

CP violation at the LHC

GreigCowan (Edinburgh) on behalf of the LHCb collaboration and including material from ATLAS/CMS

CP violation at the LHC/

✓ @GreigCowan (Edinburgh) on behalf of the LHCb collaboration and including material from ATLAS/C[™]

Why CP violation?

CP violation is necessary condition for baryon asymmetry of the Universe [A. D. Sakharov, JETP Lett. 5, 24-27 (1967)].

CPV is present in the Standard Model but too small by 10¹⁰ to explain asymmetry.

Heavy-quark hadrons provide excellent place to search for new sources of CPV and probing high energy scales.

2017 is 40th anniversary of the b-quark discovery [FNAL-E-0288, PRL 39 (1977) 252]

Historical precedent, e.g., B⁰ meson mixing led to first indications about top quark mass [PLB 192 (1987) 245] [PLB 186 (1987) 247]

The CKM mechanism

$$V_{cb}^* + V_{td}V_{tb}^* = 0$$

The CKM mechanism

Huge programme of experimental, theoretical and Lattice QCD calculations

SM working well, but still room for 10-20% NP contributions \rightarrow More precision needed!

e.g., [Fermilab-MILC, PRD 93 (2016) 113016]

Three types of CP violation

CP violation in mixing $|q/p| \neq 1$

CPV in interference of mixing + decay $\arg(\lambda_{f_{CP}}) \neq 0$

CP violation in decay $|A_{f_{CP}}|/A_{f_{CP}}| \neq 1$

 $|P^0 \to \overline{P}^0|^2 \neq |\overline{P}^0 \to P^0|^2$ $|P^0 \to \overline{P}^0 \to \overline{f}|^2 \neq |\overline{P}^0 \to P^0 \to f|^2$ $|P \to f|^2 \neq |\overline{P} \to \overline{f}|^2$

Charged mesons + baryons only sensitive to CPV in decay

Beauty

Results shown are Run I only or combination of Run 1 + 2

Flavour physics at the LHC

nPVs ~2 nTracks ~ 200 $pT(B) \sim 5 \text{ GeV}$ pT(daughter) ~ I GeV

 $\sigma_{bb}(7 \text{ TeV}) = 72.0 \pm 0.3 \pm 6.8 \mu b$ $\sigma_{bb}(13 \text{ TeV}) = 154.3 \pm 1.5 \pm 14.3 \mu b$ [PRL 118 (2017) 052002]

Neutral meson oscillations

New physics particles could enter the loop.

Same description for **charm system**, but mixing frequency much **smaller** due to no top quarks in the loop

$$\Delta m\equiv (m_H-m_L)$$
 Mixing frequency $\Gamma\equiv (\Gamma_L+\Gamma_H)/2$ Average width $\Delta\Gamma\equiv \Gamma_L-\Gamma_H$ Width difference

Measuring B meson oscillations (+ CPV)

Typical analysis requirements:

- Excellent decay-time resolution (~45 fs) •
- Modelling decay-time efficiency
- Production + detection asymmetries
- Tagging of meson flavour @ production

$$A_{sl} = \frac{\Gamma(\overline{B}^0 \to B^0 \to f) - \Gamma(B^0 \to \overline{B}^0 \to \overline{f})}{\Gamma(\overline{B}^0 \to B^0 \to f) + \Gamma(B^0 \to \overline{B}^0 \to \overline{f})}$$

[Artuso et al. arXiv:1511.09466] - tiny in SM $A_{SL}^d = (-4.1 \pm 0.6) \times 10^{-4}$ $A_{SL}^s = (+2.22 \pm 0.27) \times 10^{-5}$

Semileptonic decays are tree-dominated so there should be no CPV in decay

$$A_{sl} = \frac{\Gamma(\overline{B}^0 \to B^0 \to f) - \Gamma(B^0 \to \overline{B}^0 \to \overline{f})}{\Gamma(\overline{B}^0 \to B^0 \to f) + \Gamma(B^0 \to \overline{B}^0 \to \overline{f})}$$

[Artuso et al. arXiv:1511.09466] - tiny in SM $A_{SL}^d = (-4.1 \pm 0.6) \times 10^{-4}$ $A_{SL}^s = (+2.22 \pm 0.27) \times 10^{-5}$

$$A_{meas}(t) = \frac{N(D^{-}\mu^{+}\nu, t) - N(D^{+}\mu^{-}\nu, t)}{N(D^{-}\mu^{+}\nu, t) + N(D^{+}\mu^{-}\nu, t)}$$
$$\approx A_{D} + \frac{A_{sl}}{2} + \left(A_{P} - \frac{A_{sl}}{2}\right)\cos(\Delta m^{-}t)$$

Integral of this term ~ 0 for B_s^0 mesons so can make decay-time-integrated measurement

