 2500m → 0.0006 < |t| < 2 GeV²

TOTEM, NPB 899 (2015) 527 ATLAS, PLB 761 (2016) 158

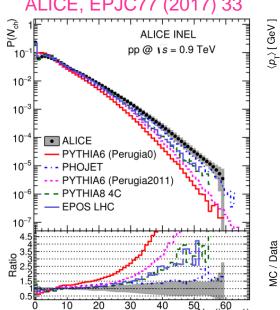
13 TeV: $\beta^* = 2500$ m, $0.0006 < |t| < 0.2 GeV^2$

- Coulomb-Nuclear Interference region → ρ can be measured
- ρ = Real to imaginary part of forward amplitude

TOTEM, EPJC 76 (2016) 661

 σ_{tot} input to model

- amount of pile-up at LHC
- interactions in cosmic rays


Inclusive charged particles in pp (0.9-13 TeV)

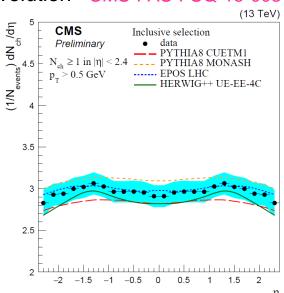
 \sqrt{s} = 0.9, 2.36, 2.76, 7, 8 TeV $|\eta| < 2, p_T > 0.1 \text{ GeV}$

INEL = all (MB) events NSD = Non Single Diffraction

(ALICE, PbPb: PRL 116 (2016) 222302)

ALICE, EPJC77 (2017) 33

 $n_{\rm ch} \ge 2, \; p_{_{\rm T}} > 100 \; {\rm MeV}, \; |\eta| < 2.5$ **ATLAS** $\sqrt{s} = 13 \text{ TeV}$ PYTHIA 8 A2 PYTHIA 8 Monash ····· EPOS LHC ---- QGSJET II-04


ATLAS, EPJC76 (2016) 502

QGSJET: no colour coherence PYTHIA 8: colour reconnection

EPOS: hydrodynamical evolution CMS-PAS-FSQ-15-008

Difficulties of all models to describe larger multiplicities

EPOS overall best description (specialized soft QCD model)

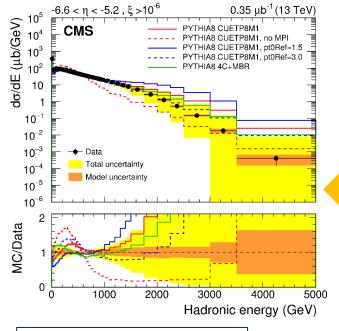
ALICE:

- Measurement of $dN_{ch}/d\eta$ ($\eta=0$)(\sqrt{s}) ~ s^{δ} : $\delta=0.114$ (INEL) $(\delta=0.15 \text{ for central PbPb})$
- Alternatively: normalized q-moments $C_q = \frac{\langle N_{ch}^q \rangle}{\langle N_{ch} \rangle^q}$

For NSD events and three $|\eta|$ intervals:

 C_2 constant over $\sqrt{s} = 0.9-8.0$ range

 C_3 , C_4 , C_5 increase with \sqrt{s} and with increasing $\Delta \eta$ at given \sqrt{s}



In general: all models need to

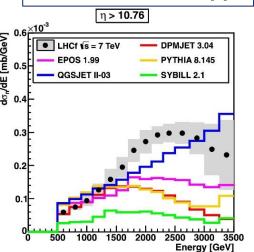
be retuned for every energy

KNO scaling violation

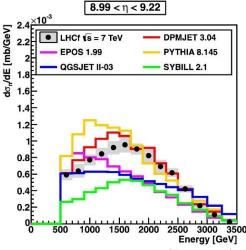
Very forward energy flow

CASTOR (-6.6 < η < -5.2) with EM and HAD calorimeters

- Inclusively EM particles (e^+, e^-, γ)
- Inclusively hadrons (mainly π^+ , π^-)

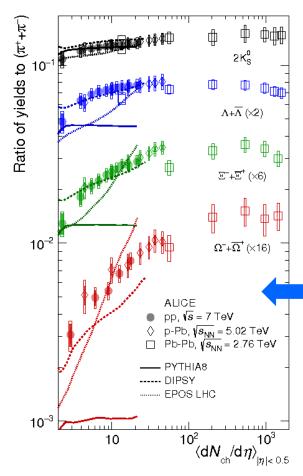

CMS, CERN-EP-2016-313

Measurements suitable to tune:


- 1) Multi-Parton Interaction models in MC generators for pp collisions
 - 2) MC generators modeling HE cosmic ray air showers

 \sqrt{s} – evolution of model parameters is unknown Again: MC generators need to be retuned for every energy point

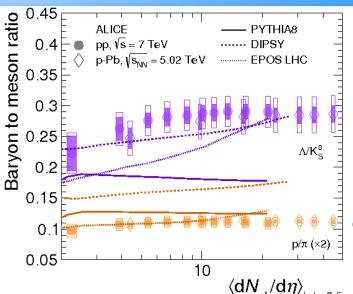
LHCf, PLB 750 (2015) 360


- \Box X_{max} (shower maximum position) modeling: σ_{inel}^{p-air} & forward identified particle spectra
- ☐ hadronic interaction modeling: correlation central-forward particle production (ATLAS vs LHCf or CMS vs TOTEM)

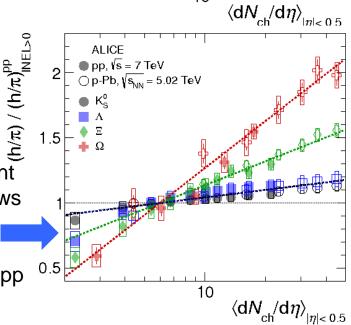
LHCf: calorim. measuring soft neutral (n, π^0, γ) particles - 140m from ATLAS, $|\eta| > 8.4$

PRD 94 (2016) 032007, CERN-EP-2017-051

Identified particle spectra (PbPb, pPb, pp)

