Results and Opportunities in Atmospheric Neutrinos and Searches of Proton Decays

Kimihiro OKUMURA (ICRR, Univ. of Tokyo)

okumura@icrr.u-tokyo.ac.jp

XXVIII International Symposium on Lepton Photon Interactions at High Energies (LP2017)

Institute for Cosmic Ray Research University of Tokyo

8-12 Aug 2017, SYSU in GuangZhou, CHINA

Atmospheric Neutrinos

- Decay products of secondaries by cosmic ray interactions with atmosphere. (v_µ: v_e ~ 2:1)
- Energy spectrum: cutoff by geomagnetic field below 1 GeV.
 Extended to high energies with power-law
- Path length: distributed in O(10)km ~ 13,000km depending on zenith angle direction
- Neutrino oscillation driven by atmospheric Δm^2_{32} (~2.5 x10⁻³ eV²) below O(10) GeV

Proton Decay

- Proton decay is predicted by GUTs (Grand Unified Theory)
 - Provide the method for baryon asymmetry Universe
 - Open direct path to "Beyond SM" if detected
- Many GUT predictions SU(5), SO(10), SUSY GUT
- Benchmark modes: $P \rightarrow e^+\pi^0$, $P \rightarrow \overline{v} K^+$
- Background: atmospheric neutrino

4

Atmospheric v_u deficit

- Because atmospheric neutrinos are the most serious background to the proton decay searches, it was necessary to understand atmospheric neutrino interactions.
- \checkmark During these studies, a significant deficit of atmospheric ν_{μ} events was observed.

Atmospheric v,, deficit

- ✓ Because atmospheric neutrinos are the most serious background to the proton decay searches, it was necessary to understand atmospheric neutrino interactions.
- \checkmark During these studies, a significant deficit of atmospheric ν_{μ} events was observed.

Super-Kamiokande (1996 ~ Present)

Atmospheric v,, deficit

- Because atmospheric neutrinos are the most serious background to the proton decay searches, it was necessary to understand atmospheric neutrino interactions.
- \checkmark During these studies, a significant deficit of atmospheric v_{μ} events was observed.

Super-Kamiokande (1996 ~ Present)

Evidence for Neutrino Oscillation (1998)

Atmospheric v,, deficit

- Because atmospheric neutrinos are the most serious background to the proton decay searches, it was necessary to understand atmospheric neutrino interactions.
- \checkmark During these studies, a significant deficit of atmospheric ν_{μ} events was observed.

Super-Kamiokande (1996 ~ Present)

Evidence for Neutrino Oscillation (1998)

MINOS (2005~2012)

Atmospheric v_{μ} deficit

- Because atmospheric neutrinos are the most serious background to the proton decay searches, it was necessary to understand atmospheric neutrino interactions.
- \checkmark During these studies, a significant deficit of atmospheric ν_{μ} events was observed.

Super-Kamiokande (1996 ~ Present)

Current understanding of PMNS matrix:

$\left(\begin{array}{c}1\\0\\0\end{array}\right)$	0 c_{23} $-s_{23}$	$\begin{array}{c} 0 \\ s_{23} \\ c_{23} \end{array}$	$\left(\right)$	$c_{13} \ 0 \ -s_{13} e^{i\delta}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$s_{13}e^{-i\delta} \ 0 \ c_{13}$		$ \left(\begin{array}{c} c_{12}\\ -s_{12}\\ 0 \end{array}\right) $	${s_{12} \atop c_{12} \atop 1}$	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	
Atmospheric, LBL				Reactor, LBL			Solar, KamLAND				
$\Delta m^2_{32}\simeq 2.4\times 10^{-3} {\rm eV^2}$				$\sin^2 \theta_{12} \sim 0.021$			$\Delta m^2_{21}\simeq 7.5\times 10^{-5} {\rm eV}^2$				
$\sin^2\theta_{23} = 0.4 \sim 0.6$				5111	/13 —	0.021		\sin^2	$\theta_{12} \simeq 0$).30	

Current understanding of PMNS matrix:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
Atmospheric, LBL
$$\begin{array}{c} \text{Reactor, LBL} \\ \Delta m_{32}^2 \simeq 2.4 \times 10^{-3} \text{eV}^2 \\ \sin^2 \theta_{23} = 0.4 \sim 0.6 \end{array} \qquad \begin{array}{c} \sin^2 \theta_{13} \simeq 0.021 \\ \sin^2 \theta_{12} \simeq 0.30 \end{array}$$

