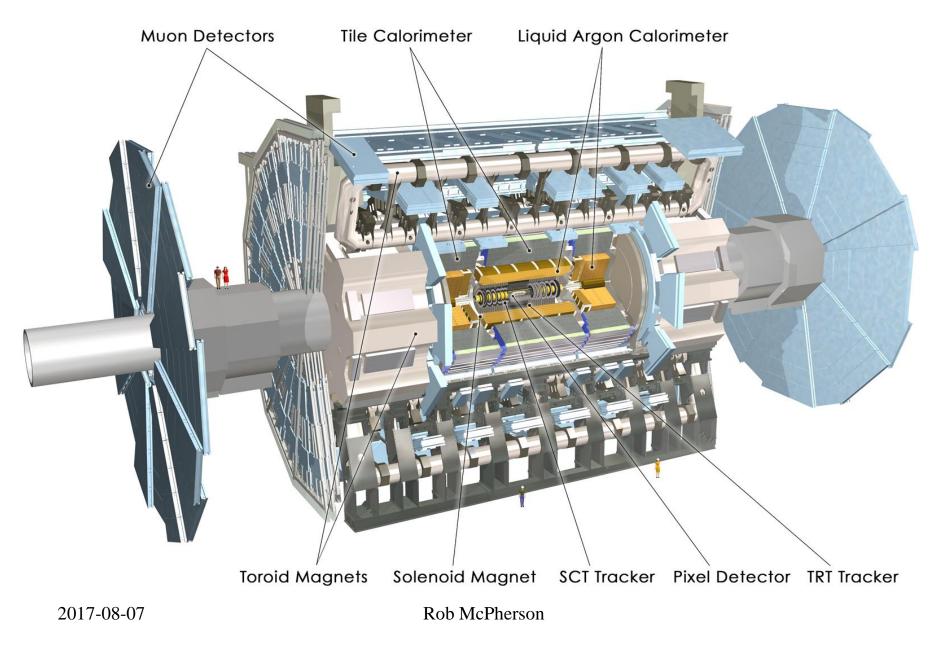
ATLAS @ LHC: status and recent results


28th International Symposium on Lepton Photon Interactions at High Energies

> Sun Yat-Sen University, Guangzhou China 7 August 2017

Rob McPherson University of Victoria / IPP + TRIUMF On behalf of the ATLAS Collaboration

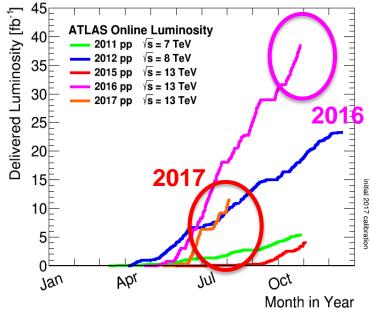
The ATLAS Detector

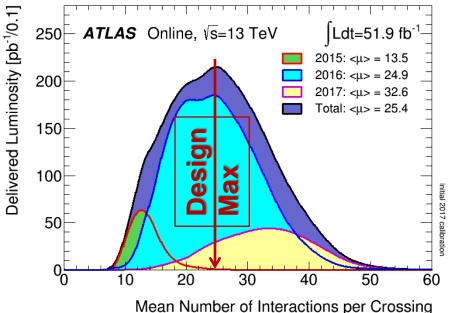
				areas for	A Constant	
Argentina	Morocco	a i i	ELX17	AB 9	VBP &	
Armenia	Netherlands	as they	ATT A	5. 6	1. 12	ξ.
Australia	Norway	Loug	the states	V	M Jalon	
Austria	Poland	53	Fri	Y	View Works	1 mg
Azerbaijan Belarus	Portugal Romania	m (272	ゴン	Ash	
Brazil	Russia	That I	TV	S {] ··	1 al	
Canada	Serbia	125	Jug			
Chile	Slovakia				La,	/ <u>\</u>
China	Slovenia	15				37
Colombia	South Africa	A 2			· · · · · ·	Ç.
Czech Republi	c Spain					
Denmark	Sweden	• 182	Institutions	in 38 Countri	ios	
France	Switzerland					100
Georgia	Taiwan	-	Including 9 (Chinese insti	tutes	(CD)
Germany	Turkey		900 Scientific			(to all
Greece	UK					
Israel	USA	~ 19	SUU with PhD	, contributin	g to M&O sha	are 🦉
Italy	CERN JINR	~ 10	000 Students			
Japan	JINK					1,2010

Outline of Talk

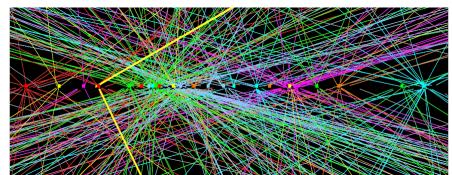
- ATLAS data-taking and performance
- ATLAS recent physics analysis results
- ATLAS Upgrades
- Summary

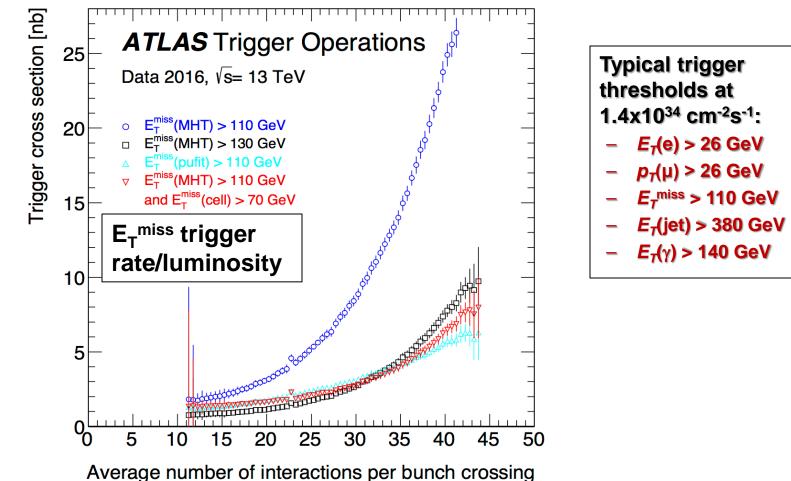
Outline of Talk


• ATLAS data-taking and performance


- ATLAS recent physics analysis results
- ATLAS Upgrades
- Summary

Excellent but Challenging LHC Performance


- 2016 p-p \mathcal{L}_{PEAK} record $\approx 1.4 \times 10^{34}$ cm⁻² s⁻¹ μ (peak) ≈ 44 interactions per crossing $\int \mathcal{L} = 38.5$ fb⁻¹ delivered by LHC
- 2017 p-p L_{PEAK} already ≈ 1.7x10³⁴ cm⁻² s⁻¹ μ (peak) ≈ 50 interactions per crossing ∫L = 11.7 fb⁻¹ delivered by LHC (2017/08/04)


$Z \rightarrow \mu \mu$ with 25 other interactions

Trigger Performance in 2016

- Trigger menu: physics, monitoring, calibration requirements
 - ~2000 active menu items
 - Level-1 rate: up to 100 kHz, Physics output rate ~1kHz
 - Challenge: non-linear growth of trigger rates with pileup
 - Eg E_T^{miss} resolution badly degraded by pileup potentially \Rightarrow threshold increase?

Physics Object Performance

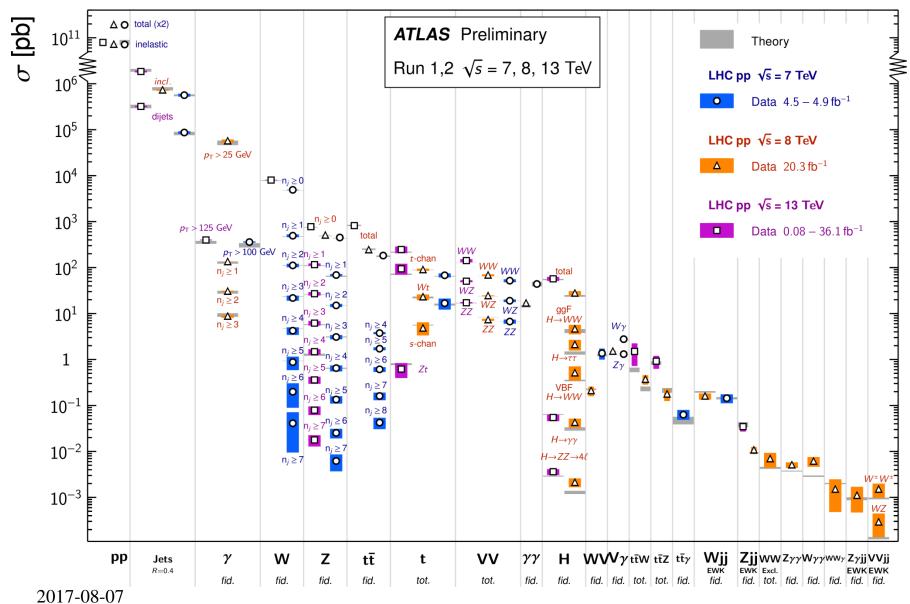
- Physics analyses start with detector data, then physics objects:
 - electrons, muons, taus, jets, b-tagged jets, E^{miss} etc.
- Huge effort throughout 2016 and early 2017 to stabilize performance
- Eg: m(ee) in $Z \rightarrow ee$: m(ee) at low/high pile-up e0.09 High μ (30 < μ < 35) ATLAS Preliminary 1.005 n_{ee} / <m_{ee}(2016)> 0.08 \sqrt{s} =13 TeV, L = 33.9 fb⁻¹ đ **ATLAS** Preliminary 0.07 60.0 2016 calibrated data 1.004 0.05 √s=13 TeV, L = 33.9 fb⁻¹ 2016 0.04 2016 data 0.03E 1.003 0.02 0.0 1.002 86 88 98 100 m_{ee} [GeV] 1.00 m(ee) in 2016/2017 7000 Events / 0.5 GeV ATLAS Preliminary Data 2017 (0.5 fb⁻¹ 6000 Mean of m(ee) for $Z \rightarrow ee$ events vs. pile-up Data 2016 √s= 13 TeV, Z → ee 0.999 5000 showing sub per-mille stability in 2016 4000 2016 0.998^L5 15 20 25 30 35 45 3000 10 40 å 2000 μ 2017 1000 2017-08-07 **Rob McPherson** 070 75 80 85 90 95 100 105 110 m_{ee} [GeV]