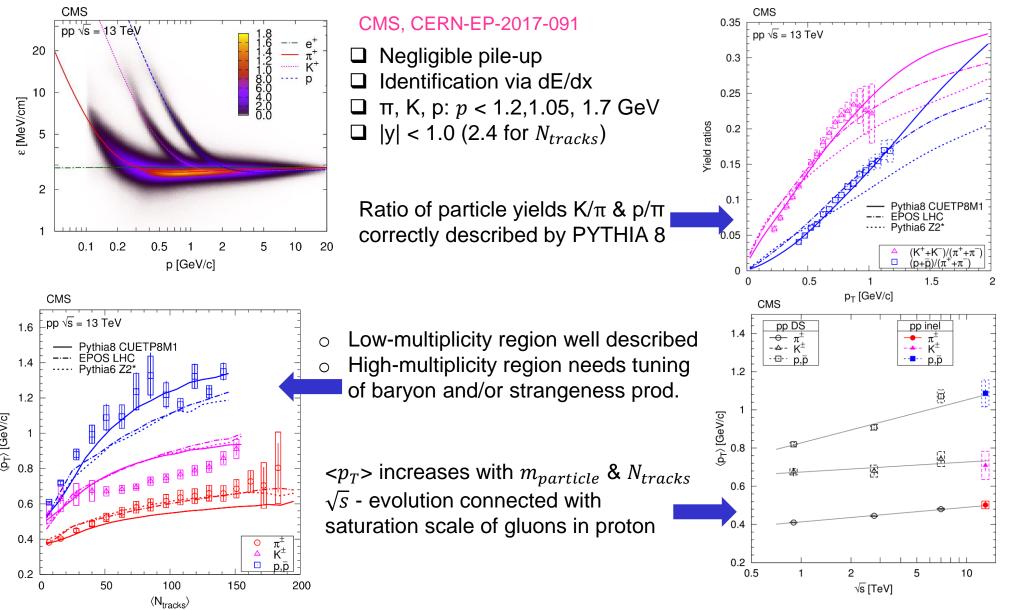

Enhanced strangeness = signature of QGP formation in heavy-ion collisions

- for the 1st time observed in pp
- similar dependence on particle multiplicity in PbPb, pPb, pp

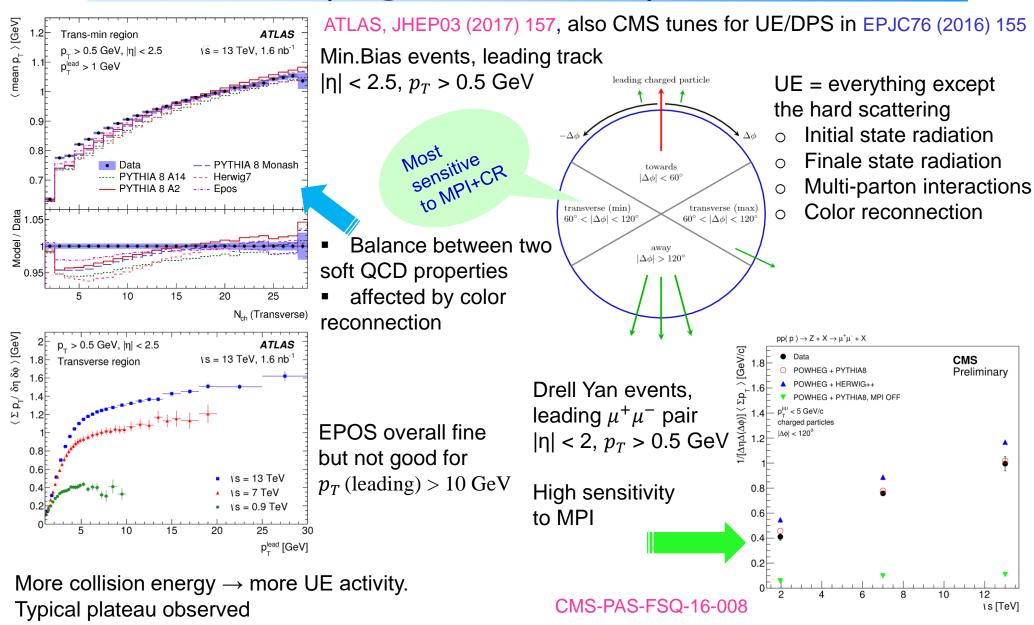

DIPSY closest to data (color ropes)

Strangeness enhancement wrt inclusive sample follows strangeness hierarchy:

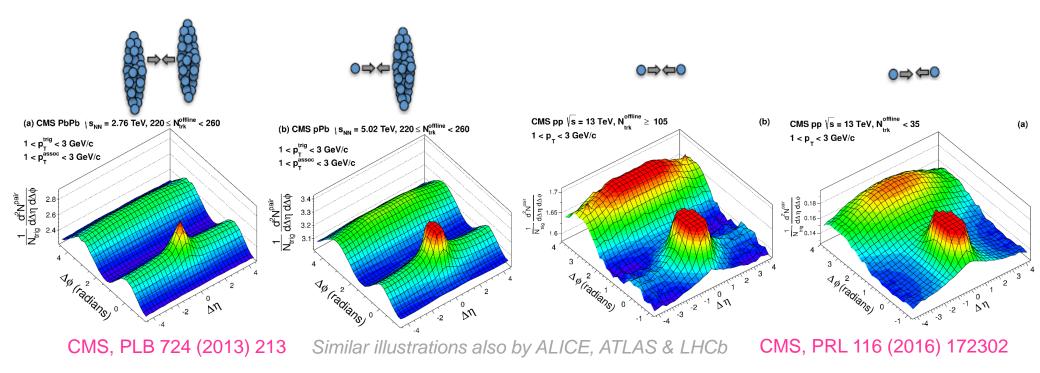
the same for pPb and pp



Details not described by any model

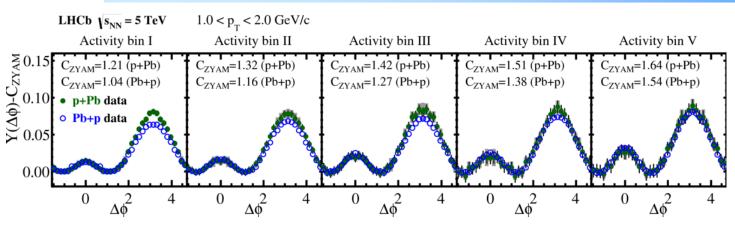


See also talk by A. Kalweit


Identified particle spectra in pp (13 TeV)

Underlying Event study (13 TeV)

2-Particle azimuthal correlations


Long-range ($|\Delta\eta|>2$) ridge in 2-PC on near side ($\Delta\phi\sim0$) observed in large systems (central AA coll.)

