Recent experimental highlights in heavy-ion physics

Alexander Kalweit, CERN

Alexander.Philipp.Kalweit@cern.ch | Lepton-Photon 2017 | 11/AUG/17 | 1

Outline

- A brief introduction to (ultrarelativistic) heavy-ion physics
- The production of light flavor hadrons from Pb-Pb to pp collisions ("soft probes")
- Search for the QCD critical point and onset of deconfinement
- Heavy-flavor production and jets ("hard probes")

• Summary and outlook

A brief introduction to (ultra-relativistic) heavy-ion physics

Heavy-ion experiments

→ By now all major LHC experiments have a heavy-ion program: LHCb took Pb-Pb data for the first time in November 2015.

Low energy frontier: RHIC (BES), SPS → future facilities: FAIR (GSI), NICA

RHIC

LHC Run 2

- LHC Run 2 data taking and analysis is now in full swing.
- Significant increase in integrated luminosity (approx. 4 times in Pb-Pb) allow more precise investigation of rare probes.
- Various collision systems at different center-of-mass energies are ideally suited for systematic studies of particle production.

→ Heavy-ion physics is a huge field with many observables and experiments: impossible to cover all topics! I will present a personally biased selection of results.

Run 1(2009-2013)	Run 2 (2015-now)
Pb-Pb 2.76 TeV	Pb-Pb 5.02 TeV
p-Pb 5.02 TeV	p-Pb 5.02 TeV, 8.16 TeV
pp 0.9, 2.76, 7, 8 TeV	pp 5.02, 13 TeV

Heavy-ions & Quantum Chromodynamics (QCD)

and right handed quarks disappears for massless

quarks.

→ Discovery potential in many body phenomena (as in QED and solid state physics)!

QGP as the asymptotic state of QCD

Quark-Gluon-Plasma (QGP): at extreme temperatures and densities quarks and gluons behave quasi-free and are not localized to individual hadrons anymore.

Direct photons – black body radiation from the QGP

- The challenging measurement of direct (subtract decays such as π⁰→γγ) photons gives access to the initial temperature of the system created in heavy-ion collisions.
- However, model comparisons are needed as direct photons are also emitted at later stages of the collision.

$T_{\rm eff} = 304 \pm 11 \pm 40 \; {\rm MeV}$

→ Effective temperature of approx. 300 MeV is observed as a result of a high initial temperature and the blue-shift due to the radial expansion of the system.

Geometry of heavy ion collisions

Centrality Variables:

*N*_{coll}: Number of nucleon-nucleon collisions
*N*_{part}: Number of participating nucleons

• Percentile of hadronic cross-section:

0-5% => central ("many particles")

80-90% => peripheral ("few particles")

How many particles are created in such a collision?

Alexander.Philipp.Kalweit@cern.ch | Lepton-Photon 2017 | 11/AUG/17 | 10

$dN_{ch}/d\eta$ in 5.02 TeV Pb-Pb collisions at the LHC

d*N*_{ch}/**dη** ≈ 1943 ± 54 at midrapidity 0-10%.

→ Even at LHC energies, 95% of all particles are produced at $p_T < 2$ GeV/*c* in pp and Pb-Pb collisions. → Bulk particle production and the study of collective phenomena are associated with "soft" physics in the nonperturbative regime of QCD.

Total number of charged hadrons in Pb-Pb

 \rightarrow Collisions of heavy-ions at high energy accelerators allow the creation of several tens of thousands of hadrons (1 << N << 1mol) in local thermodynamic equilibrium in the laboratory.

Success of thermal models describing yields of hadrons composed of up, down, and strange quarks supports idea of matter in local thermal equilibrium (*chemical*).

Success of **hydro models** describing **spectral shapes and azimuthal anisotropies** supports idea of matter in local thermal equilibrium (*kinetic*).

Equilibrium models such as hydro typically need 5-6 interactions to work. Where does this picture break down? Does it work in pp and pPb? \rightarrow What is the smallest possible QGP droplet?

