

LEPTON+PHOTON 2017 Guangzhou, China

HIGHLIGHTS FROM CMS

Christian Autermann on behalf of the CMS collaboration

> RWTH Aachen University, Germany

SPONSORED BY THE

Federal Ministry of Education and Research

CMS collaboration

- 3500 scientists, engineers, and students
- 199 institutes
- 46 countries

Overview

CMS Status: Summer 2017

- New Pixel detector
- New HF calorimeter readout
- Improved L1 Trigger
- <u>Physics Highlights</u>: 2016 data
 - using full 40 fb⁻¹ 13 TeV data
 - 39 new results at Moriond 2017
 - 22 new results at LHCP 2017
 - 20 new results at EPS-HEP 2017
 - Here: selected new results

⁶³⁵ collider data papers submitted as of 2017-07-25

SUISSI

RANC

CMS

LP2017 Christian Autermann

CERN Mevrin

The Large Hadron Collider at CERN

Alt all dias

HCb

LHC 27 km

CERN Prévessin

-

10

ATLAS

SPS 7 km

ALICE

5

HF upgrade, Muon-endcap GEM prototype

 HF readout upgraded replaced PMTs in LS1 (2×QE, 2×Gain, dual readout, 1/6 thick window/Cherenkov)

• GEM GE1/1 slice demonstrator installed ($5 \times 10^{\circ}$)

EYTS 2017: Pixel Detector Upgrade

- 4 layers, 3 disks
 - smaller radius inner layer (3cm)
- New readout chip
 - higher efficiency at high rate & high pile-up (up to 100 PU)
- CO2 cooling and DC-DC powering
 - less material

CMS Performance

8

Active Channels

CMS Public

New Pixel detector performance

- Time alignment of Layer 1 and 2, which share a common programmable time delay, was difficult due a faster Layer 1 ROC.
 We succeeded in establishing an optimal common plateau of efficiency with values close to 99% for all pixel layers and disks at luminosities L=1.6E34cm⁻² s⁻¹.
 - The timing is chosen to favour the Layer 1 performance.

Although not yet at the ultimate detector performance, more complex functions like vertexing, b-tagging, and HLT electron reconstruction are significantly better than with the old detector, which would not have been able to cope with the rates in the first place.

10

Performance L1 e/ γ trigger

- Full upgrade of L1 trigger system during LS1
- cope with high inst. luminosity of 10³⁴ cm⁻²s⁻¹ and pileup

Examples of jet like cluster shapes

CMS_DP_2017_024

11

Performance L1 muon trigger

- Improved L1 muon track finding
- Improved L1 muon p_T resolution

- L1 muon p_T>25 GeV
 efficiency vs. offline p_T
- L1 muon trigger with 25 GeV threshold expected to stay unprescaled in 2017 data taking

12

Performance Alignment

- Movements Barrel Pixel in global y-direction
- range corresponds to 16.4 fb⁻¹
- Gray bands: Magnet ramps

- Barrel pixel median residuals local y-positions
- Barrel pixel position is very sensitive to changes in temperature and magnetic field
- End-of-year alignment better than the alignment used in data taking by a factor 4

Time

13

Performance MET in high pileup

- Compare the well measured $Z \rightarrow II$ to • the recoiling hadronic system u_{T}
- Compare Particle Flow (PF) and PUPPI 10.1007/JHEP10(2014)059
- Resolution of parallel and perpendicular components of recoil:

CMS Preliminary

Type 1 PF

120

60

40

20

α (n) [GeV]

14

CMS Experiment at LHC, CERN Data recorded: Sun Jul 12 07:25:11 2015 CEST Run/Event: 251562 / 111132974 Lumi section: 122 Orbit/Crossing: 31722792 / 2253

- m(t) = 176 GeV
- p_T = 488 GeV
- Three subjets

- m(t) = 177 GeV
- p_T = 613 GeV
- Three subjets

15

CMS Luminosity

Successful data-taking in 2016

- second year of data at center-of-mass energy of 13 TeV
- 38 fb⁻¹ recorded, exceeding goal of 25 fb⁻¹
- 92% of delivered luminosity was recorded
- dataset of presented physics results

CMS Peak Luminosity Per Day, pp, 2016, $\sqrt{s} =$ 13 TeV

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

LP2017 Christian Autermann

CMS Luminosity

16

Data-taking in 2017

CMS Integrated Luminosity, pp, 2017, $\sqrt{s}=$ 13 TeV

LP2017 Christian Autermann

17

18

High expectations for the 13 TeV Run 2

- Cross section of processes increase with center-of-mass energy depending on the process mass scale
- Already twice the luminosity

of the 8 TeV dataset

Good for searches

LP2017

19

Contents

- <u>CMS Status</u>
- Physics Highlights
 - QCD multijet production
 - Electroweak production
 - Top physics
 - Higgs physics
 - Searches for New Physics
 - Exotica
 - Supersymmetry
- Conclusion