- described by Fourier decomposition ~ 1 + $2v_n\cos(n\Delta\phi)$, v_n = single-particle anisotropy harmonics
- result of collective hydrodynamic expansion of hot and dense nuclear matter created in the overlap region

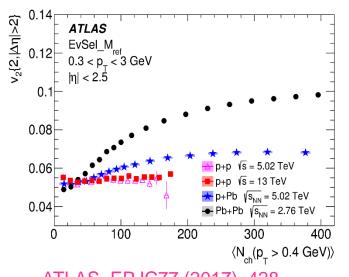
But long-range ridge seen also in pPb (much smaller system) and even in pp at high multiplicity!

- Origin of the ridge in small systems still under debate: hydrodynamics like for QGP? Initial state fluctuations (Color Glass Condensate/gluon saturation)? Hadronization using ropes? Thin flux tubes?
 Ridge = testing ground to study complementarity between dynamical and hydrodynamical models
- > See also talk by A. Kalweit

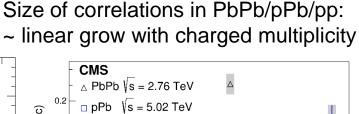
2-Particle azimuthal correlations

pPb 5 TeV:

LHCb, PLB 762 (2016) 473 (ALICE, CERN-EP-2016-228)


- Size of near-side ridge & away-side ridge increases with multiplicity
- Size of near-side ridge maximal for $1 < p_T < 2$ GeV

Ridge separation from non-flow (resonance decays, dijets) using:


- low-multiplicity events (e.g. ATLAS, PRL 116 (2016) 172301)
- three-subevent method (next slide)

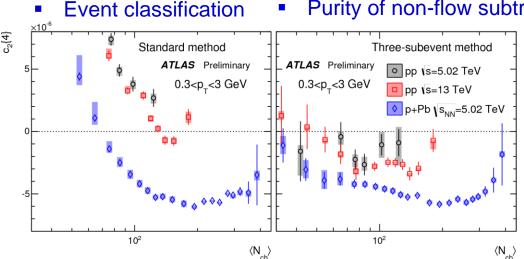
$$v_2$$
{2}(pp) < v_2 {2}(pPb) < v_2 {2}(PbPb)

Expected: $v_2\{2\}(pPb) \ll v_2\{2\}(PbPb)$

ATLAS, EPJC77 (2017), 428

• pp √s = 13 TeV

o pp √s = 7 TeV


Associated yield / (GeV/c) $2.0 < |\Delta \eta| < 4.0$ $1.0 < p_{_{\perp}} < 2.0 \text{ GeV/c}$

CMS, PRL 116 (2016), 172302

M. Tasevsky, Soft QCD Measurements at LHC, LP2017

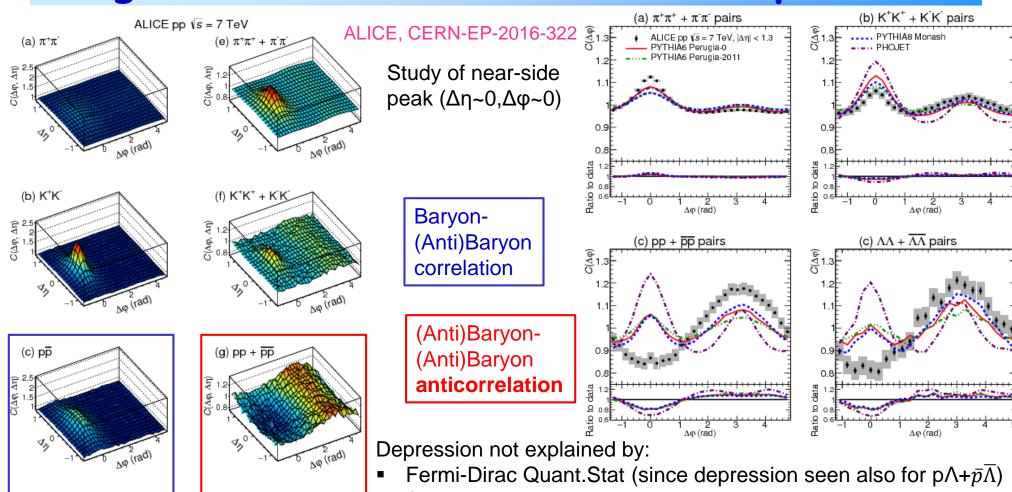
Multi-particle azimuthal correlations

- □ 2-particle correlations suffer from non-flow. Multi-particle correlations are more robust against non-flow effects. But also more statistically demanding.
- \square Method: build cumulants c_n {2k} and calculate flow harmonics v_n {2k}
- Extraction of collective flow in pp depends strongly on:

Purity of non-flow subtraction ATLAS-CONF-2017-002

Three-subevent method: reduces well the non-flow and gives 4-particle cumulant $c_2\{4\} < 0$ in all three collision systems

$$v_2{4} = \sqrt[4]{-c_2{4}}$$


- $\begin{array}{c} \text{CMS} \\ \text{0.10} \\ \text{--pp is} = 13 \, \text{TeV} \\ \text{---v}_2^{\text{sub}}\{2, |\Delta \eta| > 2\} \\ \text{---v}_2^{\text{sub}}\{3, |\Delta \eta| > 2\} \\ \text{---v}_2^{\text{sub}}\{4, |\Delta \eta| > 2\} \\ \text{---v}_2^{\text{sub}}\{6, |\Delta \eta| > 2\} \\ \text{---v}_2^{\text{sub}}\{8, |\Delta \eta| > 2\}$
 - v_2 {4} < v_2 {2} in pPb and PbPb as expected for a long-range collective effect
 - $v_2\{4\} \le v_2\{2\}$ also in pp ($v_2\{4\}$ smaller for three-subevent method)
 - v_2 {4} ~ v_2 {6} in all three systems:

Collective nature of ridge also in pp!

CMS, PLB 765 (2017) 193

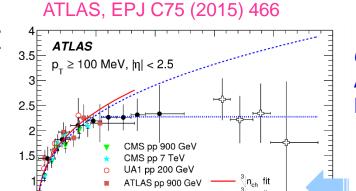
M. Tasevsky, Soft QCD Measurements at LHC, LP2017

Angular correlations of identified particles

- Strong final state interactions
- Local baryon nr. conservation

Not reproduced by MC (Pythia 6, Pythia 8, Phojet - conserve local baryon nr., do not include quantum stat. effects).