Outline of Talk

- ATLAS data-taking and performance
- ATLAS recent physics analysis results
- ATLAS Upgrades
- Summary

Outline of Talk

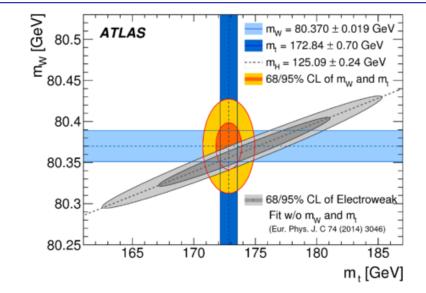
- ATLAS data-taking and performance
- ATLAS recent physics analysis results
- ATLAS Upgrades
- Summary

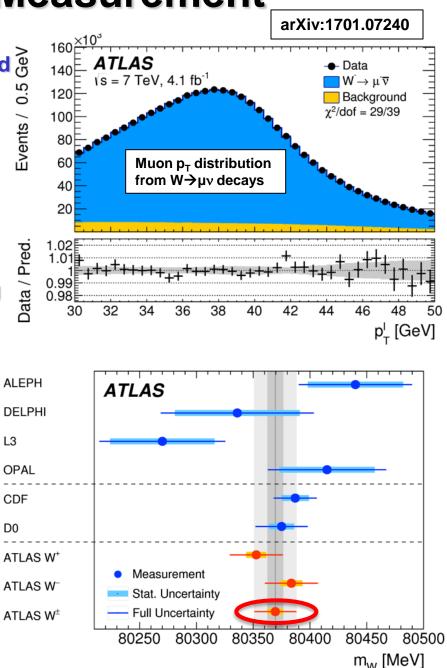

Only a few selected results presented here

Standard Model Processes

Standard Model Production Cross Section Measurements

Status: July 2017

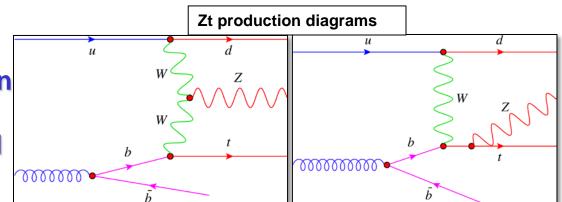

11

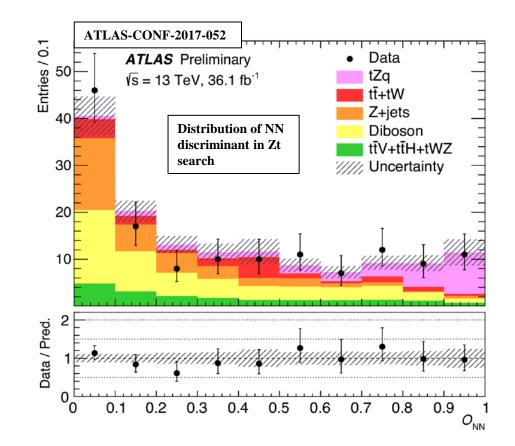


W Boson Mass Measurement

- 4.6 fb⁻¹ of 7 TeV data (W \rightarrow ev/ μ v)
- Huge amount of work since 2011 to understand of detector response and modelling of kinematic quantities, e.g. lepton p_T, E_T^{miss}
 - Calibration of W recoil with Z → ℓℓ data critical
- Similar precision to best previous single experiment measurement (from CDF)
- Result consistent with SM expectation
- Further progress requires improved modelling

 $m_W = 80.370 \pm 0.019 \text{ GeV}$ [± 7 MeV (stat.) ± 11 MeV (syst.) ± 14 MeV (modelling)]





Top Quark Physics example: Zt

 Previously evidence for single top quark production at LHC in s-channel, tchannel and Wt associated production

- Now also evidence for Zt production
 - Significance 4.2σ (5.4σ expected)
 - Cross-section 620 ± 170_{stat} ± 140_{syst} fb consistent with SM expectation
- Also m(top), ttW, ttZ, etc.

Searches for "Exotic" New Physics

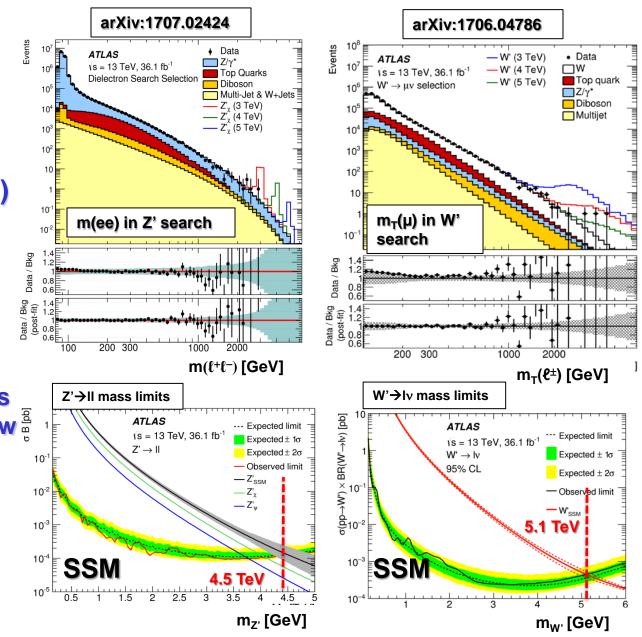
ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

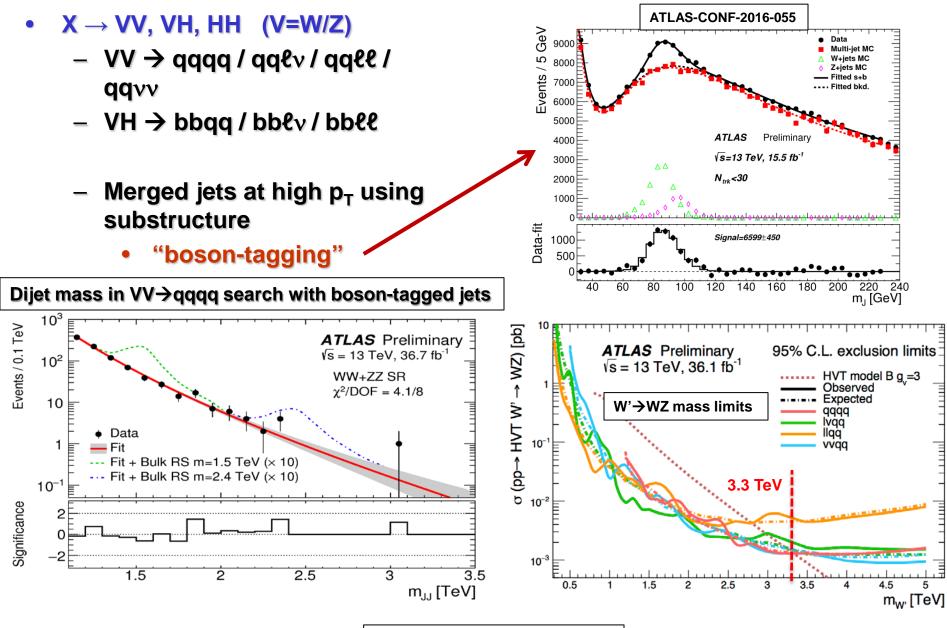
ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1} \qquad \sqrt{s} = 8, \ 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$ 2UED / RPP	$0 e, \mu$ 2γ $-$ $\geq 1 e, \mu$ $-$ 2γ $1 e, \mu$ $1 e, \mu$	1 - 4j - 2 j $\ge 2j$ $\ge 3j$ - 1 J $\ge 2 b, \ge 3$	Yes - - - Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	Mp 7.75 TeV Ms 8.6 TeV Mih 8.9 TeV Mih 8.2 TeV Mih 9.55 TeV GKK mass 4.1 TeV KK mass 1.75 TeV	$\begin{array}{l} n=2\\ n=3 \ \text{HLZ NLO}\\ n=6\\ n=6, M_D=3 \ \text{TeV, rot BH}\\ n=6, M_D=3 \ \text{TeV, rot BH}\\ k/\overline{M}_{PI}=0.1\\ k/\overline{M}_{PI}=1.0\\ \text{Tier (1,1), }\mathcal{B}(A^{(1,1)}\rightarrow tt)=1 \end{array}$	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \rightarrow \ell\ell \\ \text{SSM } Z' \rightarrow \tau\tau \\ \text{Leptophobic } Z' \rightarrow bb \\ \text{Leptophobic } Z' \rightarrow tt \\ \text{SSM } W' \rightarrow \ell\nu \\ \text{HVT } V' \rightarrow WV \rightarrow qqqq \text{ model B} \\ \text{HVT } V' \rightarrow WH/ZH \text{ model B} \\ \text{LRSM } W'_R \rightarrow tb \\ \text{LRSM } W'_R \rightarrow tb \end{array}$	2 e, μ 2 τ - 1 e, μ 1 e, μ 0 e, μ nulti-channe 1 e, μ 0 e, μ	$\begin{array}{c} - \\ - \\ 2 b \\ \geq 1 b, \geq 1 J \\ - \\ 2 J \\ el \\ 2 b, 0-1 j \\ \geq 1 b, 1 \\ \end{array}$	Yes - Yes	36.1 36.1 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass 4.5 TeV Z' mass 2.4 TeV Z' mass 1.5 TeV Z' mass 2.0 TeV W' mass 2.0 TeV V' mass 5.1 TeV V' mass 3.5 TeV V' mass 2.93 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
C	Cl qqqq Cl ℓℓqq Cl uutt 2	 2 e,μ (SS)/≥3 e,	2 j µ ≥1 b, ≥1	_ _ j Yes	37.0 36.1 20.3	Λ Λ Λ 4.9 TeV	21.8 TeV η _{LL} 40.1 TeV η _{LL} C _{RR} = 1	1703.09217 ATLAS-CONF-2017-027 1504.04605
MD	Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) $VV\chi\chi$ EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	1 - 4 j $\leq 1 j$ $1 J, \leq 1 j$	Yes Yes Yes	36.1 36.1 3.2	m _{med} 1.5 TeV m _{med} 1.2 TeV M, 700 GeV	$\begin{array}{l} g_q{=}0.25,g_{\chi}{=}1.0,m(\chi)<400~{\rm GeV}\\ g_q{=}0.25,g_{\chi}{=}1.0,m(\chi)<480~{\rm GeV}\\ m(\chi)<150~{\rm GeV} \end{array}$	ATLAS-CONF-2017-060 1704.03848 1608.02372
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \end{array} $	_ _ Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	eta=1 eta=1 eta=0	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ\; TT \rightarrow Ht + X \\ VLQ\; TT \rightarrow Zt + X \\ VLQ\; TT \rightarrow Wb + X \\ VLQ\; BB \rightarrow Hb + X \\ VLQ\; BB \rightarrow Zb + X \\ VLQ\; BB \rightarrow Wt + X \\ VLQ\; QQ \rightarrow WqWq \end{array} $	1 e,μ 1 e,μ 1 e,μ 2/≥3 e,μ	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 1 \ b, \geq 1J \\ \geq 2 \ b, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2/\geq 1 \ b \\ \geq 1 \ b, \geq 1J \\ \geq 1 \ b, \geq 1J \\ \geq 4 \ j \end{array}$	j Yes /2j Yes j Yes	13.2 36.1 36.1 20.3 20.3 36.1 20.3	T mass1.2 TeVT mass1.16 TeVT mass1.35 TeVB mass700 GeVB mass790 GeVB mass1.25 TeVQ mass690 GeV	$\begin{split} \mathcal{B}(T \to Ht) &= 1\\ \mathcal{B}(T \to Zt) &= 1\\ \mathcal{B}(T \to Wb) &= 1\\ \mathcal{B}(B \to Hb) &= 1\\ \mathcal{B}(B \to Zb) &= 1\\ \mathcal{B}(B \to Zb) &= 1\\ \mathcal{B}(B \to Wt) &= 1 \end{split}$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j 1 b, 2-0 j –	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q* mass 6.0 TeV q* mass 5.3 TeV b* mass 2.3 TeV b* mass 1.5 TeV ** mass 3.0 TeV ** mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_{g} = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 e, μ 3,4 e, μ (S: 3 e, μ, τ 1 e, μ - - -	2 j S) - 1 b - - √s = 1	- - Yes - 3 TeV	20.3 36.1 20.3 20.3 20.3 7.0	N ⁰ mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 livvisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1		1506.06020 ATLAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059