Still unknown:

Current understanding of PMNS matrix:

Still unknown: Normal Inverted $(\Delta m_{32}^2 > 0)$ $(\Delta m_{32}^2 < 0)$ ve m^2 ν_3 Δm_{sol}^2 Δm_{atm}^2 Δm^2_{atm} \mathbf{D} ν_{τ} Δm_{sol}^2 $\overline{\nu}_{\mu}$ ν_{μ} $\overline{\nu}_{\tau}$ ν_3 v_{τ}

Leptonic CP (δ_{CP})

Mass Hierarchy (Mass Ordering)

Current understanding of PMNS matrix:

Still unknown:

Leptonic CP (δ_{CP})

Mass Hierarchy (Mass Ordering)

Current understanding of PMNS matrix:

Others:

Still unknown:

Leptonic CP (δ_{CP})

Mass Hierarchy (Mass Ordering)

Atmospheric Oscillation Physics

 v_e flux change due to sub-dominant oscillation:

- Many opportunities to test three flavor mixing:
 - v_{μ} disappearance by v_{μ} -> v_{τ} (Δm^{2}_{32} , θ_{23})
 - Sub-dominant oscillation in v_e sample: mass hierarchy (sign of Δm^{2}_{32}), δ_{CP} , θ_{23} octant
 - v_{τ} appearance
- Exotic mode (sterile, NSI, ..)

Matter Effect and Mass Hierarchy

 Neutrino is affected by additional potential due to forward scattering with electrons (matter effect)

$$irac{d
u(t)}{dt} = H_0
u(t)$$
 $H_0
ightarrow H_0 + rac{1}{2E} \left(egin{array}{cc} A & 0 \\ 0 & 0 \end{array}
ight)$
 $A = \pm 2\sqrt{2}G_F E_
u n_e$

• Effective mixing angle in matter:

$$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$

• At resonance region in multi-GeV:

$$A\sim \Delta m^2_{32}\cos 2\theta_{13} \quad \rightarrow \quad \theta^M_{13} \gg \theta_{13}$$

Matter Effect and Mass Hierarchy

Neutrino is affected by additional potential due to forward scattering with electrons (matter effect)

$$irac{d
u(t)}{dt} = H_0
u(t)$$
 $H_0
ightarrow H_0 + rac{1}{2E} \left(egin{array}{cc} A & 0 \\ 0 & 0 \end{array}
ight)$
 $A = \pm 2\sqrt{2}G_F E_
u n_e$

Effective mixing angle in matter:

$$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$

At resonance region in multi-GeV:

$$A \sim \Delta m_{32}^2 \cos 2\theta_{13} \quad \rightarrow \quad \theta_{13}^M \gg \theta_{13}$$

Presence of resonance depends:

- $v / \overline{v} (A \rightarrow -A)$

Matter Effect and Mass Hierarchy

Neutrino is affected by additional potential due to forward scattering with electrons (matter effect)

$$irac{d
u(t)}{dt} = H_0
u(t)$$
 $H_0
ightarrow H_0 + rac{1}{2E} \left(egin{array}{c} A & 0 \ 0 & 0 \end{array}
ight)$ $A = \pm 2\sqrt{2}G_F E_
u n_e$

Effective mixing angle in matter:

$$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$

At resonance region in multi-GeV:

$$A \sim \Delta m_{32}^2 \cos 2\theta_{13} \quad \rightarrow \quad \theta_{13}^M \gg \theta_{13}$$

Presence of resonance depends:

- v / \overline{v} (A \rightarrow -A)
- Mass hierarchy ($\Delta m_{32}^2 \rightarrow -\Delta m_{32}^2$)

Super-Kamiokande Detector

- Water Cherenkov imaging detector
- 1000 m underground in Kamioka mine
- **50 kton volume** (fiducial 22.5 kton)
- **11129 20" PMTs** in inner detector (ID) for Cherenkov ring imaging
- 1885 8" PMTs for outer detector (OD)

Phase	Period	# of PMTs
SK-I	1996.4 ~ 2001.7	11146 (40%)
SK-II	2002.10 ~ 2005.10	5182 (20%)
SK-III	2006.7 ~ 2008.8	11120 (4004)
SK-IV	2008.9 ~	11129 (40%)

Three Flavor Fit (w/ reactor constraint)

Perform full parameter fit with additional constraints from reactor ($\sin^2\theta_{13}$ =0.0219): $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -4.3$ (-3.1 expected)

Under IH hypothesis, the probability to obtain $\Delta \chi^2$ of -4.3 or less is 0.031 (sin² θ_{23} =0.6) and 0.007 (sin² θ_{23} =0.4). Under NH hypothesis, the probability is 0.45 (sin² θ_{23} =0.6).