Something essential missing in string fragmentation.


(h) $\Lambda\Lambda + \overline{\Lambda}\overline{\Lambda}$

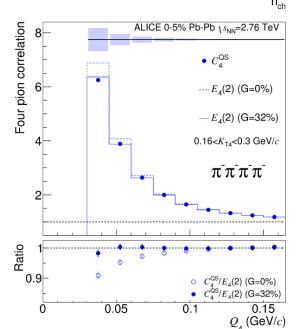
(d) $\Lambda \overline{\Lambda}$

Bose-Einstein correlations in pp, pPb, PbPb

Min.Bias pp events, $|\eta| < 2.5$, $p_T > 0.1$ GeV

2-PC (C_2) of identical particles: Same-sign/Opposite-sign double ratio Data/MC

50


 λ = correlation strength R = correlation source size

 $C_2 = C_0[1 + \Omega(\lambda, R)](1 + \epsilon Q)$ \square Decrease of R with k_T measured (as in pPb: ATLAS, CERN-EP-2017-004)

R (λ) increasing (decreasing) with n_{ch}

Saturation of R at high-mult. - observed for the 1st time

Larger sources appear more coherent (pp, LHCb-PAPER-2017-025)

150

200

Multi-pion BEC in PbPb: ALICE, PRC 93 (2016) 054908

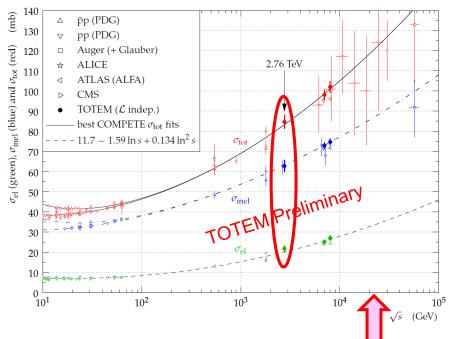
 \square Ratio measured multi- π / expected multi- π from 2- π :

- pp, pPb: no suppression observed

PbPb: suppression at low Q_4 , Q_3

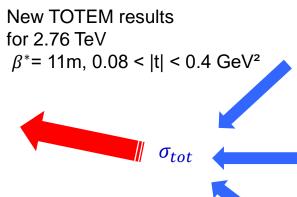
4-π: explained by 32% of coherent correlations (but 3- π : not explained by coherent correlations)

(PbPb: ALICE, PRL 118 (2017) 222301)


M. Tasevsky, Soft QCD Measurements at LHC, LP2017

SUMMARY

- ☐ Soft QCD measurements important in many aspects:
- σ_{tot} as input for modelling pile-up at LHC and extensive air showers caused by cosmic rays
- Very forward flow (also vs central flow) to model interactions in cosmic rays
- Underlying event non-negligible in many LHC analyses
- Particle correlations as a powerful tool to study multihadron production
- To understand hadronization process
- ☐ All collision systems useful for soft QCD studies, complementing each other
- □ Performant LHC @ experiments provide high-statistics & high-precision data samples → estimate reliably many sources of systematics
- \square Sophisticated techniques (low $p_T \sim 100$ MeV, efficient background subtraction, unfolding...)
- ☐ Precision data help faster understand unexplained phenomena and develop/reject models
- ☐ Necessity to retune MC models to describe data at every energy
- ☐ Similar phenomena observed in PbPb / pPb / pp (high multiplicity) collisions: strangeness enhancement, collectivity effects. Why in small systems (pPb, pp)? Currently lively discussed
- Near-side ridge as testing ground to study complementarity between hydrodynamics/QGP and dynamics model (CGC/saturation/ropes)
- ☐ Intensive works on improving the hadronization models (lines/ropes/helices)


BACKUP SLIDES

Inclusive (total) pp cross-sections

TOTEM, ALFA(ATLAS): dedicated forward proton detectors (~220-240 m from interaction point)

- very close to beam (\sim few mm dep. on LHC optics (β^*))
- the larger β^* , the lower t
- dedicated runs (special LHC optics, negligible pile-up)

1) elastic observables only, ρ =0.145 from COMPETE, optical theorem

$$\sigma_{tot}^2 = \frac{16\pi}{1+\rho^2} \frac{1}{\mathcal{L}} \frac{dN_{el}}{dt} (0)$$

2) no ρ, no optical theorem

$$\sigma_{tot} = \frac{1}{\mathcal{L}} \left(N_{el} + N_{inel} \right)$$

3) no \mathcal{L} , optical theorem

$$\sigma_{tot}^2 = \frac{16\pi}{1+\rho^2} \frac{\frac{dN_{el}}{dt}(0)}{N_{el}+N_{inel}}$$

New ATLAS 8 TeV results $\beta^* = 90 \text{m}, 0.014 < |t| < 0.1 \text{ GeV}^2$ ATLAS, PLB 761 (2016) 158

pp (non-LHC)

 10^{3}

√s [GeV]

Pythia 8

EPOS LHC QGSJET-II

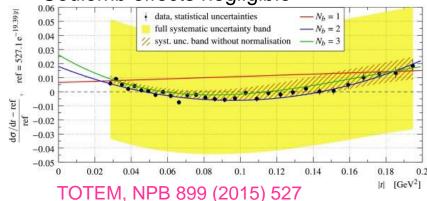
ATLAS (MBTS)

ATLAS (ALFA) ---

New ATLAS result for 13 TeV - Central detector only

ATLAS, PRL 117 (2016) 182002

 σ_{tot} input to model

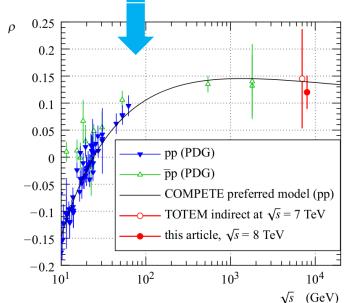

- amount of pile-up at LHC
- interactions in cosmic rays

10²

Inclusive (elastic) pp cross-section

8 TeV, $\beta^* = 90$ m, 0.027 < |t| < 0.2 GeV²

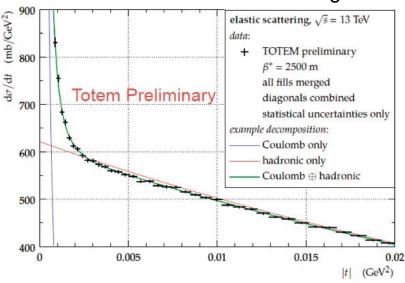
- Coulomb effects negligible



$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}(t) = \left.\frac{\mathrm{d}\sigma}{\mathrm{d}t}\right|_{t=0} \exp\left(\sum_{i=1}^{N_b} b_i t^i\right),$$