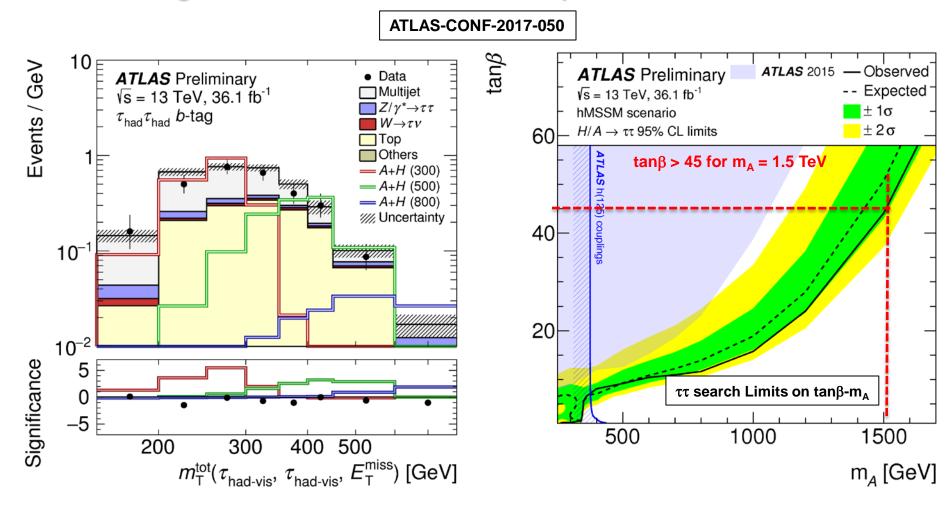

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

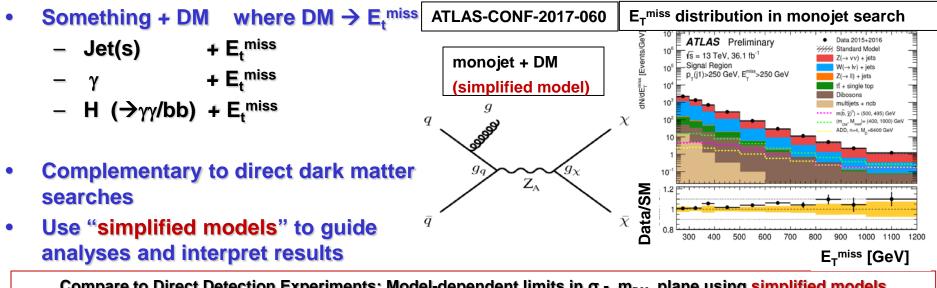

Resonance Searches - Dilepton, Lepton+E_T^{miss}

- X → ℓ+ℓ⁻ (eg Z')
 m(ℓ+ℓ⁻) Peak
- $Y \rightarrow \ell^{\pm} + E_t^{\text{miss}} (eg W')$ - $m_T(\ell^{\pm}) \text{ Peak/edge}$
- No significant excess
 over SM expectation
- 95% CL exclusion limits extracted in various new aphysics scenarios

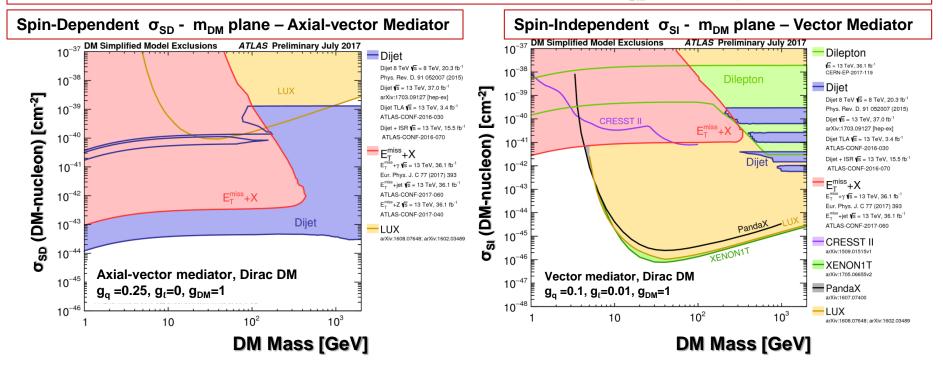
Resonance Searches - Dibosons



ATLAS-CONF-2017-018/051/055


Resonance Searches - $\tau^+ \tau^-$

- $X \rightarrow \tau^+ \tau^-$
 - Heavy Higgs, eg from SUSY
- No significant excesses over SM expectation



Searches for Dark Matter (DM)

Compare to Direct Detection Experiments: Model-dependent limits in σ - m_{DM} plane using simplified models