	δ _{CP}	$sin^2\theta_{23}$	$ \Delta m^2_{32} $ (eV ²)
Inverted	4.189	0.575	2.5x10 ⁻³
Normal	4.189	0.587	2.5x10 ⁻³

Three Flavor Fit (w/ reactor and T2K constraints)

- Include constraint from T2K public data.
- Normal hierarchy is slightly preferred: $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -5.2$ (-3.8 exp. for SK best, -3.1 for combined best)
- p-value of Inverted hypothesis is 0.024 $(\sin^2\theta_{23}=0.6)$ and 0.001 $(\sin^2\theta_{23}=0.4)$.

	δ _{CP}	$sin^2\theta_{23}$	$ \Delta m^2_{32} $ (eV ²)
Inverted	4.189	0.575	2.5x10 ⁻³
Normal	4.189	0.587	2.5x10 ⁻³
Inverted	4.538	0.55	2.5x10 ⁻³
Normal	4.887	0.55	2.4x10 ⁻³

w/T2K constraint

Tau Appearance

- Direct detection of tau appearance induced by $v_{\mu} \rightarrow v_{\tau}$ is critical for verifying three-flavor mixing scheme
- Detection is challenging: low signal rate (~1 event / kton year) with large backgrounds
- Search for hadronic modes of tau decay (branching ratio: 65%)

Tau Signal Discrimination

Employ neural network (NN) technique to discriminate tau signal from background

•

•

- Signal eff. 76%, 26% of background remains by NN>0.5 cut
- Tau events have higher NN output and enhanced in upward direction
- Perform 2-dim. fit with signal scale parameter:

$$Data = PDF_{BG} + \alpha \times PDF_{tau} + \sum \epsilon_i \times PDF_i$$

Neural Network Output 0.8 0.6 0.4 0.2 -0.5 0.5-1 0 Cosine of the Zenith Angle **Background PDF** Neural Network Output 0.8 0.6 0.4 0.2 0.5 -0.5 0 Cosine of the Zenith Angle

Signal PDF

Tau Appearance Result

- Data: SK-I~IV 5,326 days
- Fitted tau normalization: $\alpha = 1.47 \pm 0.32$ (stat+syst)
 - Observed events: **338.1 ± 72.7 events** (exp'd: 224.5)
- Excluding no tau appearance hypothesis with **4.6 σ** (exp'd 3.3σ)
- Still dominated by statistical uncertainty

Tau Neutrino Cross Section

- Large CC ν_τ sample offers the opportunity to measure CC ν_τ cross section
- Sensitive energy: 3.5 ~ 70 GeV
- Flux averaged cross section (x10⁻³⁸cm²): measured: 0.94 ± 0.20 theory: 0.64
- Consistent with SM prediction
 within 1.5 sigma
- Larger than scaled σ measured by DONUT at 111 GeV

IceCube Oscillation Measurement

- DeepCore: 8 vertical strings with 7~17 m spacing.
- Lowering energy threshold (5.6 ~ 56 GeV)
- Separate track-like / cascade-like events by event topology to enhance v_{μ} and v_{e} interactions
- $\Delta m_{32}^2 = 2.31^{+0.11} 0.13 \times 10^{-3} \text{ eV}^2$, $\sin^2\theta_{23} = 0.51^{+0.07} 0.09$

Search for Sterile Oscillation

 $|U_{\tau 4}|^2 < 0.15 \ (90\% \text{ C.L.}),$

- Different matter potential between active-sterile
 vs because sterile does not interact with matter,
 which imprints on standard three flavor oscillations
- Search for sterile via vµ disappearance in 10 - 60 GeV $|U_{\mu4}|^2 < 0.11 (90\% \text{ C.L.}),$
- Limits on matrix elements:

Another Sterile Search via Matter Resonance

٠

٠

٠

Existing sterile mass of 0.1 < Δm² < 10 eV² will enhance sterile oscillation in 320 GeV - 20 TeV by matter resonance

 $A = 2\sqrt{2}G_F E_{\nu} n_e \sim \Delta m_{41}^2 \cos 2\theta_{24} \quad \rightarrow \quad \theta_{24}^M \gg \theta_{24}$