Pure exponential form $(N_b=1)$ excluded at 7.2o significance

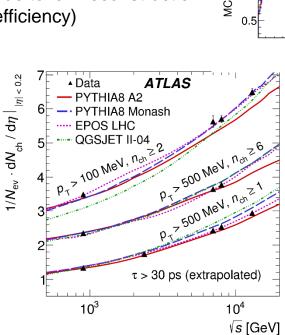
Non-exponential form observed also at 7 and 13 TeV

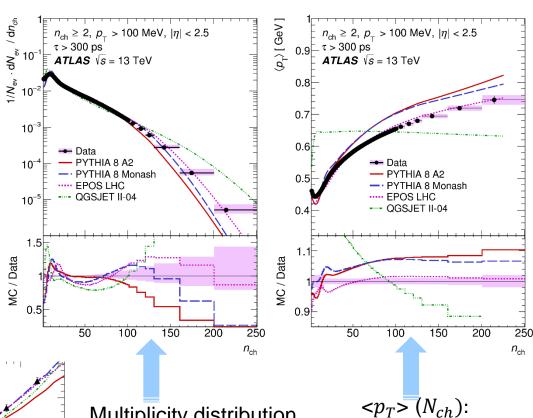

8 TeV: $\beta^* = 1.0$ km, $0.0006 < |t| < 0.2 GeV^2$ Coulomb-Nuclear Interference region

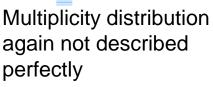
13 TeV point to come 2018 plan: 900 GeV

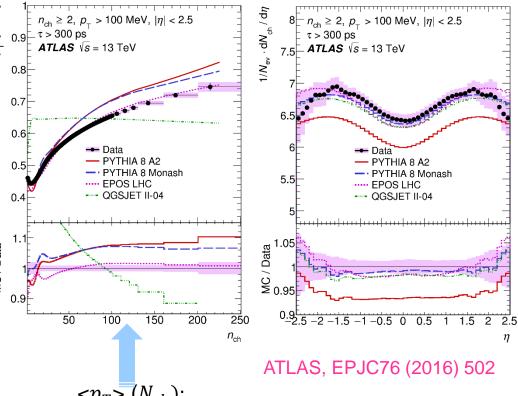
New (preliminary) results at 13 TeV: $\beta^* = 2.5$ km, $0.0006 < |t| < 0.2 \text{ GeV}^2$

- Coulomb-Nuclear Interference region

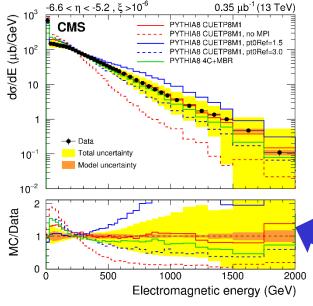

TOTEM, EPJC 76 (2016) 661

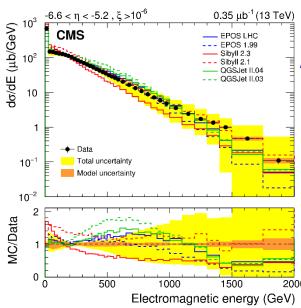

Inclusive charged particles in pp (13 TeV)


Min.Bias events: at least two tracks with $|\eta| < 2.5$, $p_T > 0.1$ GeV


very low value: special procedure

 τ >300ps (exclude strange baryons due to low reconstruction efficiency)

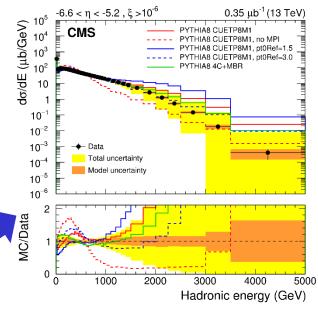


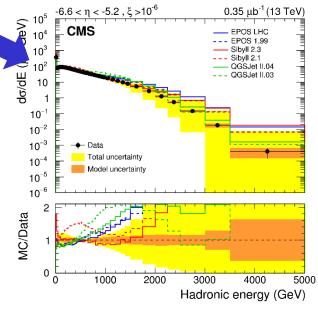

QGSJET: no colour coherence PYTHIA 8: colour reconnection EPOS: hydrodynamical evolution

EPOS gives best overall description

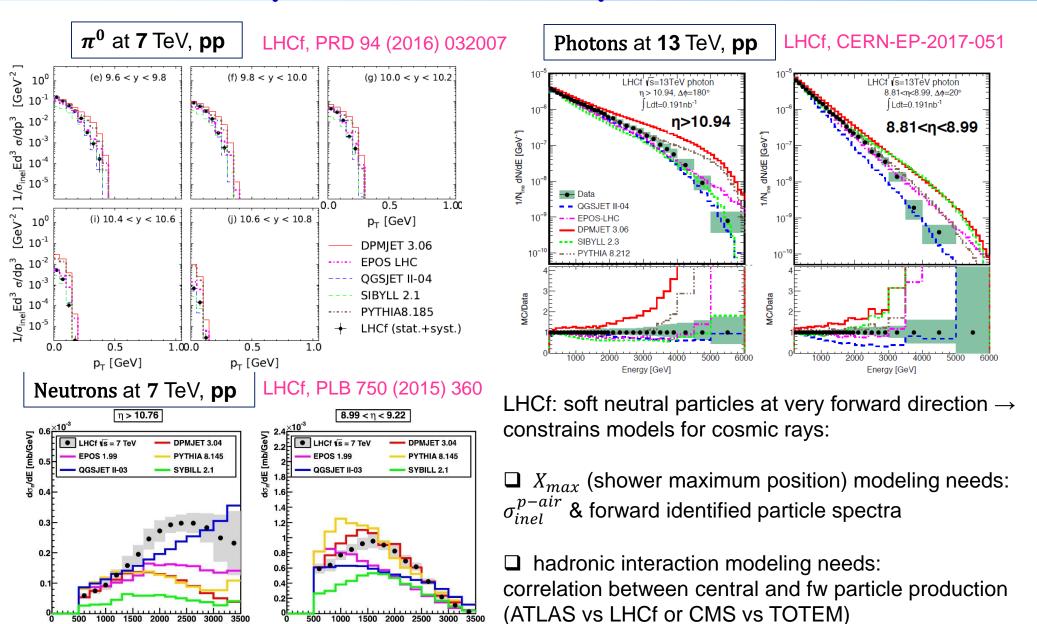
18

Inclusive very forward energy flow (13 TeV)