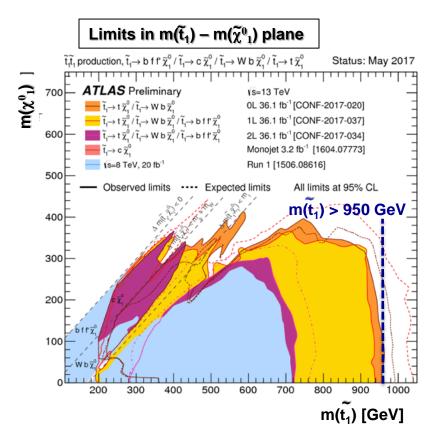
Searches for Supersymmetry

ATLAS SUSY Searches* - 95% CL Lower Limits

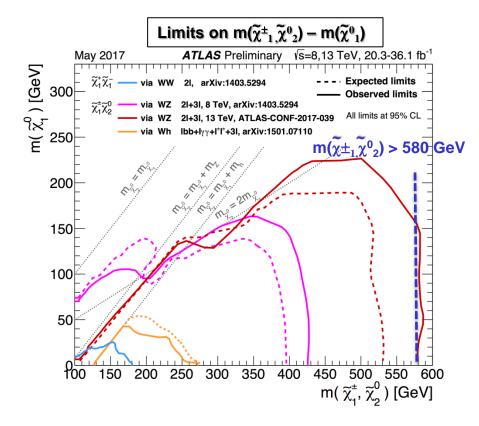
May 2017

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s}=7,8$	3 TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q} \bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \bar{q} \bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ (\text{compressed}) \\ \bar{g} \bar{s}, \bar{g} \rightarrow q \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q (W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q (W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q (W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q (W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q (W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q (W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q (W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{s} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{s} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \bar{g} \bar{s}, \bar{s} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \bar{s}, \bar{s} \rightarrow q \bar{s} \rightarrow q \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \bar{s} \\ \bar{s} \rightarrow q \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \bar{s} \\ \bar{s} \rightarrow q \bar{s} $	$\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1\text{-}2 \ \tau + 0\text{-}1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets	Yes Yes Yes	20.3 36.1 3.2 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	\$\vec{q}\$,\$\vec{k}\$ \$\vec{q}\$ \$\vec{q}\$ \$\vec{k}\$ \$\vec	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV 1.65 TeV 1.8 TeV 1.8 TeV	$\begin{split} & m(\hat{q})\!=\!m(\hat{g}) \\ & m(\tilde{\xi}_1^0)\!<\!200~GeV, m(1^{st}~gen,\tilde{q})\!=\!m(2^{ad}~gen,\tilde{q}) \\ & m(\hat{g},m,\tilde{\xi}_1^0)\!<\!50~GeV \\ & m(\tilde{\xi}_1^0)\!<\!200~GeV, m(\tilde{\xi}^{zt})\!=\!\!0.5(m(\tilde{\xi}_1^0)\!+\!m(\tilde{g})) \\ & m(\tilde{\xi}_1^0)\!<\!200~GeV \\ & m(\tilde{\xi}_1^0)\!<\!200~GeV \\ & cr(NLSP)\!<\!0.1~mm \\ & m(\tilde{\xi}_1^0)\!\cdot\!950~GeV, cr(NLSP)\!<\!0.1~mm, \mu\!<\!0 \\ & m(NLSP)\!\!<\!\!50~GeV, cr(NLSP)\!<\!0.1~mm, \mu\!<\!0 \\ & m(NLSP)\!<\!1.30~GeV \\ & m(\tilde{G})\!>\!1.8\times10^{-4}~eV, m(\tilde{g})\!=\!m(\tilde{q})\!=\!1.5~TeV \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-030 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.	$\widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0}$ $\widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ $\widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow b \overline{t} \widetilde{\chi}_{1}^{+}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	2 2 2 1.3	1.92 TeV 1.97 TeV 17 TeV	m(\tilde{X}_1^0)<600 GeV m(\tilde{X}_1^0)<200 GeV m(\tilde{X}_1^0)<300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1} \tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b \tilde{x}_{1}^{0} \\ \tilde{b}_{1} \tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b \tilde{x}_{1}^{1} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow b \tilde{x}_{1}^{1} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow b \tilde{x}_{1}^{1} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow b \tilde{x}_{1}^{0} \\ \tilde{t}_{2} \tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2} \tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b		36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	b1 950 GeV b1 275-700 GeV i1 117-170 GeV 200-720 GeV i1 90-198 GeV 205-950 GeV i1 90-323 GeV 205-950 GeV i1 90-323 GeV 200-720 GeV i2 290-790 GeV 200-790 GeV i2 320-880 GeV 320-880 GeV	₌2 TeV	$\begin{split} &m(\tilde{x}_{1}^{0}){<}420\text{GeV} \\ &m(\tilde{x}_{1}^{0}){<}200\text{GeV},m(\tilde{x}_{1}^{0}){=}m(\tilde{x}_{1}^{0}){+}100\text{GeV} \\ &m(\tilde{x}_{1}^{0}){=}2m(\tilde{x}_{1}^{0}),m(\tilde{x}_{1}^{0}){=}55\text{GeV} \\ &m(\tilde{x}_{1}^{0}){=}1\text{GeV} \\ &m(\tilde{x}_{1}^{0}){=}150\text{GeV} \\ &m(\tilde{x}_{1}^{0}){=}0\text{GeV} \\ &m(\tilde{x}_{1}^{0}){=}0\text{GeV} \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,\mathbf{k}}\tilde{\ell}_{L,\mathbf{k}}, \tilde{\ell} \rightarrow \tilde{\ell}\tilde{x}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\bar{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu\bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}(\bar{\nu}\nu), \ell\bar{\nu}\tilde{\ell}_{L}\ell(\bar{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}/\hbar\chi_{1}^{0}, h \rightarrow b\bar{b}/WW/\tau\tau/\gamma\gamma \\ \tilde{\chi}_{2}^{+}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{R}\ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \\ \end{array} $		0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	? 90-440 GeV X [±] ₁ 710 GeV X [±] ₁ 760 GeV X [±] ₂ 580 GeV X [±] ₂ 580 GeV X [±] ₂ 635 GeV W 115-370 GeV W 590 GeV		$\begin{array}{l} \mathfrak{m}(\tilde{k}_{1}^{0})\!=\!0 \\ \mathfrak{m}(\tilde{k}_{1}^{0})\!=\!0, \ \mathfrak{m}(\tilde{\epsilon}, \tilde{\nu})\!=\!0.5(\mathfrak{m}(\tilde{\epsilon}_{1}^{0})\!+\!\mathfrak{m}(\tilde{k}_{1}^{0})) \\ \mathfrak{m}(\tilde{\kappa}_{2}^{0})\!=\!0, \ \mathfrak{m}(\tilde{\epsilon}, \tilde{\nu})\!=\!0.5(\mathfrak{m}(\tilde{\kappa}_{1}^{1})\!+\!\mathfrak{m}(\tilde{\kappa}_{1}^{0})) \\ \mathfrak{m}(\tilde{\kappa}_{2}^{0}), \ \mathfrak{m}(\tilde{\kappa}_{1}^{0})\!=\!0.5(\mathfrak{m}(\tilde{\kappa}_{1}^{1})\!+\!\mathfrak{m}(\tilde{\kappa}_{1}^{0})) \\ \mathfrak{m}(\tilde{\kappa}_{1}^{0})\!=\!\mathfrak{m}(\tilde{\kappa}_{2}^{0}), \ \mathfrak{m}(\tilde{\kappa}_{2}^{0})\!=\!0, \ \tilde{\epsilon} \ \text{decoupled} \\ \mathfrak{m}(\tilde{\kappa}_{1}^{0})\!=\!\mathfrak{m}(\tilde{\kappa}_{2}^{0}), \ \mathfrak{m}(\tilde{\epsilon}, \tilde{\nu})\!=\!0.5(\mathfrak{m}(\tilde{\kappa}_{2}^{0})\!+\!\mathfrak{m}(\tilde{\kappa}_{1}^{0})) \\ \mathfrak{cr}\!<\!1 \ nm \\ \mathfrak{cr}\!<\!1 \ nm \end{array}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	$\begin{array}{l} \text{Direct} \ \tilde{x}_1^+ \tilde{x}_1^- \ \text{prod., long-lived} \ \tilde{x}_1^+ \\ \text{Direct} \ \tilde{x}_1^- \ \tilde{x}_1^- \ \text{prod., long-lived} \ \tilde{x}_1^+ \\ \text{Stable, stopped} \ \tilde{g} \ \text{R-hadron} \\ \text{Stable} \ \tilde{g} \ \text{R-hadron} \\ \text{Metastable} \ \tilde{g} \ \text{R-hadron} \\ \text{Metastable} \ \tilde{g} \ \text{R-hadron} \\ \text{GMSB, stable} \ \tilde{r}, \tilde{x}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu) \\ \text{GMSB}, \tilde{x}_1^0 \rightarrow \gamma \tilde{G}, \ \text{long-lived} \ \tilde{x}_1^0 \\ \tilde{g}, \tilde{x}_1^0 \rightarrow eev(euv) \mu \mu v \\ \text{GGM} \ \tilde{g}, \tilde{x}_1^0 \rightarrow Z \tilde{G} \end{array}$	Disapp. trk dE/dx trk 0 trk dE/dx trk $1-2\mu$ 2γ displ. $ee/e\mu/\mu$ displ. vtx + jet		Yes Yes - - Yes - -	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	\$\vec{k}_1^+\$ 430 GeV \$\vec{k}_1^+\$ 495 GeV \$\vec{k}_2\$ 850 GeV \$\vec{k}_2\$ 850 GeV \$\vec{k}_2\$ 850 GeV \$\vec{k}_2\$ 850 GeV \$\vec{k}_2\$ 537 GeV \$\vec{k}_1^0\$ 537 GeV \$\vec{k}_1^0\$ 1.0 TeV \$\vec{k}_1^0\$ 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} & m(\tilde{k}_1^+) \cdot m(\tilde{k}_1^0) - 160 \; MeV, \tau(\tilde{k}_1^+) = 0.2 \; ns \\ & m(\tilde{k}_1^+) \cdot m(\tilde{k}_1^0) - 160 \; MeV, \tau(\tilde{k}_1^+) < 15 \; ns \\ & m(\tilde{k}_1^0) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ & m(\tilde{k}_1^0) = 100 \; GeV, \; \tau > 10 \; ns \\ & 10 < tan g < 50 \\ & 1 < \tau(\tilde{k}_1^0) < 3 \; ns, \; SPSB \; model \\ & 7 < cet(\tilde{k}_1^0) < 740 \; mm, \; m(\tilde{g}) = 1.3 \; TeV \\ & 6 < cet(\tilde{k}_1^0) < 480 \; mm, \; m(\tilde{g}) = 1.1 \; TeV \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
ЧН	$ \begin{array}{l} LFV pp \rightarrow \widetilde{\mathfrak{v}}_\tau + X, \widetilde{\mathfrak{v}}_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \; RPV \; CMSSM \\ \widetilde{x}_1^*\widetilde{x}_1^*, \widetilde{x}_1^+ \rightarrow W\widetilde{x}_1^{0}, \widetilde{x}_1^{0} \rightarrow eev, e\mu v, \mu\mu\nu \\ \widetilde{x}_1^*\widetilde{x}_1^*, \widetilde{x}_1^+ \rightarrow W\widetilde{x}_1^{0}, \widetilde{x}_1^{0} \rightarrow \tau\tau v_e, e\tau v_\tau \\ \widetilde{g}\widetilde{s}, \widetilde{g} \rightarrow qqq \\ \widetilde{g}\widetilde{s}, \widetilde{g} \rightarrow qq\widetilde{x}_1^{0}, \widetilde{x}_1^{0} \rightarrow qqq \\ \widetilde{g}\widetilde{s}, \widetilde{g} \rightarrow q\widetilde{x}_1^{0}, \widetilde{x}_1^{0} \rightarrow qqq \\ \widetilde{g}\widetilde{s}, \widetilde{g} \rightarrow \widetilde{t}_1, \widetilde{t}_1 \rightarrow bs \\ \widetilde{t}_1\widetilde{t}_1, \widetilde{t}_1 \rightarrow bs \\ \widetilde{t}_1\widetilde{t}_1, \widetilde{t}_1 \rightarrow b\ell \end{array} $	04 1 <i>e</i> ,μ8		ets - 4 <i>b</i> - 4 <i>b</i> -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	\$\begin{aligned} \$\begin{aligned} \$x_1^1\$ & 1.14 TeV \$\begin{aligned} \$x_1^1\$ & 450 GeV \$\end{aligned} \$\begin{aligned} \$x_1^1\$ & 1.08 TeV \$\begin{aligned} \$\begin{aligned} \$x_1^1\$ & 1.08 TeV \$\begin{aligned} \$x_1^2\$ & 1.08 TeV \$\bex_1^2\$ & 1.08 TeV \$\egin{aligned} \$x_1^2\$ & 1.08 TeV \$ali	1.55 TeV	$ \begin{split} \lambda_{111}' = 0.11, \lambda_{132/133/233} = 0.07 \\ m(\tilde{q}) = m(\tilde{g}), c_{T,S,P} < 1 \text{ mm} \\ m(\tilde{k}^2) > 400 \text{ GeV}, \lambda_{122} \neq 0 (k = 1, 2) \\ m(\tilde{k}^2_1) > 0.2 \times m(\tilde{k}^2_1), \lambda_{133} \neq 0 \\ \text{BR}(t) = \text{BR}(b) = \text{BR}(t) = 0 \\ \text{BR}(t) = 0 \\ m(\tilde{k}^2_1) = 1 \text{ TeV}, \lambda_{122} \neq 0 \\ m(\tilde{k}^2_1) = 1 \text{ TeV}, \lambda_{122} \neq 0 \\ \text{BR}(\tilde{t}_1 \rightarrow be/\mu) > 20\% \end{split} $	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-036
	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	ē 510 GeV		m(\tilde{k}_{1}^{0})<200 GeV	1501.01325
	*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on 10^{-1} 1 Mass scale [TeV]								

