Implications of DM search results: How to save the WIMP

Thomas Schwetz

Lepton-Photon 2017 Sun Yat-Sen University, Guangzhou, China

Dark matter is needed!

Challenge for particle physics

- within the Standard Model there is no suitable particle to provide the DM
 need new particle(s)
- Why is it so abundant?
- Why is it (quasi) stable?
- Is it elementary or composite?
- Is there a ,,dark sector"?

- many possible candidates
- this talk focus on WIMP candidates

The WIMP hypothesis: thermal freeze-out

$$\Omega_{\rm DM} \approx \frac{2 \times 10^{-37} {\rm cm}^2}{\langle \sigma_{\rm annih} v \rangle} \approx 0.23$$

Lee, Weinberg, 1977 Bernstein, Brown, Feinberg, 1985 Scherrer, Turner, 1986

The WIMP hypothesis: thermal freeze-out

 $\Omega_{\rm DM} \approx \frac{2 \times 10^{-37} {\rm cm}^2}{\langle \sigma_{\rm annih} v \rangle} \approx 0.23$

Lee, Weinberg, 1977 Bernstein, Brown, Feinberg, 1985 Scherrer, Turner, 1986

"typical" annihilation cross section: $\langle \sigma_{\text{annih}} v \rangle \sim \frac{g^4}{2\pi m^2} \simeq 6 \times 10^{-37} \text{cm}^2 \left(\frac{g}{0.1}\right)^4 \left(\frac{m}{100 \text{ GeV}}\right)^{-2}$

- "Weakly Interacting Massive Particle" (WIMP)
- relation with new physics at the TeV scale

WIMP searches

WIMP searches

indirect detection

PAMELA, FERMI, AMS-2, HESS, IceCube

WIMP searches

indirect detection

accelerators

LHC

PAMELA, FERMI, AMS-2, HESS, IceCube

WIMP searches

indirect detection

PAMELA, FERMI, AMS-2, HESS, IceCube

direct detection

XENON, LUX, PANDA-X, CDMS, Edelweiss, CRESST, PICASSO, COUPP,...

accelerators

WIMP searches

Indirect detection of DM

today

@ freeze-out

Indirect detection of DM

- annihilation cross section today corresponds to the "thermal" one only for s-wave processes (v-independent)
- p-wave annihilations: $\sigma v \sim v^2 \Rightarrow$

@ freeze-out:
$$v^2 \sim T/m \sim 0.05 c^2$$

today: $v \sim 10^{-3} c$

FERMI dwarf spheroidals

FERMI & MAGIC, 1601.06590

"thermal Xsec" excluded for DM mass < 100 GeV (assuming s-wave annihilation!)

All dSp

DM direct detection

Direct detection and the WIMP hypothesis

testing cross sections
 ~ 10⁻⁴⁶ cm²

Parameter region motivated by WIMP argument (thermal freeze-out) model dependent!

 $\sigma_{\text{scatt}} < 10^{-46} \text{ cm}^2 \stackrel{?}{\leftrightarrow} \sigma_{\text{annih.}} \sim 10^{-36} \text{ cm}^2$

Direct detection and the WIMP hypothesis

Ex.: Higgs-portal with fermionic DM χ

(A,Z)

excluded by XENON, LUX

 $\frac{1}{\Lambda_1} (\overline{\chi}\chi) (H^{\dagger}H)$

Lopez-Honorez, TS, Zupan, 12

• excluded by XENON, LUX $\frac{1}{\Lambda_1}(\overline{\chi}\chi)(H^{\dagger}H)$

• s-channel resonance at $m_{\chi} \approx m_H/2$

Lopez-Honorez, TS, Zupan, 12

• excluded by XENON, LUX $\frac{1}{\Lambda_1}(\overline{\chi}\chi)(H^{\dagger}H)$

• s-channel resonance at $m_{\chi} \approx m_H/2$

pseudo-scalar Higgs-Portal $\frac{1}{\Lambda_5}(\overline{\chi}\gamma_5\chi)(H^{\dagger}H)$

Lopez-Honorez, TS, Zupan, 12

Example for LHC constraints

Dirac DM, axial-vector couplings to quarks (not leptons)

Example for LHC constraints

Dirac DM, axial-vector couplings to quarks (not leptons)

Can we make generic statements about the WIMP hypothesis?