CMS, CERN-EP-2016-313


Energy measured in CASTOR calorimeter (-6.6 < η < -5.2)

Measurements suitable to tune:

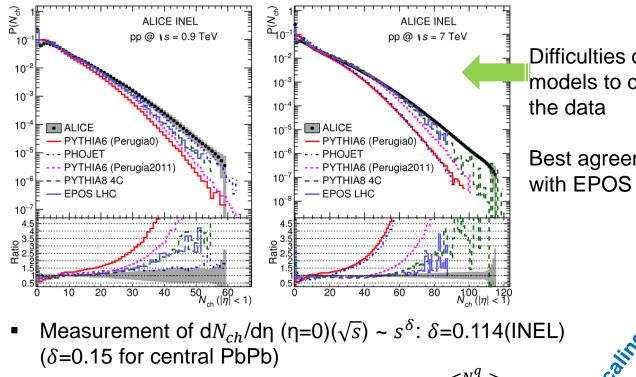

- 1) MPI models in MC generators for pp collisions
- 2) MC generators modeling HE cosmic ray air showers

Dashed: tunes based on Tevatron data Full: Tevatron + LHC $(\sqrt{s} = 7 \text{ TeV})$ data

Identified particles at very forward direction

1500 2000 2500 3000

1000


Inclusive charged particles in pp (0.9-8 TeV)

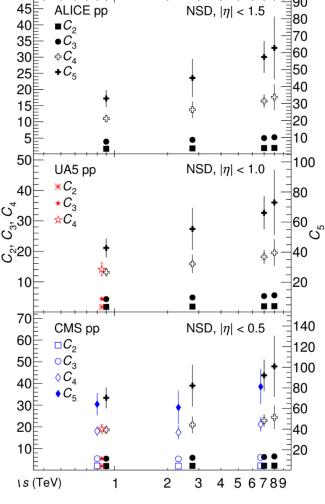
 \sqrt{s} = 0.9, 2.36, 2.76, 7, 8 TeV $|\eta| < 2, p_T > 0.1 \text{ GeV}$

INEL = all (MB) events NSD = Non Single Diffraction

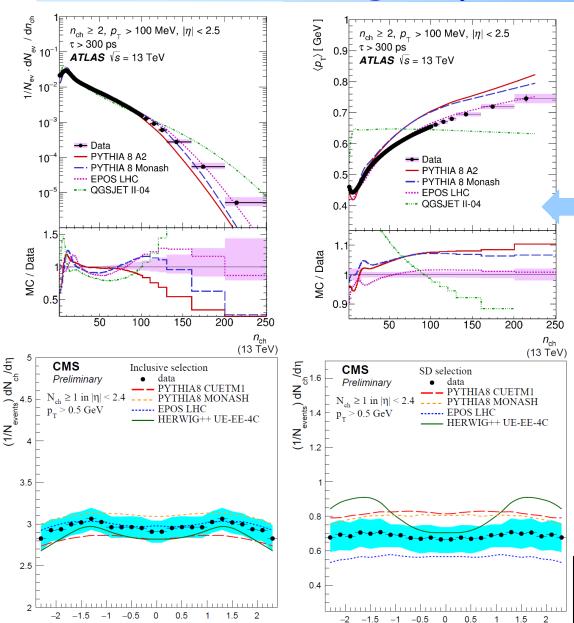
ALICE, EPJC77 (2017) 33

(PbPb: PRL 116 (2016) 222302)

Difficulties of all models to describe


Best agreement

Alternatively: normalized q-moments $C_q = \frac{\langle N_{ch}^q \rangle}{\langle N_{ch} \rangle^q}$


For NSD events and three |n| intervals:

 C_2 constant over $\sqrt{s} = 0.9-8.0$ range

 C_3 , C_4 , C_5 increase with \sqrt{s} and with increasing $\Delta \eta$ at given \sqrt{s}

Inclusive charged particles in pp (13 TeV)

11/08/2017

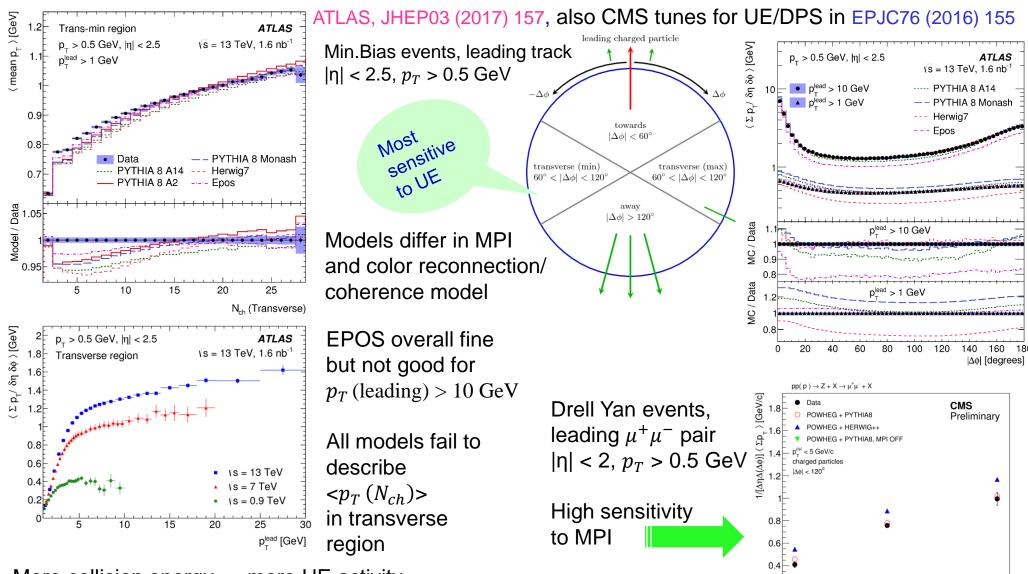
ATLAS, EPJC76 (2016) 502

Min.Bias events: at least two tracks with $|\eta| < 2.5$, $p_T > 0.1$ GeV

QGSJET: no colour coherence
PYTHIA 8: colour reconnection
EPOS: hydrodynamical evolution