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

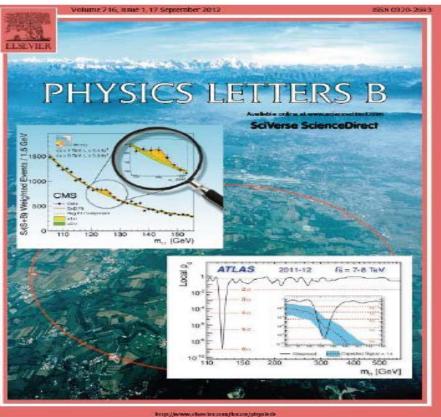

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$


SUSY: 3rd Generation and Electroweak

• "Natural SUSY"

- \rightarrow light 3rd generation squarks and higgsinos cancel Higgs mass loop corrections
- Direct stop (\tilde{t}_1)
 - b-jets + E_t^{miss}
 - Many different signal regions:
 - Highly optimized


- Direct production of charginos and neutralinos with
 - 2 or 3 leptons + E^{miss}
 - Many different signal regions:
 - Highly optimized

Higgs Boson Studies ...

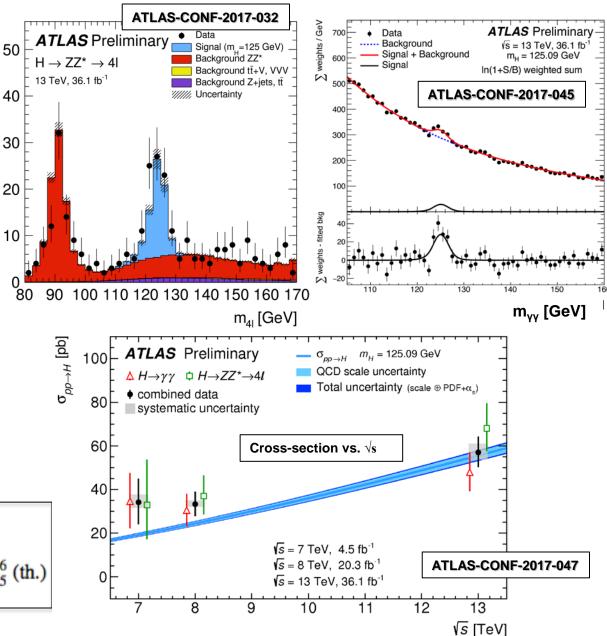
- Higgs-like particle discovery by ATLAS and CMS announced July 4th, 2012. ATLAS paper:
 - Phys. Lett. B 716 (2012) 1-29
 - 7503 citations (as of 2017-08-03)
- March 2013: key papers on particle properties
 - new particle declared "a Higgs boson"
- Citation for 2013 Nobel Prize in Physics

21

Higgs Boson Production at $\sqrt{s} = 13$ TeV

GeV

2.5

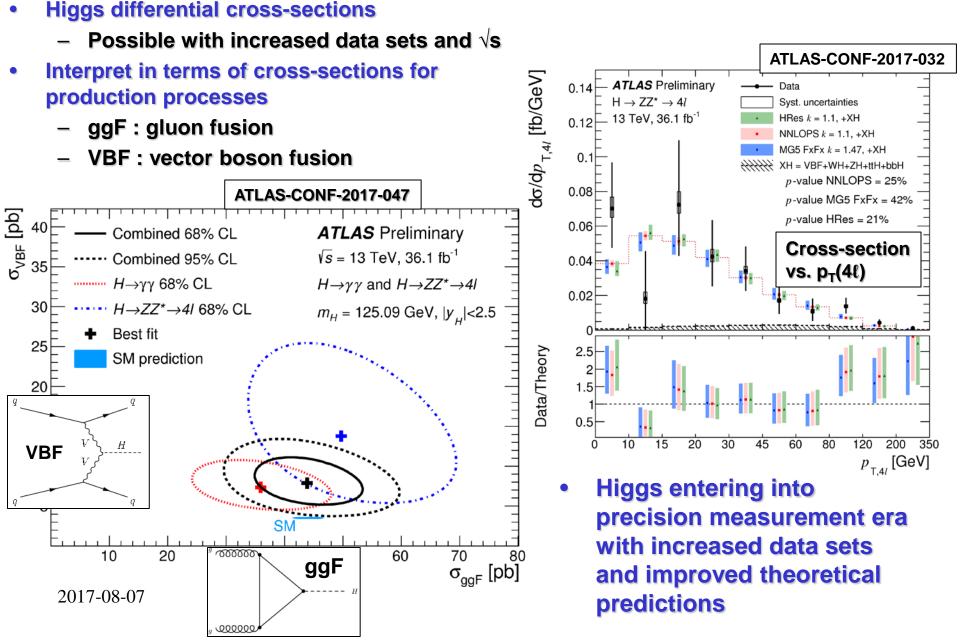

Events / 2

- Measurements use H→ZZ*→4ℓ and H→γγ channels
- Larger √s & data ⇒ more measurements possible
 - Fiducial cross-sections
 - Differential crosssections
 - Total production crosssections (assumes SM branching ratios)
- Combined global signal strength compatible with Standard Model:

 $\mu = 1.09 \pm 0.12$

$$= 1.09 \pm 0.09$$
 (stat.) $^{+0.06}_{-0.05}$ (syst.) $^{+0.06}_{-0.05}$ (th.)

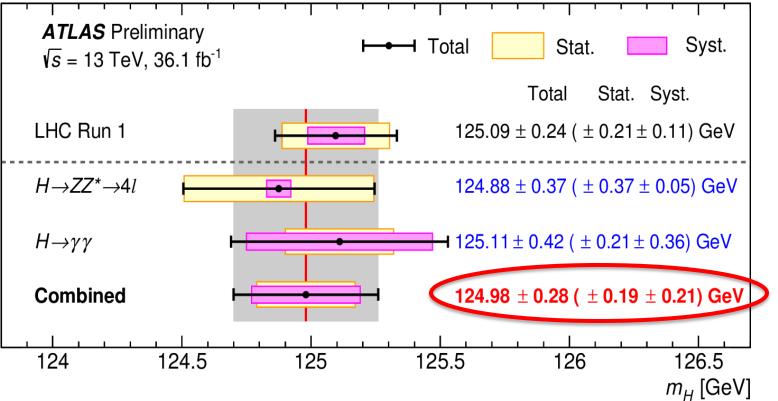
2017-08-07



22

Theory uncertainty reduced: N3LO ggF calculations

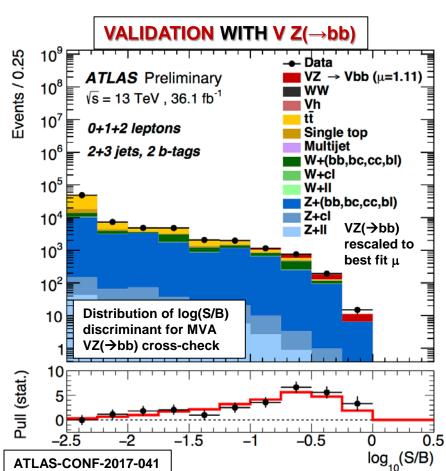
Higgs Boson Cross-Sections



Measurement of the Higgs Boson Mass

• $H \rightarrow ZZ^* \rightarrow 4\ell \text{ and } H \rightarrow \gamma \gamma$