[PRL 114, 041601 (2015)] [PRL 117, 061803 (2016)]

Semileptonic decays are tree-dominated so there should be no CPV in decay

[Borissov, Hoeneisen PRD 87 (2013) 074020] [D0, PRD 89 (2014) 012002]

D0 dimuon asymmetry is $\sim 3\sigma$ from SM

 $A_{CP} = C_d A^d_{SL} + C_s A^s_{SL} \cdot$

[Borissov, Hoeneisen PRD 87 (2013) 074020] [D0, PRD 89 (2014) 012002]

D0 dimuon asymmetry is $\sim 3\sigma$ from SM

$$A_{CP} = C_d A^d_{SL} + C_s A^s_{SL} + C_{\Delta \Gamma_d} \frac{\Delta \Gamma_d}{\Gamma_d}$$

decay time distributions of $B^0 \rightarrow J/\psi K^* + B^0 \rightarrow J/\psi K_S$

[also LHCb with fraction of Run I data sample, JHEP 04 (2014) 114]

CP violation in mixing + decay

$$A_{CP}(t) \equiv \frac{\Gamma_{\overline{B}{}^{0} \to f} - \Gamma_{B^{0} \to f}}{\Gamma_{\overline{B}{}^{0} \to f} + \Gamma_{B^{0} \to f}} =$$

 $= \frac{S_f \sin(\Delta m t) - C_f \cos(\Delta m t)}{\cosh(\Delta \Gamma t/2) + A_{\Delta \Gamma} \sinh(\Delta \Gamma t/2)}$ Ignore denominator for B^0 decays since $\Delta\Gamma \sim 0$

CP violation in mixing + decay

$$S_{J/\psi \, K_{\rm S}^{\rm 0}} \approx \sin 2\beta$$

$$A_{CP}(t) \equiv \frac{\Gamma_{\overline{B}{}^0 \to f} - \Gamma_{B^0 \to f}}{\Gamma_{\overline{B}{}^0 \to f} + \Gamma_{B^0 \to f}} =$$

CP violation in mixing + decay

$$S_{J/\psi K_{\rm S}^0} \approx \sin 2\beta$$

$$A_{CP}(t) \equiv \frac{\Gamma_{\overline{B}{}^0 \to f} - \Gamma_{B^0 \to f}}{\Gamma_{\overline{B}{}^0 \to f} + \Gamma_{B^0 \to f}} =$$

CP violation in mixing + decay: B^0_s

$B_s \rightarrow J/\psi \phi$ is the golden mode for measuring ϕ_s . Fully exploit LHCb Run 1 data by analysing $B^{0}_{s} \rightarrow J/\psi KK$, with m(KK) > 1.05 GeV

Previous studies all focussed on $\varphi(1020)$ mass region where ϕ meson dominates over a small KK S-wave

[arXiv:1704.08217]

± 37 mrad

ϕ_s - $\Delta \Gamma_s$ global combination

LHCb:

- $J/\psi\phi$ [PRL114, 041801 (2015)]
- $J/\psi K^+K^-$ [arXiv:1704.08217 (2017)]
- $J/\psi \pi^+\pi^-$ [Phys. Lett. B736, (2014) 186]
- $\psi(2S)\phi$ [Phys. Lett. B762 (2016) 253-262]
- $D_s^+ D_s^-$ [PRL113, 211801 (2014)]

CMS:

 $J/\psi\phi$ [Phys. Lett. B 757 (2016) 97]

ATLAS:

- $J/\psi\phi$ [JHEP 08 (2016) 147]
- Precision improved by > x 10 since Tevatron results
- New physics is not large, so we need **increased precision**

Important to control size of the penguin diagram contributions • e.g., [LHCb, PLB 742 (2015) 38] 19

CKM angle y

Only CP-violating parameter that can be measured from tree-level decays *B*-

 $|\delta\gamma| \leq O(10^{-7})$ [Brod, Zupan JHEP 1401 (2014) 051]

Exploit interference between amplitudes, e.g.

 $A_{CP+} \propto r_B \sin \delta_B \sin \gamma$

Need non-zero strong and weak phase to observe ACP

ADS (f = $K\pi$) **GGSZ** (f = $K_S \pi^+ \pi^-$)

GLW (f = K⁺K⁻, $\pi^{+}\pi^{-}$)

[PLB 253 (1991) 483, PLB 265 (1991) 172]

[PRL 78 (1997) 3257]

[PRD 68 (2003) 054018]

 $\gamma = \arg \left| -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{ub}^*} \right|$

CP observables in $B^{\pm} \rightarrow D(^{*})^{0}K^{\pm}$ and $B^{\pm} \rightarrow D(^{*})^{0}\pi^{\pm}$

[LHCb-PAPER-2017-021]