Multiplicity distribution again not described perfectly

CMS-PAS-FSQ-15-008


 $|\eta|$ < 2.4, p_T > 0.5 GeV SD = Single Diffraction

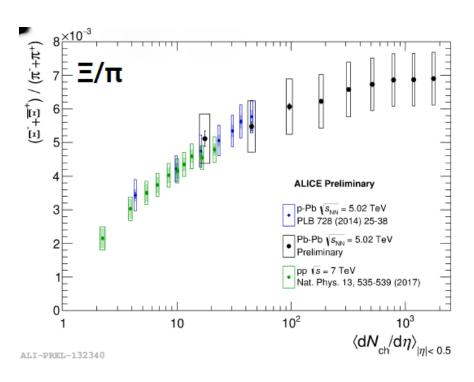
HERWIG++ deficient

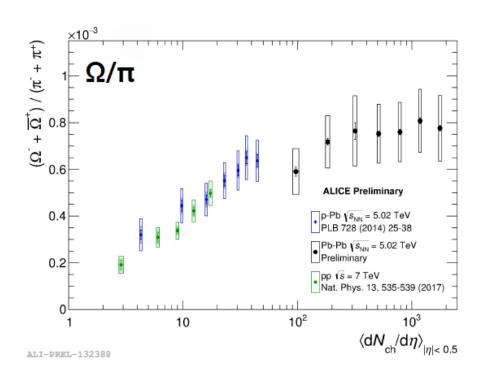
EPOS gives best overall description (specialized soft QCD model)

In general: all models need to be retuned for the 13 TeV energy

Underlying Event study (13 TeV)

More collision energy → more UE activity. Typical plateau observed

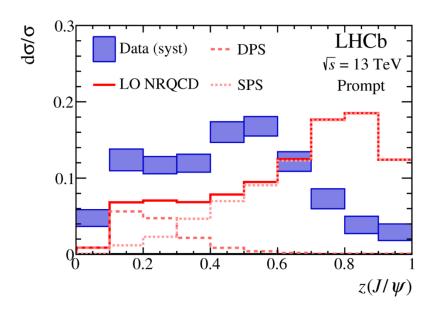

CMS-PAS-FSQ-16-008

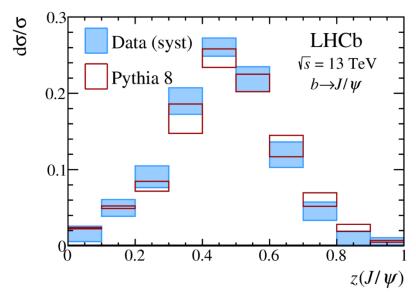

s [TeV]

23

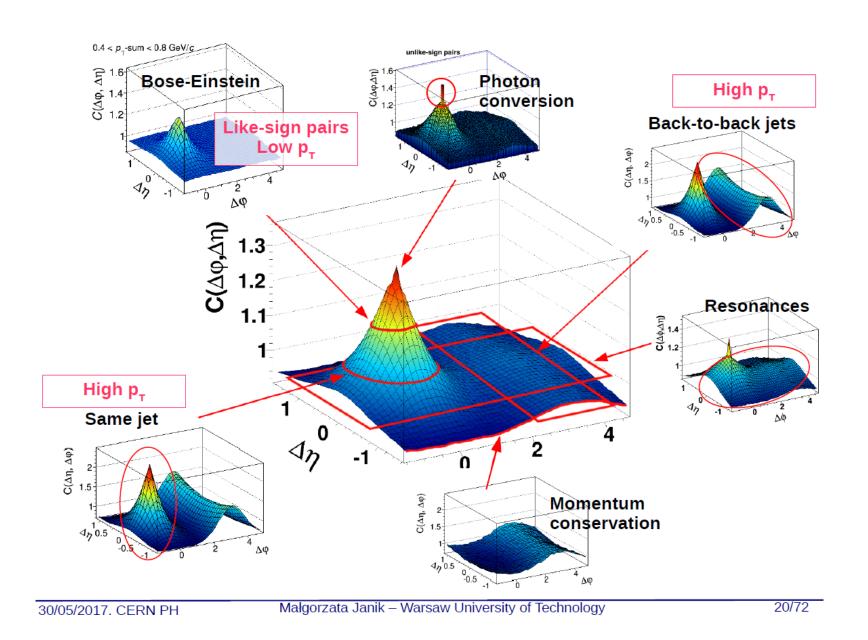
Strangeness enhancement in PbPb (5 TeV)

New results from 5 TeV PbPb collisions: \sqrt{s} closer to pPb and pp energies \rightarrow PbPb points approach better the trend from pp and pPb points