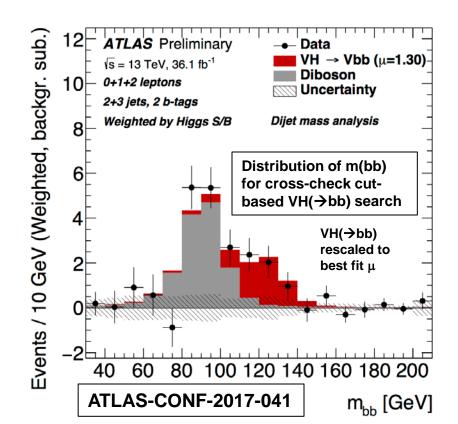
ATLAS-CONF-2017-046

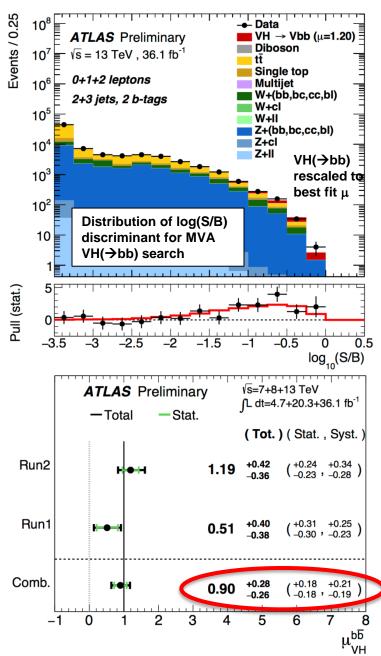

- Measurements complementary:
 - 4ℓ channel stat uncertainty dominates with v. small systematics
 - Will continue to improve as ATLAS acquires more data even into HL-LHC era
 - $-\gamma\gamma$ channel syst uncertainty dominates (photon energy scale calibration)
- In 4ℓ channel measurements consistent among electron/muon sub-channels
- 4ℓ and γγ measurements consistent
- Combined measurement consistent with Run-1

$\stackrel{\text{\tiny PALLAS}}{\longrightarrow}$ H \rightarrow bb: analysis strategy and validation

- H→bb mode dominates Higgs decays (BR~58%)
- Most sensitive channel exploits VH(→bb), V=W/Z
- Combined Tevatron significance at m_H=125 GeV 2.8σ
- Combined Run-1 ATLAS+CMS significance 2.6σ
- ATLAS analysis combines Z and W final states:
 - 2-lepton (Z→ℓℓ)
 - 1-lepton (W→ℓv)
 - 0-lepton (Z→vv)
- MVA-based (Boosted Decision tree), cross-checked by cut-based selection
- Validation of performance and systematics understanding from independent search for VZ(→bb)
 - Obs. (exp.) significance: 5.8σ (5.3σ)
 - Observed signal strength:

 $\mu_{VZ} = 1.11^{+0.12}_{-0.11}$ (stat.) $^{+0.22}_{-0.19}$ (syst.)

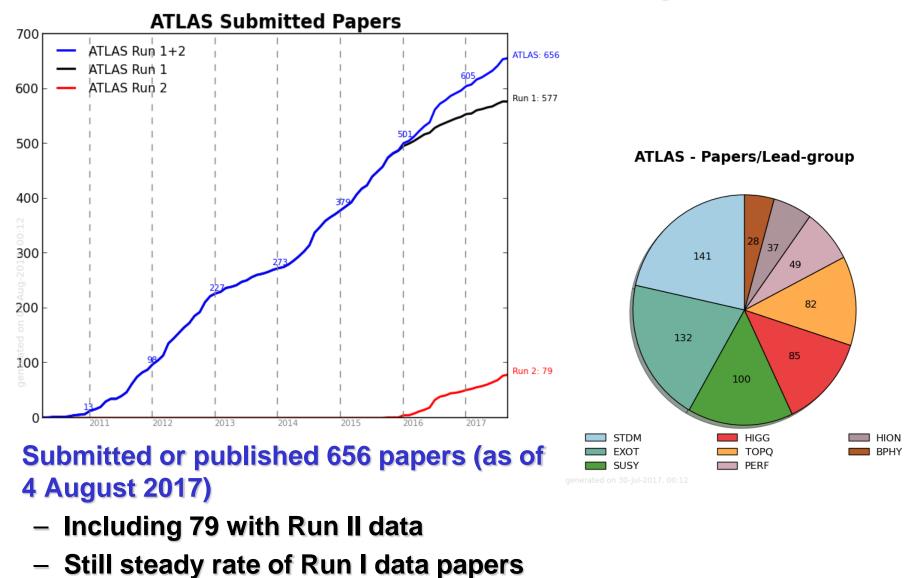

q


 \bar{q}

 W/Z^*

Evidence for $H \rightarrow bb$

- BDT trained separately for VH(→bb) search
- Observed significance 3.5σ (3.0σ expected)
- Cross-check with cut-based analysis gives 3.5σ observed (2.8σ expected)
- Combination of MVA result with ATLAS Run-1 gives 3.6σ observed (4.0σ expected)
- Evidence for H→bb, consistent with SM



$W(\rightarrow e_{\nu})H(\rightarrow bb)$ candidate

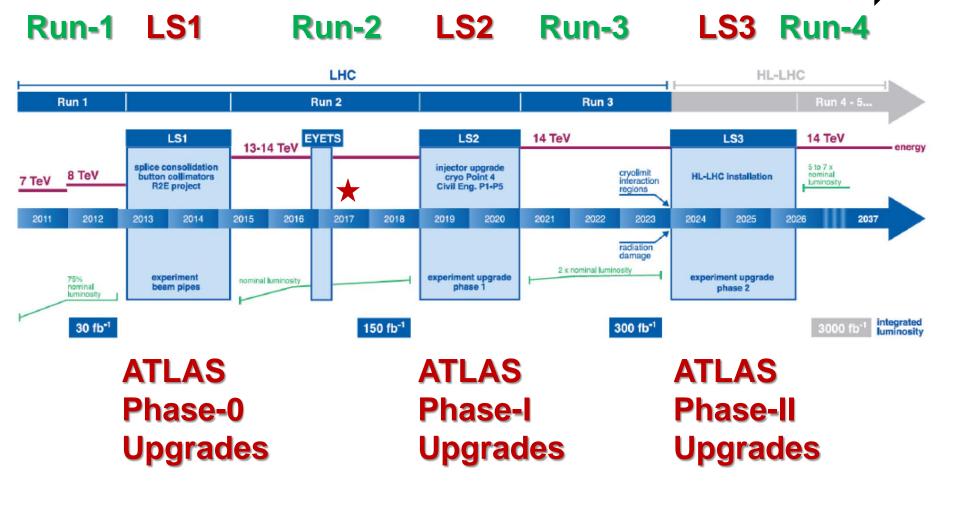
EXPERI Run 62.53 03:06:16

ATLAS Collision Data Papers

(measurements)

2017-08-07

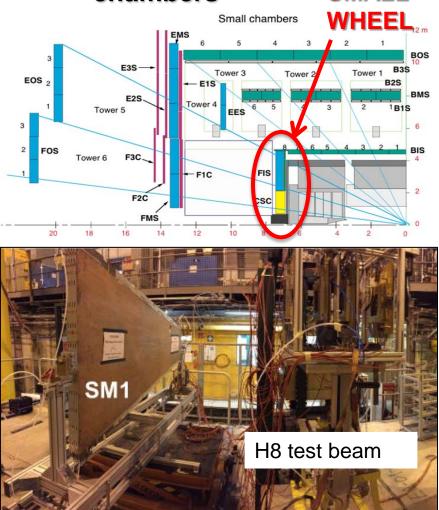
Rob McPherson



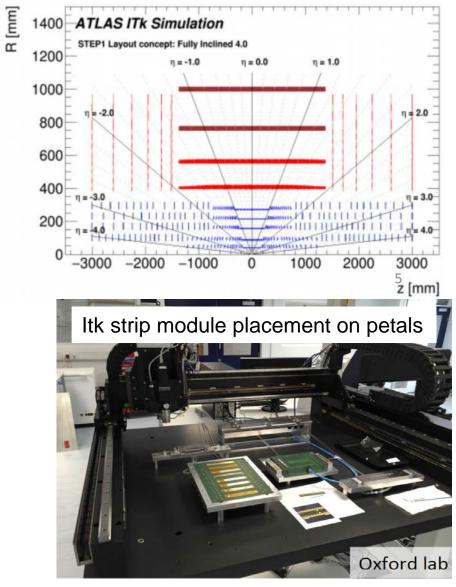
Outline of Talk

- ATLAS data-taking and performance
- ATLAS recent physics analysis results
- ATLAS Upgrades
- Summary