CP observables in $B^{\pm} \rightarrow DK^{*\pm}$

$$R_{K\pi}^+ = 0.020 \pm 0.006 \,({
m stat}) \pm 0.001 \,({
m syst})$$

 4.2σ evidence of suppressed ADS mode

ycombination

Use several $B \rightarrow DK$ measurements (85 observables, 37 parameters)

	B decay	D decay	Method	Ref.	Status since combination
	$B^+ \to DK^+$	$D ightarrow h^+ h^-$	GLW	[16]	Updated to Ru $2{ m fb}^{-1}$ Run 2
	$B^+ \to DK^+$	$D ightarrow h^+ h^-$	ADS	[17]	As before
	$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[17]	As before
	$B^+ \to DK^+$	$D ightarrow h^+ h^- \pi^0$	GLW/ADS	[18]	As before
	$B^+ ightarrow DK^+$	$D ightarrow K_{ m s}^0 h^+ h^-$	GGSZ	[19]	As before
	$B^+ \to DK^+$	$D \to K^0_{\rm s} K^+ \pi^-$	GLS	[20]	As before
\rightarrow	$B^+ \rightarrow D^* K^+$	$D ightarrow h^+ h^-$	GLW	[16]	New
\rightarrow	$B^+ \rightarrow DK^{*+}$	$D ightarrow h^+ h^-$	GLW/ADS	[21]	New
	$B^+ \to D K^+ \pi^+ \pi^-$	$D ightarrow h^+ h^-$	GLW/ADS	[22]	As before
	$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	[23]	As before
	$B^0\!\to DK^+\pi^-$	$D ightarrow h^+ h^-$	GLW-Dalitz	[24]	As before
	$B^0 \to DK^{*0}$	$D ightarrow K_{ m s}^0 \pi^+ \pi^-$	GGSZ	[25]	As before
backup	$B^0_s \to D^\mp_s K^\pm$	$D_s^+\! ightarrow h^+h^-\pi^+$	TD	[26]	Updated to 3 Run 1

Many more Run-2 updates and channels expected soon **Expect O(I°) precision after LHCb upgrade** [see also next talk on Belle-II]

 $3\,\mathrm{fb}^{-1}$

CP-violation in b baryon decays

- → potential for non-zero effects in SM.
- Two-body [CDF, PRL 113 (2014) 242001]
- Three-body [LHCb, JHEP 04 (2014) 087, JHEP 05 (2016) 081]

CP-violation in b baryon decays

- → potential for non-zero effects in SM.
- Two-body [CDF, PRL 113 (2014) 242001]
- Three-body [LHCb, JHEP 04 (2014) 087, JHEP 05 (2016) 081]
- Four-body [LHCb Nature Physics 13 391 (2017)] $\Lambda_{b}^{0}
 ightarrow ph^{-}h^{+}h^{-}$
- Transitions governed by $b \rightarrow udu$ tree and $b \rightarrow duu$ penguin amplitudes of similar magnitude.

Large relative weak phase $\boldsymbol{\alpha}$

[I.I. Bigi, arXiv:1608.06528]
[M. Gronau, J. Rosner, PLB 749 (2015) 104]
[W. Bensalem et al., PLB 538 (2002) 309]
[W. Bensalem et al., PRD 66 (2002) 094004]

CPV in $\Lambda_b^0 \rightarrow p\pi\pi^+\pi^-$ decays

Use 4-body topology to build **triple products** (CP-odd observables) (= P for spinless particles) Insensitive to production and detection asymmetries that affect standard CP-asymmetries

$$C_{\widehat{T}}=ec{p}_p\cdot(ec{p}_{h_1^-} imesec{p}_{h_2^+})~\propto\sin\Phi$$
 , for Λ_b^0

 \overline{T} = motion reversal operator

CPV in $\Lambda_b^0 \rightarrow p\pi\pi^+\pi^-$ decays

Use 4-body topology to build triple products (CP-odd observables) Insensitive to production and detection asymmetries that affect standard CP-asymmetries

$$\begin{split} C_{\widehat{T}} &= \vec{p_p} \cdot (\vec{p_{h_1^-}} \times \vec{p_{h_2^+}}) &\propto \sin \Phi \text{ , for } \Lambda_b^0 \\ \overline{C}_{\widehat{T}} &= \vec{p_{\overline{p}}} \cdot (\vec{p_{h_1^+}} \times \vec{p_{h_2^-}}) &\propto \sin \overline{\Phi} \text{ , for } \overline{\Lambda}_b^0 \end{split}$$

T = motion reversal operator(= P for spinless particles)