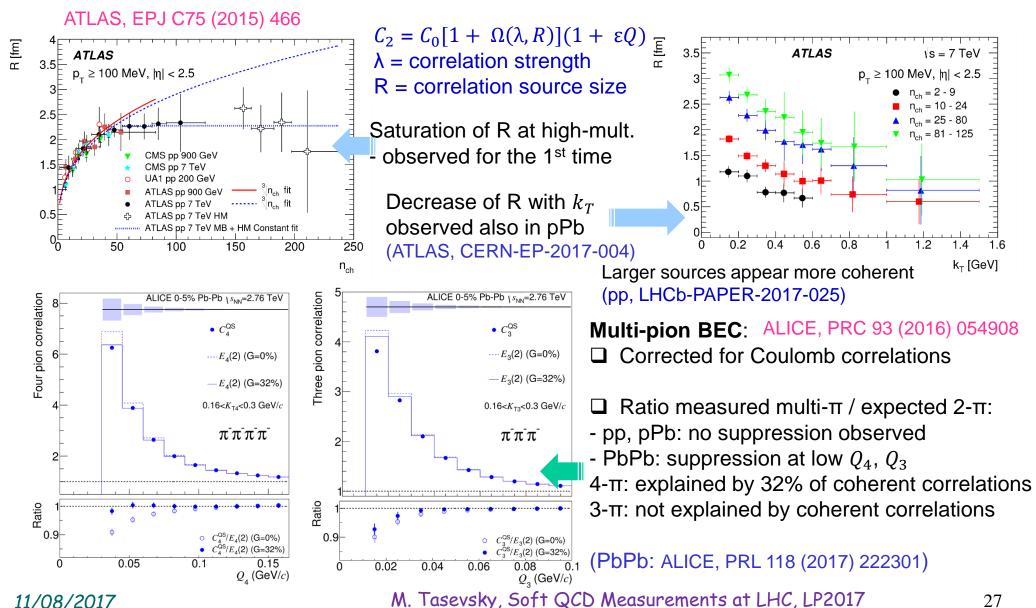



J/Ψ production in jets

- J/Ψ production occurs in transition between perturbative and non-perturbative QCD
- Measure $z(J/\Psi) = p_T(J/\Psi) / p_T(jet)$ for prompt J/Ψ and those from b-hadron decays in jets
 - o J/ $\Psi \rightarrow \mu^{+}\mu^{-}$, 2< $\eta(J/\Psi,\mu)$ < 4.5, $p_{T}(\mu)$ > 0.5 GeV
 - Jets: anti-kt, R=0.5, $p_T > 20$ GeV, $2 < \eta < 4.0$


The 1^{st} ever measurement of $z(J/\Psi)$ for prompt J/Ψ !

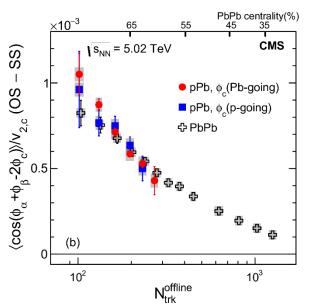
- ☐ Prompt J/Ψ produced in parton showers
- □ z(J/Ψ) not described by LO non-relativistic QCD (includes color-octet+color-singlet mechanisms) as implemented in PYTHIA 8.
- ☐ Some soft component missing?

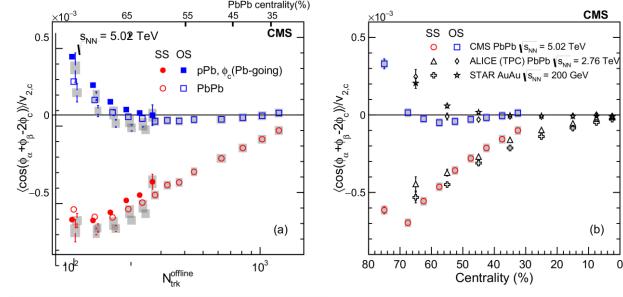


 \Box z(J/ Ψ) of J/ Ψ from b-hadron decays described by PYTHIA 8.

Bose-Einstein correlations in pp, pPb, PbPb

Min.Bias events, $|\eta| < 2.5$, $p_T > 0.1$ GeV **2-PC** (C_2) of identical particles: SS/OS double ratio Data/MC




Charge-dependent azimuthal correlations

Charge-dependent 3-particle azimuthal correlations with respect to (2nd order) event plane:

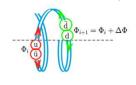
Same sign (SS) and opposite sign (OS) particle pairs and 3rd particle in forward calorimeter (to probe the long-range correlations).

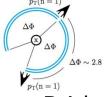
The (OS-SS) difference interpreted as possible signature of chiral magnetic effect (CME) in AA collisions.

CMS, PRL 118 (2017) 122301

PbPb and pPb data show a similar effect.

BUT: in high-multiplicity pPb collisions a strong CME is not expected


- mag.field smaller than in peripheral PbPb collisions
- angle between mag.field and event plane randomly distrib.
- Slopes for PbPb and pPb different?
- Analogous effect produced by medium vorticity
- (Lambda polarization at STAR)

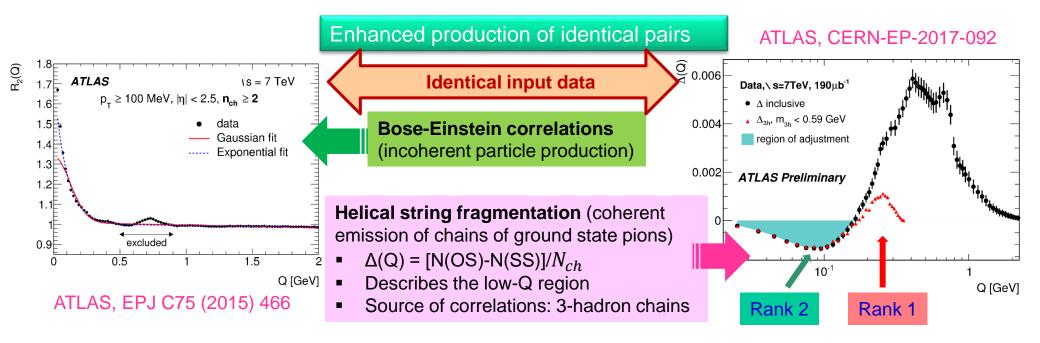

Hadronization of helical QCD string

☐ Lund string fragmentation: randomly broken 1D string, no cross-talk between break-up vertices

I Quantized helical (3D) string: causality (cross-talk) \rightarrow 2 parameters (κR, $\Delta\Phi$):

 κR , $\Delta \Phi$ fixed using masses of pseudoscalar mesons:

κξ [MeV]	κR [MeV]	ΔΦ
192.5 ± 0.5	68 ± 2	2.82 ± 0.06
meson	PDG mass [MeV]	model estimate [MeV]
π	135 - 140	137
η	548	565
η'	958	958


PR D89 (2014) 015002

- Hadron spectra follow a simple quantized pattern: m_T = n κ R $\Delta\Phi$

- Predicts momentum difference Q for pairs of ground-state hadrons

Pair rank difference r	1	2	3	4	5
Q expected [MeV]	266 ± 8	91 ± 3	236 ± 7	171 ± 5	178 ± 5

- Adjacent pions produced with p_T difference ~266 MeV. Low-Q region populated by SS pairs (r=2)