Soft probes

Hydrodynamics – spectral shapes and v_2 **Elliptic flow Radial flow** d²N/(dp_T dy) (GeV/c)⁻¹ (GeV/c) ATLAS Preliminary • (0-5)% 0.3 10^{6} (20-30)% Pb+Pb $\sqrt{s_{NN}}$ =5.02 TeV 0-5% x 2 5-10% x 2 + (40-50)% 10^{5} Open : SP $(5 \mu b^{-1})$ dy) رہ 10[°] dp¹ d¹ Solid : 2PC (22 µb⁻¹) 0.2 ALICE Preliminary **ALICE Preliminary** Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 102 10 10 10 10 10-1 10^{-2} 10^{-2} [ATLAS-CONF-2016-105] p_{τ} [GeV] 10^{-3} 10^{-3} 10^{-} 10^{-4} → Initial spatial Uncertainties: stat. (bars), sys. (boxes) Uncertainties: stat. (bars), sys. (boxes) 10⁻⁵ 10^{-5} anisotropy is 10 12 8 8 10 12 $p_{_{\rm T}}$ (GeV/c) p_{τ} (GeV/c) converted by scatterings into an anisotropy in

Textbook-like hardening of p_{T} -spectra as expected in hydro:

- With centrality
- With the particle mass: $p = \beta \gamma \cdot m$

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{2}N}{2\pi p_{T}dp_{T}dy} \left\{ 1 + 2\sum_{n=1}^{\infty} v_{n}(p_{T})\cos[n(\varphi - \psi_{n})] \right\}$$

Radial flow v_{1} - direct flow, v_{2} - elliptic flow

momentum space.

Alexander.Philipp.Kalweit@cern.ch | Lepton-Photon 2017 | 11/AUG/17 | 14

(Double) ridges

Hadrochemistry

Production yields of light flavour hadrons from a chemically equilibrated fireball can be calculated by statistical-thermal models (roughly $dN/dy \sim \exp\{-m/T_{ch}\}$)

→ In Pb-Pb collisions, particle yields of light flavor hadrons are described over 7 orders of magnitude with a common chemical freeze-out temperature of $T_{ch} \approx 156$ MeV.

→ This includes strange hadrons
which are rarer than u,d quarks.
Approx. every fourth to fifth quark
(every tenth) is a strange quark in Pb-Pb collisions (in pp collisions).

→ Light (anti-)nuclei are also well described despite their low binding energy ($E_{\rm b} << T_{\rm ch}$).

How does hadrochemistry evolve with system size?

Strangeness enhancement

- Smooth evolution of hadrochemistry observed from pp to pPb to Pb-Pb collisions as a function of charged particle multiplicity.
- Significant enhancement of strange to non-strange particle production observed in pp collisions.
- pp collision data allows to compare to a plethora of QCD inspired event generators:
 - PYTHIA8 completely misses the behavior of the data (independent of switching ON/OFF color reconnection)
 - DIPSY (color ropes) describes the increase in strangeness production qualitatively but fails to predict protons correctly in its original version..
 - EPOS-LHC (core-corona) only qualitatively describes the trend.

Strangeness enhancement

→ Hyperon-to-pion enhancement is strangeness related and not mass or baryon number related.

- Smooth evolution of hadrochemistry observed from pp to pPb to Pb-Pb collisions as a function of charged particle multiplicity.
- Significant enhancement of strange to non-strange particle production observed in pp collisions.
- pp collision data allows to compare to a plethora of QCD inspired event generators:
 - PYTHIA8 completely misses the behavior of the data (independent of switching ON/OFF color reconnection)
 - DIPSY (color ropes) describes the increase in strangeness production qualitatively but fails to predict protons correctly in its original version..
 - EPOS-LHC (core-corona) only qualitatively describes the trend.

Measurements of (anti-)(hyper-)nuclei

- Collisions at the LHC produce a large amount of (anti-) (hyper-)nuclei.
 - Matter and anti-matter are produced in equal abundance at LHC energies.
 - Puzzle: production yields are in agreement with thermal model prediction even though light (anti-)nuclei should be dissolved in such a hot medium.

Measurements of (anti-)(hyper-)nuclei

- Collisions at the LHC produce a large amount of (anti-) (hyper-)nuclei.
 - Matter and anti-matter are produced in equal abundance at LHC energies.
 - Puzzle: production yields are in agreement with thermal model prediction even though light (anti-)nuclei should be dissolved in such a hot medium.
 ALICE Preliminary

[ALICE-PUBLIC-2017-006]

Alexander.Philipp.Kalweit@cern.ch | Lepton-Photon 2017 | 11/AUG/17 | 21

(anti-)(hyper-)nuclei – impact beyond heavy-ion physics

- A. Heavy-ion measurements may help in constraining the not well known lifetime of the hyper-triton (sensitive to the hyperon-nucleon interaction potential in nuclear physics).
- B. Collider measurements are used for background estimations in the searches for (anti-)nuclei of galactic/dark matter origin (such as in AMS).

FIG. 5: Poisson probability for detecting $N \ge 1, 2, 3, 4$ ³He events in a 5-yr analysis of AMS02, assuming the same exposure as in the \bar{p} analysis [28]. Eq. (14) shown as green band.