P-odd T-odd

$$A_{\widehat{T}}(C_{\widehat{T}}) = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)}$$
$$\overline{A}_{\widehat{T}}(\overline{C}_{\widehat{T}}) = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)}$$

$$a_{CP}^{\hat{T}-odd} = \frac{1}{2} (A_{\hat{T}} - \overline{A}_{\hat{T}})$$

 $\mathcal{A}_{CP} \propto a_1^e a_2^e \sin(\delta_1^e - \delta_2^e) \sin(\phi_1^e - \phi_2^e)$

 $a_{CP}^{\widehat{T}\text{-}\mathrm{odd}}$ $\propto a_1^e a_1^o \cos(\delta_1^e - \delta_1^o) \sin(\phi_1^e - \phi_1^o)$

> Relative CP-even **Relative CP-odd** "strong" phase "weak" phase

CPV in $\Lambda_b^0 \rightarrow p\pi\pi^+\pi^-$ decays

Global measurements consistent with CP symmetry Search for localised CPV effects → enhanced sensitivity

[LHCb, JHEP 10 (2014) 005] Similar methods used here [LHCb, PLB 759 (2016) 282] but no CPV observed [LHCb, JHEP 06 (2017) 108]

 $u_{\mathcal{T}\mathcal{D}}^{\hat{T}-odd} = \frac{\mathbf{I}}{2} (A_{\hat{T}} - A_{\hat{T}})$ [%]symmetries 20 -20 $a_{CP}^{\hat{T}-\text{odd}} \chi^2/\text{ndf}=30.5/10$

> CP-symmetry p-value = 9.8x10⁻⁴ $\rightarrow a_{CP}^{T-odd} \neq 0 \text{ at } 3.3\sigma$

 $|\Phi|$ [rad]

Baryon-number violation

BNV never been seen experimentally \rightarrow strong constraints from proton lifetime.

BSM models with flavour-diagonal six fermion vertices allow BNV without violating constraints. [PRD 85, 036005 (2012), PLB 721 82 (2013)]

Unambiguous experimental evidence: baryon-antibaryon oscillations of hadrons that contain quarks of all three generations (usb).

Baryon-number violation @ LHCb

Charm

All results using Run I data only

Charm mixing and CPV

Charmed hadrons provide only way to probe CPV with up-type quarks

Mixing in charm sector dominated by long distance effects: |x|, $|y| < 10^{-2}$

Very small CPV expected: < 10⁻³ [PRD 85 079901 (2012)]

So far **no evidence** for charm CP violation

Huge event yields at the LHC (millions of signal candidates in CF modes)

$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$

$$x\equiv \Delta m/\Gamma$$
 $y\equiv \Delta \Gamma/(2\Gamma)$

Charm mixing and CPV in D⁰ \rightarrow K⁺ π ⁻

Double-tag method $(B \rightarrow D^{*+}(\rightarrow D^{0}\pi^{+})\mu^{-}X)$ gives ~background-free sample and access to lower decay times than prompt sample (but with x40 fewer events)

Measure time-dependent ratio of Cabibbo-favoured and suppressed decay modes.

$$R(t)^{\pm} = R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm} \left(\frac{t}{\tau}\right) + \frac{(x'^{\pm})^2 + (y'^{\pm})^2}{4} \left(\frac{t}{\tau}\right)$$

[PRD 95, 052004 (2017)]

Parameter	DT + Prompt	Prompt-only	
	All CPV allowed		
$R_D^+[10^{-3}]$	3.474 ± 0.081	3.545 ± 0.095	R_{I}^{+}
$(x'^{+})^{2} [10^{-4}]$	0.11 ± 0.65	0.49 ± 0.70	x'^+
$y'^+[10^{-3}]$	5.97 ± 1.25	5.1 ± 1.4	y'^+
$R_D^-[10^{-3}]$	3.591 ± 0.081	3.591 ± 0.090	
$(x'^{-})^{2} [10^{-4}]$	0.61 ± 0.61	0.60 ± 0.68	
$y'^{-}[10^{-3}]$	4.50 ± 1.21	4.5 ± 1.4	
χ^2/ndf	95.0/108	85.9/98	

Direct CPV in charm

$$A_{\rm raw} \equiv \frac{N(D^0 \to K^- K^+) - N(\overline{D}{}^0 \to K^- K^+)}{N(D^0 \to K^- K^+) + N(\overline{D}{}^0 \to K^- K^+)}$$

 $A_{CP}(D^0 \to K^- K^+) = A_{\text{raw}}(D^0 \to K^- K^+) - A_P(D^{*+}) - A_D(\pi_s^+)$

Prompt-tagged sample [PLB 767 (2017), 177]

Multiple control channels to assess production and detection asymmetries (dominate systematics).