CMS-PAS-SMP-16-010

21

QCD: Differential jet production

- Dijet topology: unfolded as function of jet-mass and jet $\ensuremath{\mathsf{p}_{\mathsf{T}}}$
- jet mass sensitive to QCD parton showering and used in searches for new physics ("boosted" objects)
- With & without jet grooming algorithm to remove low energy portions from jet arising from soft radiation that are difficult to model.
- MC predictions of jet mass spectrum are found to be improved for groomed jets
- Jet grooming algorithm:
 - AK8 jet constituents reclustered by CA8
 - Hierarchical sequence of clustering reversed
 - soft drop (SD) algorithm removes low energetic constituents per declustering step

Contents

- <u>CMS Status</u>
- Physics Highlights
 - QCD multijet production
 - Electroweak production
 - Top physics
 - Higgs physics
 - Searches for New Physics
 - Exotica
 - Supersymmetry
- Conclusion

CMS-PAS-SMP-16-007

EWK: Measurement of the weak mixing angle

- using forward-backward asymmetry A_{FB} of DY (e⁺e⁻, $\mu^{+}\mu^{-}$) using the full 8 TeV data
- sin²θ extraction by fitting mass and rapidity dependence of A_{FB}, strong dependence on mass because of the axial – vector interference
- Most precise measurement of $\sin^2\theta$ at the LHC, similar to Tevatron experiments
- Allows also to constrain PDFs

 $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00036(\text{stat}) \pm 0.00018(\text{syst}) \pm 0.00016(\text{theory}) \pm 0.00030(\text{pdf})$

LP2017 24 Christian Autermann **CMS** Preliminary CMS Public March 2017 7 TeV CMS measurement (stat.stat+sys) ------CMS measurements vs. NNLO (NLO) theory 13 TeV CMS measurement (stat,stat+sys) → $1.06 \pm 0.01 \pm 0.12$ 5.0 fb⁻¹ γγ $1.16 \pm 0.03 \pm 0.13 5.0 \text{ fb}^{-1}$ $W\gamma$, (NLO th.) 5.0 fb⁻¹ $Z\gamma$, (NLO th.) $0.98 \pm 0.01 \pm 0.05$ 19.5 fb⁻¹ $Z\gamma$, (NLO th.) $0.98 \pm 0.01 \pm 0.05$ $4.9 \, \text{fb}^{-1}$ WW+WZ $1.01 \pm 0.13 \pm 0.14$ 4.9 fb⁻¹ $1.07 \pm 0.04 \pm 0.09$ WW $1.00 \pm 0.02 \pm 0.08$ 19.4 fb⁻¹ WW WW $0.96 \pm 0.05 \pm 0.08$ 2.3 fb⁻¹ $1.05 \pm 0.07 \pm 0.06$ 4.9 fb⁻¹ WZ WZ $1.02 \pm 0.04 \pm 0.07$ 19.6 fb⁻¹ WZ $0.80 \pm 0.06 \pm 0.07$ 2.3 fb⁻¹ ΖZ $0.97 \pm 0.13 \pm 0.07 4.9 \text{ fb}^{-1}$ $0.97 \pm 0.06 \pm 0.08 \quad 19.6 \text{ fb}^{-1}$ ΖZ ZZ $1.10 \pm 0.04 \pm 0.05$ 35.9 fb⁻¹ 0.5 1.5 All results at: **Production Cross Section Ratio:** σ_{exp} / σ_{theo} http://cern.ch/go/pNj7

Contents

- <u>CMS Status</u>
- Physics Highlights
 - QCD multijet production
 - Electroweak production
 - Top physics
 - Higgs physics
 - Searches for New Physics
 - Exotica
 - Supersymmetry
- Conclusion

LP2017 **Christian Autermann**

26

CMS Public

LHC is a top quark factory

CMS_PAS_TOP_16_014

TOP: differential cross section

- semi-leptonic decay channel (e[±] or μ^{\pm})
- important verification of theoretical models, sensitive to rare SM processes like tt + (W, Z, or H), important SM background to searches
- $\sigma(tt)$ differentially in variables, that don't need reconstruction of tt system
- unfolded to particle level, phase-space resembling fiducial volume of CMS

Latest of many similar results

- particle and parton level measurements;
- I+jets, dilepton, and all jets;
- boosted and resolved;
- based on global event variables and reconstructing the top system(s);
- double and simple differential

Top property measurements: Top mass

Contents

<u>CMS Status</u>

- Physics Highlights
 - QCD multijet production
 - Electroweak production
 - Top physics
 - Higgs physics
 - Searches for New Physics
 - Exotica
 - Supersymmetry
- Conclusion

706.09936, subm. to JHEP

35.9 fb⁻¹ (13 TeV)

700

m₄₁ (GeV)

900

CMS_PAS_HIG_16_040.