LHC / ATLAS Upgrade Timeline



Rob McPherson


HL-LHC

Upgrade examples in pictures

- Phase-I: new muon small wheel
 - Micromegas and thin-gap chambers SMALL

- Phase-II: new inner tracker
 - All silicon design strips and pixels

Outline of Talk

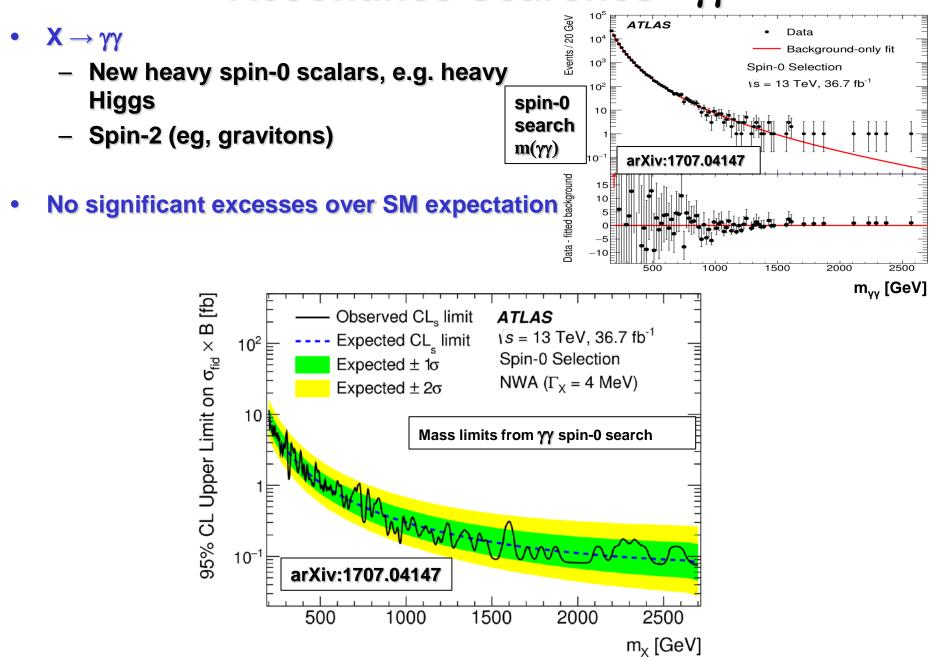
- ATLAS data-taking and performance
- ATLAS recent physics analysis results
- ATLAS Upgrades
- Summary

Summary

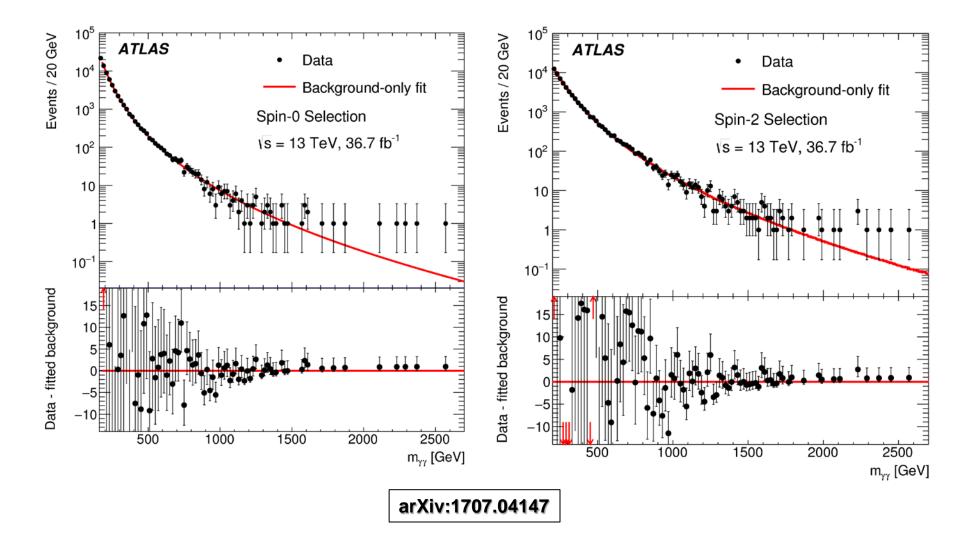
- ATLAS detector, trigger, computing and analysis are coping well with luminosities approaching twice LHC design
- Many measurements from collision data
 - Challenging theory calculations in many final states
 - Entering precision measurement era for H(125)
 - Evidence for $H \rightarrow bb$ and closing in on rare Higgs processes
 - Wide spectrum of results I cannot cover see later talks this week eg. B-hadron physics, heavy ions, QCD
- Huge range of searches for BSM physics
 - No significant excesses have persisted so far
- ATLAS Upgrade program also very active preparing for HL-LHC
 LHC program still in its infancy. Only a ≈ percent of full data so far.
- We are approaching sensitivities for new, weaklycoupled electroweak-scale physics of any form.
- Huge credit and thanks to the LHC and injector teams who are delivering extraordinary luminosities! 2017-08-07 Rob McPherson

ATLAS results

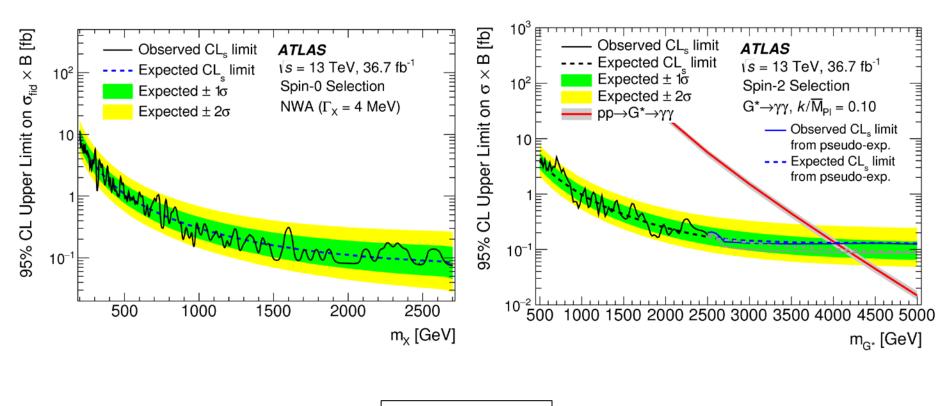
- For further ATLAS results and details of the ones shown here:
 - ATLAS public results page: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>
 - Talks at this symposium include the following:
 - Elisabetta Pianori: Higgs in diboson modes
 - Keti Kaadze: Higgs in fermionic modes
 - Soshi Tsuno: BSM Higgs
 - Iacopo Vivarelli: SUSY searches
 - Sunil Somalwar: Exotic Searches
 - Oliver Buchmueller: Searches for DM
 - Yuji Yamazaki: top-quark measurements
 - Qiang Li: EW measurements
 - Gabriella Pasztor: Hard QCD
 - Marek Tasevsky: Soft QCD
 - Alexander Kalweit: Experimental Heavy Ion results
 - Yuan-Ning Gao: Hadron Spectroscopy



Additional Material


Rob McPherson

Resonance Searches - $\gamma\gamma$



High Mass Diphoton Mass Distributions

High Mass Diphoton Limits

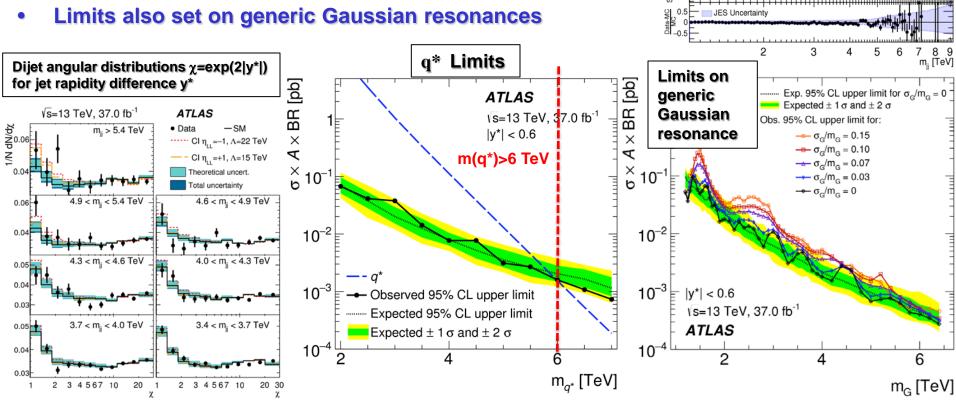
arXiv:1707.04147

Searches with Dijets

ï

Events

Dijet mass

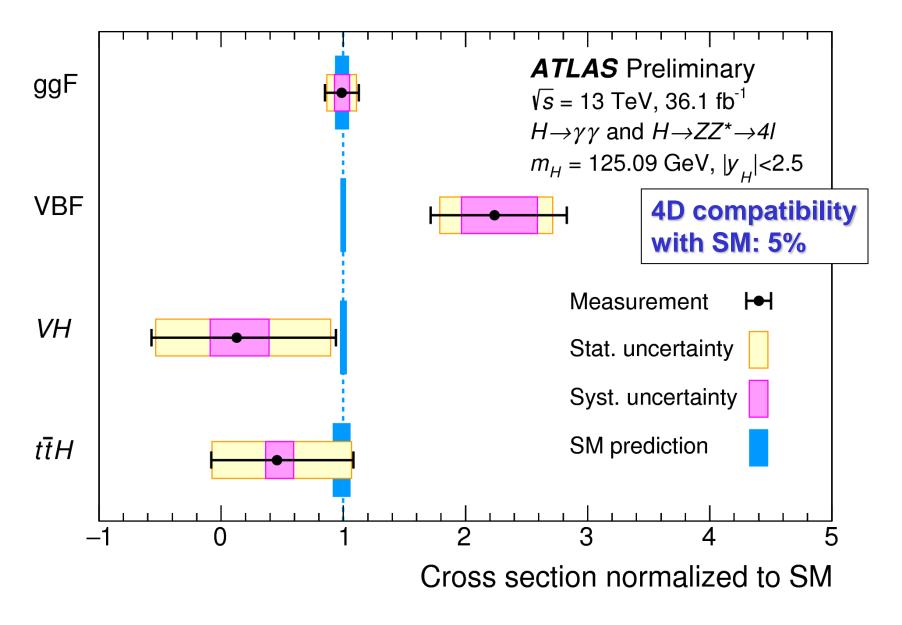

distribution

 $q^{\star}, \sigma \times 10$

 $|y^*| < 0.6$

p-value = 0.63 Fit Range: 1.1 - 8.2 TeV

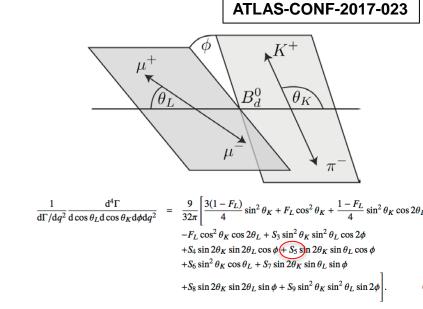
- dijet mass and angular distributions
- No significant excesses over SM expectation
- Significantly extend limits. e.g.
 - Excited quarks: m(q*) > 6.0 TeV (5.8 TeV exp.)
 - Add. gauge bosons: m(W') > 3.6 TeV (3.7 TeV exp.)
 - Quantum Black Holes: m(BH) > 8.9 TeV (8.9 TeV exp.)
 - Contact Interactions: $\Lambda > 13.1/21.8$ TeV ($\eta_{LL} = +1/-1$)