Combine results from semileptonic-tagged sample. [JHEP 07 (2014) 041]

 $A_{CP}(K^-K^+) = (0.04 \pm 0.12 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$ $A_{CP}(\pi^-\pi^+) = (0.07 \pm 0.14 \,(\text{stat}) \pm 0.11 \,(\text{syst}))\%$

O(‰) precision, but no signs of CPV

Indirect CPV in charm

Since time-integrated CP asymmetries in charm sector are small and mixing parameters are small:

$$\begin{split} A_{CP}(t) &\equiv \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D}^{0}(t) \to f)} \simeq a_{dir}^{f} - A_{\Gamma} \\ &\uparrow \\ CPV \text{ in decay } (\sim 0) \\ A_{\Gamma} &\equiv \frac{\hat{\Gamma}_{D^{0} \to f} - \hat{\Gamma}_{\overline{D}^{0} \to f}}{\hat{\Gamma}_{D^{0} \to f} + \hat{\Gamma}_{\overline{D}^{0} \to f}} \xrightarrow{\text{ inverse of effective lifetime}} CPV \text{ in mixin} \\ & \text{Expect < 5 x} \end{split}$$

Use prompt D^* tags.

 $D \rightarrow K\pi$ control channel for production/detection asymmetries Consistent results with unbinned and binned methods

$$A_{\Gamma} = (-0.13 \pm 0.28 \pm 0.10) \times 10^{-3}$$

Combine with independent semileptonic tagged sample: [LHCb JHEP 04 (2015) 043]

$$A_{\Gamma} = (-0.29 \pm 0.28) \times 10^{-3}$$

Looking to the future

Most beauty and charm measurements are statistically limited.

Strong case for **improved precision** of many charm and beauty observables to constrain/ find new physics.

LHCb recently submitted Eol about future phase Ib + 2 upgrades for LHC runs 4 + 5.

[CERN-LHCC-2017-003] [LHCb-PUB-2014-040] [ATL-PHYS-PUB-2013-010]

Summary

Huge progress in understanding CPV in the heavy-quark sector. Looking forward to the New explorations in b baryons 50th birthday of the b quark New precision measurements in b mesons and Lepton-Photon 2027! Approaching per-mille precision in charm sector - no CPV yet! SM holding strong, but what will happen after the precision measurements from LHC Run 2/3/4...?

Why CP violation?

CP violation is necessary condition for baryon asymmetry of the Universe [A. D. Sakharov, JETP Lett. 5, 24-27 (1967)].

CPV is present in the Standard Model but too small by 10¹⁰ to explain asymmetry.

Heavy-quark hadrons provide excellent place to search for new sources of CPV and probing high energy scales.

and/or tree-level NP

LHCb upgrade (phase 1)

LHCb upgrade (phase 1)

	Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
	B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
		$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$	0.068	0.035	0.012	~ 0.01
		$A_{ m sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
	Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
	penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
		$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
	Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
	triangle	$\gamma(B^0_s \to D^{\mp}_s K^{\pm})$	17°	11°	2.0 °	negligible
	angles	$eta(B^0 o J/\psiK_{ m S}^0)$	1.7°	0.8°	0.31°	negligible
	Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	_
	$C\!P$ violation	$\Delta A_{CP} \ (10^{-3})$	0.8	0.5	0.1	—
$\sigma(\phi_s)^{\text{stat}}$ [rad]	$ \begin{array}{c} 0.14\\ 0.12\\ 0.1\\ 0.08\\ 0.06\\ 0.04\\ 0.02\\ 0 \end{array} $	$B_{s}^{0} \rightarrow \phi \phi \text{ LHCb}$ $B_{s}^{0} \rightarrow J/\psi \pi \pi \text{ LHCb}$ $B_{s}^{0} \rightarrow J/\psi \phi \text{ LHCb}$ $SM \text{ upper limit on } \phi_{s}^{\bar{s}\bar{s}\bar{s}} B_{s}^{0} \rightarrow \phi \phi$ $SM \sigma(\phi_{s}^{\bar{c}\bar{c}\bar{s}}) B_{s}^{0} \rightarrow J/\psi \phi$ $D20 2030$	rs from LHCb-PU 2025:	B-2014-040] ССНСЬ(Ү) ~ С _{syst}	$\sigma_{\text{Belle}-II}(\gamma) < I^{\circ}$	LHCb u + Bel [PRD 89,
	_ 0	Year	42			

2025:
$$\sigma_{LHCb}(\gamma) \sim \sigma_{Belle-II}(\gamma) < 1^{\circ}$$

 $\sigma_{syst} < 1^{\circ}$

Ipgrade 50 fb-1 le-ll 50 ab-l ,033016 (2014)]

LHCb upgrade (phase b and 2)

LHCb-upgrade will be installed in LS2 and operate during Run-3.

Phase Ib upgrade in LS3, for operation in Run-4 (HL-LHC).

Stations in the magnet (to improve reconstruction of multi-body final states).

Improvements to PID via time-of-flight (TORCH project).