The comparison is necessarily model dependent

indirect det. freeze-out

direct detection

UV-complete models (SUSY)

"simplified" models DM particle + mediator(s)

Minimal requirements on a "model"

- SM gauge invariance
- perturbative unitarity

Minimal requirements on a "model"

- SM gauge invariance
- perturbative unitarity

example for "consistent" model

2-mediator DM (2MDM)

Kahlhöfer, Schmidt-Hoberg, Schwetz, Vogl, 1510.02110 Dürr, Kahlhöfer, Schmidt-Hoberg, Schwetz, Vogl, 1606.07609

SM +

DM fermion + U(I)' gauge symmetry with Z' mediator

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

Kahlhöfer, Schmidt-Hoberg, Schwetz, Vogl, 1510.02110 Dürr, Kahlhöfer, Schmidt-Hoberg, Schwetz, Vogl, 1606.07609

DM fermion + U(I)' gauge symmetry with Z' mediator

SM +

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

need "dark Higgs" S to give mass to Z' and DM $\mathcal{L}_{S} = \left[(\partial^{\mu} + i g_{S} Z'^{\mu}) S \right]^{\dagger} \left[(\partial_{\mu} + i g_{S} Z'_{\mu}) S \right] + \mu_{s}^{2} S^{\dagger} S - \lambda_{s} \left(S^{\dagger} S \right)^{2} + y S \bar{\psi} \psi$

Kahlhöfer, Schmidt-Hoberg, Schwetz, Vogl, 1510.02110 Dürr, Kahlhöfer, Schmidt-Hoberg, Schwetz, Vogl, 1606.07609

DM fermion + U(I)' gauge symmetry with Z' mediator

SM +

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

need ,,dark Higgs" S to give mass to Z' and DM $\mathcal{L}_{S} = \left[(\partial^{\mu} + i g_{S} Z'^{\mu}) S \right]^{\dagger} \left[(\partial_{\mu} + i g_{S} Z'_{\mu}) S \right] + \mu_{s}^{2} S^{\dagger} S - \lambda_{s} \left(S^{\dagger} S \right)^{2} + y S \bar{\psi} \psi$

Z'mediated interaction & gauge invariance

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

$$g_{f}^{V} = rac{1}{2}g'(q_{f_{R}} + q_{f_{L}}), \quad g_{f}^{A} = rac{1}{2}g'(q_{f_{R}} - q_{f_{L}})$$

gauge invariance of SM Yukawa terms

$$\mathcal{L}_{\text{Yuk}} = -\lambda_d \bar{q}_L H q_R - \lambda_u \bar{q}_L \tilde{H} q_R - \lambda_\ell \bar{\ell}_L H \ell_R + h.c.$$

requires:

$$q_H = q_{q_L} - q_{u_R} = q_{d_R} - q_{q_L} = q_{e_R} - q_{\ell_L}$$

(assumes one Higgs doublet)

Z'mediated interaction & gauge invariance

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

$$g_{f}^{V} = rac{1}{2}g'(q_{f_{R}}+q_{f_{L}}), \quad g_{f}^{A} = rac{1}{2}g'(q_{f_{R}}-q_{f_{L}})$$

$$q_H = q_{q_L} - q_{u_R} = q_{d_R} - q_{q_L} = q_{e_R} - q_{\ell_L}$$

for non-zero g^A

> Z' interacts with all generations of quarks and with **leptons** \Rightarrow stringent constraints from searches for dilepton resonances

Z'mediated interaction & gauge invariance

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

$$g_{f}^{V} = rac{1}{2}g'(q_{f_{R}}+q_{f_{L}}), \quad g_{f}^{A} = rac{1}{2}g'(q_{f_{R}}-q_{f_{L}})$$

$$q_H = q_{q_L} - q_{u_R} = q_{d_R} - q_{q_L} = q_{e_R} - q_{\ell_L}$$

for non-zero g^A

- > Z' interacts with all generations of quarks and with **leptons** \Rightarrow stringent constraints from searches for dilepton resonances
- off-diagonal mass term $\delta m^2 Z^{\mu} Z'_{\mu}$ with

$$\delta m^2 = \frac{1}{2} \frac{e \, g' \, q_H}{s_W \, c_W} v^2$$

 \Rightarrow constraints from electroweak precision tests

A-A couplings for `consistent' model

- stringent constraints from EWPTs and dilepton resonance
- substantial part of parameter space inconsistent
- modified thermal expectation

DM fermion + U(I)' gauge symmetry with Z' mediator

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_{\nu} \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\nu} \gamma_\mu \gamma_\mu \gamma^5 \right] \psi$$

need "dark Higgs" S to give mass to Z' and DM $\mathcal{L}_{S} = \left[(\partial^{\mu} + i g_{S} Z'^{\mu}) S \right]^{\dagger} \left[(\partial_{\mu} + i g_{S} Z'_{\mu}) S \right] + \mu_{s}^{2} S^{\dagger} S - \lambda_{s} \left(S^{\dagger} S \right)^{2} + y S \bar{\psi} \psi$

assume no coupl. to leptons and equal couplings to all quarks \rightarrow U(1)' corresponds to baryon number

DM fermion + U(I)' gauge symmetry with Z' mediator $\mathcal{L} = -\sum Z'^{\mu} \bar{f} \left[g_{f}^{V} \gamma_{\mu} + g_{f}^{V} \gamma_{\mu} \gamma^{5} \right] f - Z'^{\mu} \bar{\psi} \left[g_{DM}^{V} \gamma_{\mu} + g_{DM}^{A} \gamma_{\mu} \gamma^{5} \right] \psi$