[K. Blum et al., arXiv:1704.05431]

Search for QCD critical point and onset of de-confinement

The phase diagram of QCD

- The thermodynamics of QCD can be summarized in the following (schematic) phase diagram.
- Control parameters: temperature T and baryo-chemical potential $\mu_{\rm B}$.

[Ann. Rev. Nucl. Part. Sci. 62 (2012) 265]

→ Different regions of the phase diagram are probed with different $\sqrt{s_{NN}}$. => beam energy scan (BES) at RHIC.

Alexander.Philipp.Kalweit@cern.ch | Lepton-Photon 2017 | 11/AUG/17 | 24

Critical fluctuations – in ordinary matter

[S. Horstmann, Ph.D. Thesis University Oldenburg]

- Phase transitions are often connected to critical phenomena.
- Example: Opalescence of Ethene at the critical point (divergence of correlation lengths).

Critical fluctuations – in quark matter

- In the QCD case, event-by-event fluctuations in the conserved charges of QCD (Baryon number *B*, Strangeness *S*, electric charge *Q*).
- Key observable: baryon number fluctuations quantified as the higher moments $\chi_{\rm B}$ of the net-proton ($N_{\rm p}$ - $N_{\rm anti-p}$) distribution.

→ Hint for deviation from Poisson baseline in kurtosis around $\sqrt{s_{NN}} \approx 20$ GeV?

Hard probes

Heavy flavor

- Heavy quark flavors (*c*,*b*) are dominantly produced in initial hard scatterings (calculable in pQCD) and then interact with the medium.
- There is strong evidence that charm quarks thermalize in the medium.

(A.) Elliptic flow of D mesons:

(B.) Baryon-to-meson enhancement seen in Λ_{c} :

Heavy flavor

- Heavy quark flavors (*c*,*b*) are dominantly produced in initial hard scatterings (calculable in pQCD) and then interact with the medium.
- N.B.: electroweak probes do not show any interaction with the medium.

J/ψ recombination

Alexander.Philipp.Kalweit@cern.ch | Lepton-Photon 2017 | 11/AUG/17 | 30

Jet substructure in heavy-ions

- Several state-of-the-art jet substructure measurements are carried out as well in the heavy-ion environment.
- Interestingly, jets lose energy in the medium, but their structure seems unmodified.

Summary and outlook

Summary

- The field of (ultra-relativistic) heavy-ion physics has seen a wealth of beautiful new results in the last years from LHC and the beam energy scan at RHIC.
- New facilities are coming up at the high net-baryon density frontier at lower center-of-mass energies: NICA and FAIR.
- LHC Run2 data analysis is in full swing.
- Change of paradigm: pp and p-Pb data samples are not only reference samples anymore, but show at high multiplicities similar features to Pb-Pb collisions.

Preparations for LHC Run 3 and 4

Major detector upgrades in long shutdown 2 (2019-2020) will open a new era for heavy-ion physics:

- New pixel Inner Tracker System (ITS) for ALICE
- GEM readout for ALICE TPC => continuous readout
- SciFi tracker for LHCb
- 50 kHz Pb-Pb interaction rate

ADDITIONAL SLIDES

Energy ranges covered by different accelerators

Thermal model fit

ALI-PREL-94600

Strangeness canonical suppression

System size

- Charged particle event multiplicity is taken as a measure of the system size.
- Such an approach is supported by interferometry analysis (HBT).

Production of (anti-)nuclei

- Coalescence model naturally describes the increase from low to high multiplicity, but not the saturation at the thermal model expectation.
- Idea for such a mechanism: *d/p* ratio is determined by the entropy per baryon which is fixed at chemical freeze-out and not changed by the isentropic expansion thereafter.

[J. Kapusta, P. Siemens, PRL 43 (1979) 1486] [A. Andronic *et al.*, PLB697 (2011) 203]

Thermal and coalescence production of (anti-)nuclei

- $p_{\rm T}$ -integrated particle yields of light nuclei are well described by thermal-statistical models with chemical freeze-out temperatures much larger than their binding energy: $T_{\rm ch} \approx 156 \text{ MeV} \gg E_{\rm B,deut} \approx$ 2.2 MeV
- Such a difference of scales is not present in the coalescence approach.
- The coalescence model in its simplest form cannot predict p_T-integrated yields in Pb-Pb collisions:
 - → Strong dependence on $p_{\rm T}$ and on centrality.
 - \rightarrow Needs detailed modeling of expansion and source volume.

Chemical freeze-out line

- By colliding nuclei with different center of mass energies, different regions of the phase diagram are explored.
- Thermal model fits to the experimental data define the chemical freeze-out line in the QCD phase diagram.