Increase luminosity to $\sim 10^{34}$

	LHC era			HL-LHC era		
$\int \mathcal{L} dt$	2010-12	2015 - 18	2021-23	2026-29	2031	
-	(Run-1)	(Run-2)	(Run-3)	(Run-4)	(Ru	
ATLAS, CMS	$25\mathrm{fb}^{-1}$	$100 {\rm fb}^{-1}$	$300{\rm fb}^{-1}$	\rightarrow	3000	
LHCb	$3 \mathrm{fb}^{-1}$	$8{ m fb}^{-1}$	$23{ m fb}^{-1}$	$46{\rm fb}^{-1}$	100 f	

The LHCb detector

$\sigma_{bb}(7 \text{ TeV}) = 72.0 \pm 0.3 \pm 6.8 \mu b$ $\sigma_{bb}(13 \text{ TeV}) = 154.3 \pm 1.5 \pm 14.3 \mu b$

LHCbrun and 2

CPV in neutral B meson mixing

CP violation in mixing+decay

$$A_{CP}(t) \equiv \frac{\Gamma_{\overline{B}{}^{0} \to f} - \Gamma_{B^{0} \to f}}{\Gamma_{\overline{B}{}^{0} \to f} + \Gamma_{B^{0} \to f}}$$

Similar precision to the Bfactories, but LHCb measurement pulled world average up towards indirect determination from global fit

 $S = +0.731 \pm 0.035$ (stat) ± 0.020 (syst) $C = -0.038 \pm 0.032$ (stat) ± 0.005 (syst)

 $\frac{S_f \sin(\Delta m t) - C_f \cos(\Delta m t)}{\cosh(\Delta \Gamma t/2) + A_{\Delta \Gamma} \sinh(\Delta \Gamma t/2)}$

 $B^0 \to J/\psi K_S^0$

 $S_{J\!/\psi\,K_{\rm S}^{\rm 0}}\approx \sin 2\beta$

CP violation in mixing + decay

CP violation in mixing + decay: B^0_s

 $B_s \rightarrow J/\psi \phi$ is the golden mode for measuring ϕ_s .

2 vector particles in final state so require angular analysis to separate CP-odd, CP-even components.

Extensively studied by D0, CDF, ATLAS, CMS and LHCb.

 $\phi_{
m mix}$

$$\phi_s \stackrel{\text{SM}}{=} -2 \arg \left(-\frac{V_{cb}V_{cs}^*}{V_{tb}V_{ts}^*} \right) \equiv -2\beta_s$$

$$\phi_s^{SM} = -36.5 \pm 1.3 \text{ mrad [CKMFitter]}$$

B_{s}^{0} CPV in mixing + decay: ϕ_{s}

$$\quad J/\psi \to \mu^+ \mu^-, \ \phi \to K^+ K^-$$

- to disentangle CP-odd and CP-even components.
- Measure $\phi_s, \Delta m_s, \Gamma_s, \Delta \Gamma_s, |\lambda_f| \dots$ [this makes $B_s^0 \to J/\psi \phi$ special]

B_s^0 CPV in mixing + decay: ϕ_s

[PRL 114 (2015) 041801]

ϕ_s	$-0.058 \pm 0.049 \pm 0.006$ r
$ \lambda $	$0.964 \pm 0.019 \pm 0.007$
Γ_{s}	$0.6603 \pm 0.0027 \pm 0.0015~{ m p}$
$\Delta\Gamma_s$	$0.0805 \pm 0.0091 \pm 0.0032~{ m p}$
Δm_s	$17.711 \ ^{+0.055}_{-0.057} \pm 0.011 \ \mathrm{ps}^{-0.057}$

- Everything consistent with the SM
- Dominant sysmtematics from decay-time and angular efficiencies
- No sign of polarisation dependent ϕ s
 - Penguin pollution likely to be small •

ATLAS and CMS ϕ_s

[ATLAS JHEP 1608 (2016) 147] [CMS PLB 757 (2016) 97]

CP violation in mixing + decay: B⁰s

[ATLAS JHEP 1608 (2016) 147] [CMS PLB 757 (2016) 97]

φ_s - $\Delta \Gamma_s$ global combination (cira 2008)

 $\sigma(\phi_s) \sim \pm 0.400 \text{ rad}$ $\sigma(\Delta\Gamma_s) \sim \pm 0.060 \text{ ps}^{-1}$

CP violation in charmless B decays

Decay-time dependent CPV observables are sensitive to CKM phases $(\gamma, \phi_{s,d})$ [Fleischer, PLB 459 (1999) 306] [Ciuchini et al., JHEP 10 (2012) 029] [LHCb, PLB 741 (2015) 1]

- Loop diagrams \Rightarrow hadronic uncertainties
- Loop diagrams ⇒ **CPV observables**

sensitive to New Physics

Compare results with the CKM phases determined from decays dominated by treelevel topologies