 $f=q.l.\nu$

need ,,dark Higgs" S to give mass to Z' and DM $\mathcal{L}_{S} = \left[(\partial^{\mu} + i g_{S} Z'^{\mu}) S \right]^{\dagger} \left[(\partial_{\mu} + i g_{S} Z'_{\mu}) S \right] + \mu_{s}^{2} S^{\dagger} S - \lambda_{s} \left(S^{\dagger} S \right)^{2} + y S \bar{\psi} \psi$

not independent for given masses: only one dark-sector coupling

DM fermion + U(I)' gauge symmetry with Z' mediator

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

need ,,dark Higgs" S to give mass to Z' and DM $\mathcal{L}_{S} = \left[(\partial^{\mu} + i g_{S} Z'^{\mu}) S \right]^{\dagger} \left[(\partial_{\mu} + i g_{S} Z'_{\mu}) S \right] + \mu_{s}^{2} S^{\dagger} S - \lambda_{s} \left(S^{\dagger} S \right)^{2} + y S \bar{\psi} \psi$

assume only loop-induced kinetic mixing

DM fermion + U(I)' gauge symmetry with Z' mediator

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_{\mathcal{N}\mu} \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\mathcal{N}\mu} \gamma_\mu + g_{\mathrm{DM}}^A \gamma_\mu \gamma^5 \right] \psi$$

need ,,dark Higgs" S to give mass to Z' and DM $\mathcal{L}_{S} = \left[(\partial^{\mu} + i g_{S} Z'^{\mu}) S \right]^{\dagger} \left[(\partial_{\mu} + i g_{S} Z'_{\mu}) S \right] + \mu_{s}^{2} S^{\dagger} S - \lambda_{s} \left(S^{\dagger} S \right)^{2} + y S \bar{\psi} \psi$

Comment on anomalies:

- additional states are needed to cancel anomalies
- gauge symmetries & vectorial Z' coupling imply that there is no color anomaly →
- no colored states needed small impact on phenomenology

e.g., Dürr, Fileviez Perez, 1309.3970; Ekstedt et al., 1605.04855; Ellis, Fairbairn, Tunney, 1704.03850

- parameters of the 2MDM model:
 - 3 masses
 - 3 couplings
- fix one coupling by relic density

particle masses		coupling consta	coupling constants	
DM mass	m_χ	dark-sector coupling	g_χ or y_χ	
Z' mass	$m_{Z'}$	quark– Z' coupling	g_q	
dark Higgs mass	m_{s}	Higgs mixing angle	heta	

- parameters of the 2MDM model:
 - 3 masses
 - 3 couplings
- fix one coupling by relic density
- impose constraints from:
 - direct and indirect DM searches
 - monojets, dijets, dileptons at colliders
 - Higgs observables
 - electroweak precision tests
 - perturbative unitarity

Dürr, Kahlhöfer, Schmidt-Hoberg, TS, Vogl, 1606.07609

Dürr, Kahlhöfer, Schmidt-Hoberg, TS, Vogl, 1606.07609

Red: All coupling combinations are excluded by at least one constraint.

White: At least one coupling combination is compatible with all constraints.

Orange: Large values of g_q cannot reliably be excluded due to the mediator width becoming large ($\Gamma/m_{z'} > 0.3$).

WIMP hypothesis survives only in special corners:

WIMP hypothesis survives only in special corners:

 close to an s-channel resonance:

 $\chi \chi \rightarrow s/Z' \rightarrow SM SM$

WIMP hypothesis survives only in special corners:

- close to an s-channel resonance: $\chi\chi \rightarrow s/Z' \rightarrow SM SM$
- one or both mediators are lighter than DM → ,,terminator" or ,,secluded DM"

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

Secluded DM - scalar terminator

example with scalar mediator

Lopez-Honorez,TS, Zupan, 12

Secluded DM - scalar terminator

A potential signal from light mediators

 in some cases there is hope for signals in indirect detection (s-channel annihilation)

Remarks – 1

- thermally produced DM ("WIMP") links DM to weak-scale physics
- cornered from direct, indirect, and collider searches
- comparison necessarily model dependent

Remarks - 2

- request some minimal consistency properties (SM gauge invariance, perturb. unitarity,...)
- considered 2-mediator DM (2MDM) Majorana DM SM-singlet, U(1)' symmetry s-channel vector and scalar mediator gauge invariant, UV-complete (up to anomaly)
- confined to special corners: either to s-channel resonance or to a ,,dark terminator" (m_{med} < m_{DM})

Remarks - 3

- qualitative similar conclusions should hold for a wide class of WIMP models
- ex. alternative scenarios:
- DM (partially) gauged under SM (e.g., minimal DM, well-tempered DM)

Cirelli, Fornengo, Strumi, 05; Arkani-Hamed, Delgado, Giudice, 06; Banerjee, Matsumoto, Mukaida, Tsai, 16

co-annihilations Baker et al., 1510.03434
 t-channel mediator: y q_R χ η Garny, Ibarra, Rydbeck, Vogl, 14

We have cornered the WIMP.

The time has come to discover it!

We have cornered the WIMP.

The time has come to discover it!

constraints weaken somewhat for heavier DM

10³

10³

10⁴

10⁴