Discovery channels of the Higgs

$H \rightarrow \tau \tau$ and $H \rightarrow W^+W^-$ channels

- Tau semi-hadronic & leptonic decay channels
 - Excellent CMS tau tagging
 - 4 final states (eμ, eτ, μτ, τ, τ, τ)
 3 categories (0 jet, VBF, boosted)
- **4.9** σ (4.7 σ expected) Run 1,2 combined: • $1.09^{+0.27}_{-0.26} \times \sigma_{SM}$ **5.9** σ (5.9 σ exp)

- H \rightarrow WW \rightarrow e $\nu\mu\nu$
 - dilepton channel
 - ggH, VH, VBF production channels
- 4.3 σ (4.1 σ expected)
 - 1.05 \pm 0.26 imes $\sigma_{_{SM}}$

Entries

32

Strong evidence for V+ Higgs $\rightarrow b\overline{b}$

- VH \rightarrow II'bb with V = (W, Z) & I = (e, μ , ν)
- Tevatron's most sensitive channel in reported evidence for Higgs <u>10.1103/PhysRevLett.109.071804</u>
- 0,1,2 charged lepton channels; 21 control regions
- 7 BDT discriminator distributions
- Signal extraction by simultaneous binned likelihood fits of signal and backgrounds for all channels to the BDT distributions
- Method validated on VZ with Z→ bb, observed with 4.96 σ (1.02^{+0.22}_{-0.23} × σ_{SM})
- Combination with CMS Run I (7 & 8TeV): **3.8** σ (**3.8** σ expected)

 $\textbf{1.06^{+0.31}}_{\text{-0.29}}\times\sigma_{SM}$

more details in talk by Keti Kaadze this afternoon

10.1007/JHEP08(2016)045

33

Contents

- <u>CMS Status</u>
- Physics Highlights
 - QCD multijet production
 - Electroweak production
 - Top physics
 - Higgs physics
 - Searches for New Physics
 - Exotica
 - Supersymmetry
- Conclusion

Map of Martin Waldseemüller labeling 'terra incognita' as America (1507).

CMS_EXO_16_046

Exotica - dijet angular correlations

- qq CI, quantum BH, DM, extra dim.; constructive or destructive interference
- complementary to dijet narrow bump search
- QCD Rutherford scattering flat in χ_{dijet}
- First time limits on universal quark coupling to dark matter mediator 2.5 < M_{Med} < 5 TeV set, that is inaccessible through dijet resonances

 $\frac{\cos \theta^*}{\cos \theta^*}$ θ^* : jet angle to beam axis in dijet rest frame 35

1707.06193, subm. JHEP

Supersymmetry – Gauge mediated breaking

- At least one photon in final state
- Generic search for strongly produced GMSB SUSY with $\tilde{\chi} \rightarrow \gamma \tilde{G}$
- m(g̃) up to 2 TeV &

m(\tilde{q}) up to 1.65 TeV excluded dep. on m($\tilde{\chi}^{o}_{1}$)

- No excess observed
- Complementary channels
 - γ EWK, $\gamma\gamma$, γ +lepton, multi-lepton
 - Planning combination in model of General Gauge Mediation <u>10.1007/JHEP01(2017)135</u>, <u>10.1007/JHEP03(2016)046</u>

CMS_PAS-SUS_17_004

Supersymmetry - Electroweak searches combination

- Electroweak chargino & neutralino production
- Statistical combination of multiple analyses
 - multi-lepton, low p_T dileptons, OS&SF dilepton,
 WH, Razor H→γγ, H+MET
 - Optimized \geq 3I search for m(χ_0^2) m(χ_0^1) = m(Z)
- Model of χ^{\pm}_{1} χ^{0}_{2} production
 - different χ^{0}_{2} decay scenarios

CMS_PAS-SUS_16_040

Supersymmetry: R-Parity violation

- No theoretical reason why R-parity must be conserved
- "Natural" RPV SUSY still largely unconstrained
- No MET requirement also sensitivity to RPC SUSY with compressed mass spectra

- Minimal Flavor violation: λ''_{tbs}
- $\tilde{g} \rightarrow t \tilde{t} \rightarrow t b s$, at least one iso. lepton (e, μ)
- signal extraction through shape fit to $N_{\rm b}$ in bins of $N_{\rm jet}$ and $M_{\rm J}$

Conclusion

- Outstanding performance of LHC and the CMS detector
- Now results using up to 40 fb⁻¹ of 13 TeV data are published
- Excellent performance of detectors Standard Model measurements make more complicated & specialized search analyses possible and worthwhile!
- SM precision measurements profit from increasing luminosity
- Naturalness arguments promises New Physics at the TeV scale, the TeV scale is now in reach!

References

All CMS public results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

40

Additional material

<u>CMS_DP_2016_041</u>

Performance Pixel: Vertex reconstruction

- Resolution vs pileup
- Better than 14 μ m in x,y
- Better than 19 μ m in z (for primary vertices with sum of track p_T > 100 GeV)
- Degradation of resolution by 10% caused by higher inst. luminosity causing larger pixel hit inefficiency

LP2017 Christian <u>Autermann</u>

42

CMS_DP_2016_047

Performance tracking

- Lambda invariant mass reconstructed from oppositely-charged pion/proton candidates in data.
- Fit with double-Gaussian with a common mean for the signal plus a quadratic polynomial for the background.

43

Performance: Jet substructure algorithms

BDT quark / gluon jet discriminator

Pythia QCD dijet simulation