$B^0 \rightarrow \pi^+\pi^-$ and $B_s^0 \rightarrow K^+K^-$

[LHCb-CONF-2016-018]

CP violation in charmless **B** decays

Expect publication soon using SSK flavour-tagging

Also, ϕ_s consistent with zero in Bs $\rightarrow \phi \phi$ decays [PRD 90 (2014) 052011]

ϕ_s from charmless B decays

- $B_s^0 \to \phi\phi$: $b \to s$ penguin decays sensitive to NP in the loops.
- $\phi \to KK$: 5 different polarisation amplitudes \Rightarrow angular analysis.
- Decay time resolution: ~ 43 fs.
- Tagging power: $\varepsilon (1 2\omega)^2 = 3.04 \pm 0.24\%$
- Angular efficiency from MC.

 $|\phi_s^{s\overline{s}s}|^{\mathrm{SM}} < 0.02 \,\mathrm{rad}$ [Bartsch et al. arXiv:0810.0249][Beneke et al. NPB 774 (2007) 64-101] [Cheng et al. PRD 80 (2009) 114026]

Rare charmless B meson decays

CP observables in $B^{\pm} \rightarrow D^{(*)0}K^{\pm}$ and $B^{\pm} \rightarrow D^{(*)0}\pi^{\pm}$

- 6 partially reconstructed GLW CP observables used to constrain r^{D*K}_B , δ^{D*K}_B and γ
- r^{D*K}_B , δ^{D*K}_B match HFLAV GGSZ averages [arXiv:1612.07233]
- γ within 1σ of current LHCb combination [JHEP 12 (2016) 087]
- Future: improve precision by adding ADS modes

[LHCb-PAPER-2017-021]

40

20

60

CP asymmetry in $B^0_s \rightarrow D^{\mp}_s K^{\pm}$ decays

60

y combination

Use several B \rightarrow DK measurements (85 observables, 37 parameters) Most precise measurement of γ [LHCb-CONF-2017-004]

B decay	D decay	Method	Ref.	Status since combination
$B^+ ightarrow DK^+$	$D ightarrow h^+ h^-$	GLW	[16]	Updated to Ru $2{ m fb}^{-1}$ Run 2
$B^+ \to DK^+$	$D ightarrow h^+ h^-$	ADS	[17]	As before
$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[17]	As before
$B^+ \to DK^+$	$D ightarrow h^+ h^- \pi^0$	GLW/ADS	[18]	As before
$B^+ \to DK^+$	$D ightarrow K_{ m s}^0 h^+ h^-$	GGSZ	[19]	As before
$B^+ \to DK^+$	$D ightarrow K_{ m s}^0 K^+ \pi^-$	GLS	[20]	As before
$B^+ ightarrow D^*K^+$	$D ightarrow h^+ h^-$	GLW	[16]	New
$B^+ ightarrow DK^{*+}$	$D ightarrow h^+ h^-$	GLW/ADS	[21]	New
$B^+ \to D K^+ \pi^+ \pi^-$	$D ightarrow h^+ h^-$	GLW/ADS	[22]	As before
$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	[23]	As before
$B^0\!\to DK^+\pi^-$	$D ightarrow h^+ h^-$	GLW-Dalitz	[24]	As before
$B^0 \to DK^{*0}$	$D ightarrow K_{ m s}^0 \pi^+ \pi^-$	GGSZ	[25]	As before
$B^0_s \to D^\mp_s K^\pm$	$D_s^+\! ightarrow h^+h^-\pi^+$	TD	[26]	Updated to 3 Run 1

Belle/BaBar sensitivity ~ 15°

Measuring the B⁰ meson oscillation frequency

Constraining penguin pollution

$$A_{CP}(t) \equiv \frac{\Gamma_{\overline{B}{}^0 \to f} - \Gamma_{B^0 \to f}}{\Gamma_{\overline{B}{}^0 \to f} + \Gamma_{B^0 \to f}}$$

Decay-time dependent CPV in $B^0 \rightarrow D^+D^-$ decays (b \rightarrow ccd transitions) give complimentary information to $sin 2\beta$.

$$\frac{S}{\sqrt{1-C^2}} = -\sin(2\beta + \Delta\phi)$$

Belle result outside of physics region $(S^2 + C^2 < I)$ → large penguin contribution?