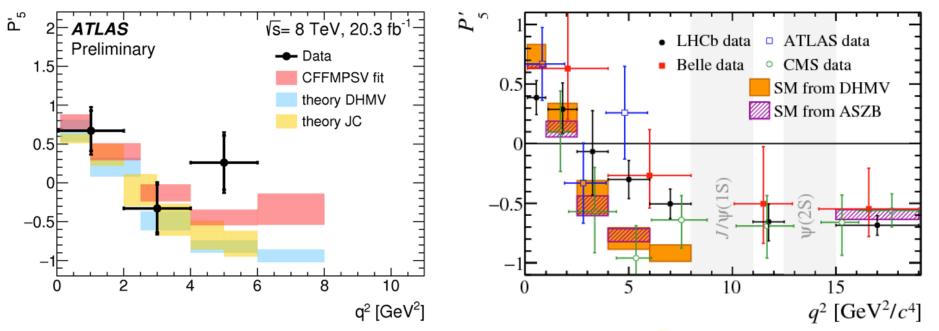

arXiv:1703.09127

ATLAS (s=13 TeV, 37.0 fb⁻¹

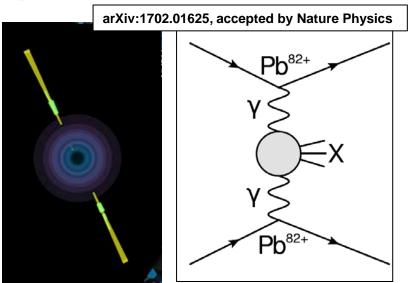
Data Background fit BumpHunter interval

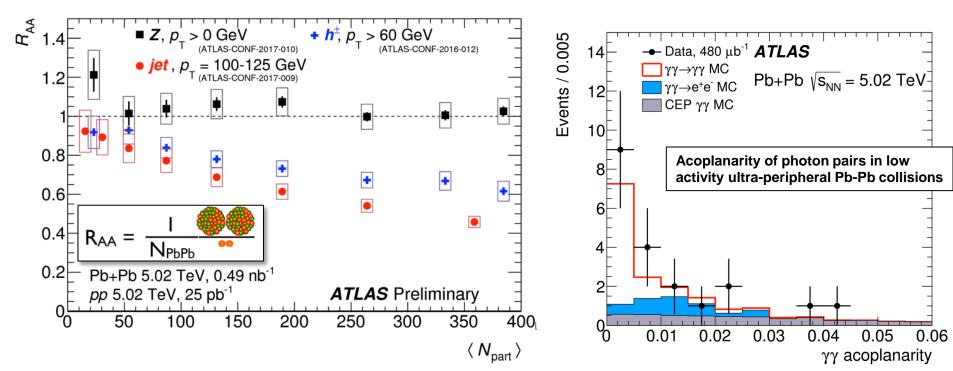
 $q^*, m_{q^*} = 4.0 \text{ TeV}$ $q^*, m_{q^*} = 5.0 \text{ TeV}$


Higgs Production Mode Signal Strength

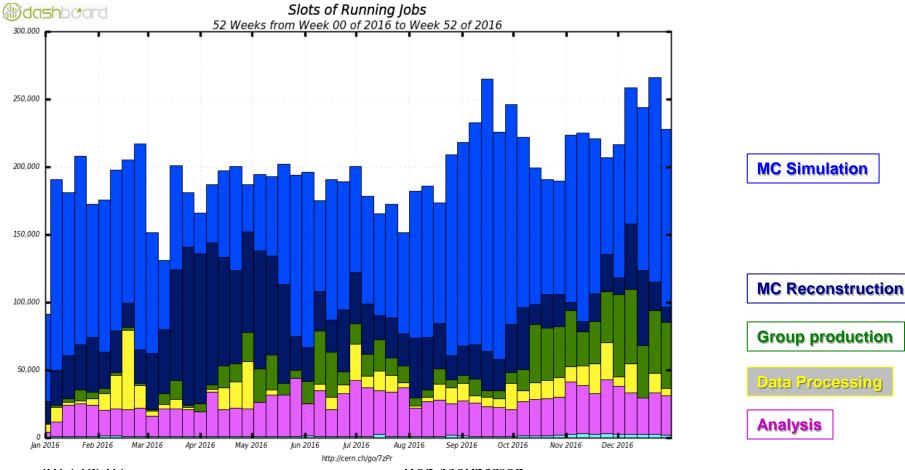


Physics with B Hadrons

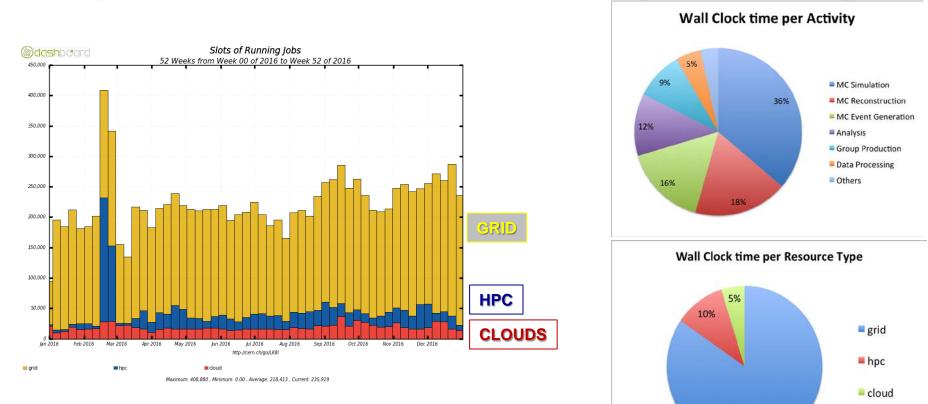

- Kinematics of products from decay B_d⁰→K*µ⁺µ⁻ measured to constrain components of generic expression for amplitude
- P5' parameter (amplitude normalised by fraction of longitudinally polarised K*) measured to exceed SM expectation at moderate q² = m(μμ) ~ 5 GeV² by LHCb and Belle
- ATLAS analysis with 8 TeV Run-1 data consistent with SM expectation in this bin, but also with LHCb and Belle measurements



Heavy Ion Physics


- Evidence for light-by-light scattering γγ → γγ in 5 TeV Ultra-Peripheral Pb-Pb collisions
- Further evidence that production of strongly interacting particles is increasingly suppressed as density of nuclear medium increases.
 - Evidence for jet suppression up to ~1 TeV
- Results with novel sub-event cumulant method removing dijet contributions from pp and p-Pb elliptic flow measurements (ATLAS-CONF-2017-002)

Computing


- WLCG has been fundamental to ATLAS physics analysis
 - Fully leverage all pledged resources
 - Aggressively use non-pledged CPU resources

KOD MICPherson

High Performance Computing, Clouds

- Increasing opportunistic use of clouds and HPCs: ~15%
 - event generation and Monte Carlo production
- Integration of non-Grid resources in ATLAS: big investment, big return

Rob McPherson

85%

45 ATLAS Upgrade Timelines 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026						
Phase Oupgrade:Consolidation, $\sqrt{s}=13$ TeV,25nsec bunch spacing, $\mathcal{L}\approx 1x10^{34}$ cm ⁻² s ⁻¹ ($\mu\approx 30$ —50) $\int \mathcal{L} \approx 150$ fb ⁻¹	 Phase f upgrade: Likely √s=14 TeV L≈2x10³⁴ cm⁻²s⁻¹ (μ≈60) ∫L≈ 300 fb⁻¹ 	Phase II trpgrade: L ≈ 7x10 ³⁴ cm ⁻² s ⁻¹ (μ≈200) ∫L ≈ 3000 fb ⁻¹				
 New insertable pixel b- layer (IBL) New AI beam pipe New pixel services New evaporative cooling plant Consolidation (calorimeter power supplies) Neutron Shielding Finish EE muons installation Upgrade magnet cryo 2017-08-07 	 Topological Level-1 Trigger Processor New forward diffractive physics detectors AFP New Muon Small Wheel (NSW) High Precision Calorimeter Level-1 Trigger Fast Track Trigger (FTK) Trigger-DAQ 	 All new Tracking Inner Detector Calorimeter Electronics Upgrades Muon system upgrades Level-1 track trigger Trigger-DAQ High Granularity Timing Detector (R&D) 				