Contours give $-2\Delta(\ln L) = \Delta \chi^2 = 1$, corresponding to 60.7% CL for 2 dof

Constraining penguin pollution

$$A_{CP}(t) \equiv \frac{\Gamma_{\overline{B}{}^0 \to f} - \Gamma_{B^0 \to f}}{\Gamma_{\overline{B}{}^0 \to f} + \Gamma_{B^0 \to f}} =$$

complimentary information to $sin 2\beta$.

$$\frac{S}{\sqrt{1-C^2}} = -\sin(2\beta + \Delta\phi)$$

Belle result outside of physics region $(S^2 + C^2 < I)$ → large penguin contribution?

$$S = -0.54^{+0.17}_{-0.16} (\text{stat}) \pm 0.05 (\text{syst})$$

 $C = 0.26 \,{}^{+0.18}_{-0.17}\,({
m stat}) \pm 0.02\,({
m syst})$

[LHCb, PRL 117 (2016) 261801]

Contours give $-2\Delta(\ln L) = \Delta \chi^2 = 1$, corresponding to 39.3% CL for 2 dof

Impact on new physics

Even given the various constraints that show consistency with the SM, NP still allowed at the 10% level

Two complementary CP-odd observables

 $\mathcal{A}_{CP} \propto a_1^e a_2^e \sin(\delta_1^e - \delta_2^e) \sin(\phi_1^e - \phi_2^e)$

 $a_{CP}^{T-\text{odd}} \propto a_1^e a_1^o \cos(\delta_1^e - \delta_1^o) \sin(\phi_1^e - \phi_1^o)$

T = motion reversal operator(= P for spinless particles)

Relative CP-even Relative CP-odd "strong" phase "weak" phase

Depends on interference of T-even amplitudes

Depends on interference of **T-odd** and **T-even** amplitudes

Even if strong phase difference is zero then still have sensitivity CPV

[G. Durieux, Y. Grossman, PRD 92 (2015) 076013]

$p\pi^{+}\pi^{+}\pi^{-}$ phase space distributions

Background subtracted using sPlot. CP asymmetry not localised to any resonance. 67

Search for baryon-number violation @ LHCb

No evidence of BNV oscillations.

- $\omega < 0.08 \text{ ps}^{-1}$ @95% CL (using CL_s method with pseudoexperiments).
- $\omega = 1/\tau^2_{\text{mix}} \rightarrow \text{mixing lifetime} > 13 \text{ ps.}$

[LHCb-PAPER-2017-023]

Strong CP violation?

QCD Lagrangian could contain θ term that would give rise to CP violation in strong interactions.

nEDM measurements $\rightarrow \theta < 10^{-10}$ [Phys. Atom. Nucl. 70 (2007) 349]

Search for CPV $\eta^{(')} \rightarrow \pi^+\pi^-$ decays in dipion mass spectrum of $D^+_{(s)} \rightarrow \pi^+\pi^+\pi^-$ decays.

No signal so place upper limit.

$$\mathcal{B}(\eta \to \pi^+ \pi^-) < 1.6 \times 10^{-5}$$

 $\mathcal{B}(\eta' \to \pi^+ \pi^-) < 1.8 \times 10^{-5}$

	7)	2.	33]
Γ		1	
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
		1	_
0	0		•
[e	V	7/	c^{2}

Charm mixing global fit

Par

 δ R

> δ_F 1

arameter	No CPV	No direct CPV	CPV -allow
		in DCS decays	
x (%)	$0.46{}^{+0.14}_{-0.15}$	$0.41 {}^{+0.14}_{-0.15}$	0.32 ± 0.14
y~(%)	0.62 ± 0.08	$0.61\ \pm 0.07$	$0.69 \ ^{+0.06}_{-0.07}$
$\delta_{K\pi}$ (°)	$8.0{}^{+9.7}_{-11.2}$	$4.8{}^{+10.4}_{-12.3}$	$15.2{}^{+7.6}_{-10.0}$
R_D (%)	$0.348{}^{+0.004}_{-0.003}$	$0.347 \ ^{+0.004}_{-0.003}$	$0.349{}^{+0.00}_{-0.00}$
A_D (%)	_		-0.88 ± 0.9
q/p	_	0.999 ± 0.014	$0.89^{+0.08}_{-0.07}$
ϕ (°)	_	$0.05 {}^{+0.54}_{-0.53}$	$-12.9^{+9.9}_{-8.7}$
$\delta_{K\pi\pi}$ (°)	$20.4^{+23.3}_{-23.8}$	$22.6^{+24.1}_{-24.4}$	$31.7^{+23.5}_{-24.2}$
$A_{\pi}(\%)$	_	0.02 ± 0.13	0.01 ± 0.1
$A_K(\%)$	_	$-0.11\ \pm 0.13$	-0.11 ± 0.1

Charm: direct and indirect CPV

b-quark cross-section

b-quark production cross-section $\stackrel{\circ}{\mathbb{H}}$ in pp→bbX.

Use semileptonic decays.

Use open-charm mass and IP distribution to separate **D**-**from-B** and **prompt** components.

σ (7TeV) = 72.0±0.3± 6.8µb σ (13TeV) = 154.3±1.5±14.3µb

[PRL 118, 052002 (2017)]

η
The b-quark: then and now