Would produce distinctive signature in v_{μ} energy spectrum

Proton Decay Measurements

(S. Mine, NNN16)

Recent	nucleo	n decay and	n-n results in SK	
Decay mode	∆(B-L)	Lifetime lower limit at 90% CL (years)	Paper	
p →e⁺π ⁰	0	1.6 × 10 ³⁴	arXiv:1610.03597 (submitted to PRD)	(*)
p→vK⁺	0(v), 2(v)	6.6 × 10 ³³	PRD 90, 072005 (2014)	Updated
p→ μ⁺π⁰	0	7.7 × 10 ³³	arXiv:1610.03597 (submitted to PRD)	(*)
p→(e⁺,μ⁺)(η,ρ,ω), n→(e⁺,μ⁺)(π,ρ)	0	(0.03-10) × 10 ³³	will submit to PRD	(**)
p →μ⁺K⁰	0	1.6 × 10 ³³	PRD 86, 012006 (2012)	
$\mathbf{n} \rightarrow \mathbf{v} \pi^0, \mathbf{p} \rightarrow \mathbf{v} \pi^+$	0	1.1×10^{33} , 3.9×10^{32}	PRL 113, 121802 (2014)	
p→(e⁺,μ⁺)νν	0(⊽v), 2(vv,vv)	1.7/2.2 × 10 ³²	PRL 113, 101801 (2014)	
p→(e⁺,μ⁺)X	?	7.9/4.1 × 10 ³²	PRL 115, 121803 (2015)	
n→νγ	0(v), 2(v)	5.5 × 10 ³²	PRL 115, 121803 (2015)	
pp→K⁺K⁺	2	1.7 × 10 ³²	PRL 112, 131803 (2014)	
pp→ $\pi^+\pi^+$, pn→ $\pi^+\pi^0$, nn→ $\pi^0\pi^0$	2	$7.2 \times 10^{31}, 1,7 \times 10^{32}, 4.0 \times 10^{32}$	PRD 91, 072009 (2015)	
np→(e⁺,μ⁺, τ⁺)∨	0(v), 2(v)	(0.22-5.5) × 10 ³²	PRL 115, 121803 (2015)	
n-n oscillation	2	1.9 × 10 ³²	PRD 91, 072006 (2015)	

(*) published in PRD 95, 012004 (2017)

(**) published in PRD 96, 012003 (2017)

Search for $P \rightarrow \overline{\nu} K^+$

- (A) $K^+ \rightarrow v_\mu \mu^+$ (B) $K^+ \rightarrow \pi^0 \pi^+$ (BR: 64%) cande IV 45 220- 251 0 Event 69 **Proton decay MC** 188- 220 40 Number of hits 35 30 MeV/c 25 20 15 -31-10 -62- -31 -94- -62 • -125- -94 200 400 • -157--125 600 -188--157 backward activity 1 mu-e decay 1.75 1.5 e 1.25 0.75 0.5 -1000 -500 0 500 1000 0.25 Residual PMT Hit Times (ns) 20 Angle to π^+ (deg)
- Single mono-energetic muon (P μ =236MeV/c) from K⁺ decay with following μ -e decay

•

- Require prompt 6 MeV gamma from excited oxygen nuclei
- Search for $\pi^0 \rightarrow 2\gamma$ decay (P $\pi^0=205$ MeV/c) event with faint π^+ activity in backward direction

Search for $P \rightarrow \overline{v} K^+$

(A) $K^+ \rightarrow v_\mu \mu^+$

	SK1			SK2			SK3			SK4		
	Eff (%)	BG (ev)	Obs (ev)									
Pr.γ	7.9 ±0.1	0.078	0	6.5 ±0.1	0.082	0	7.5 ±0.1	0.018	0	9.4 ±0.1	0.112	0
$\pi^+\pi^0$	7.8 ±0.1	0.21	0	6.5 ±0.1	0.19	0	8.3 ±0.1	0.07	0	9.6 ±0.1	0.13	0

- No candidate events are observed for both modes in 349 kton·year exposure
- Lifetime limit: >**8.0 x 10**³³ **years** (90% C.L.)

(B) $K^+ \rightarrow \pi^0 \pi^+$

2-ring

Future Projects: Atmospheric v

Hyper-Kamiokande

DUNE

IceCube/PINGU

KM3NET/ORCA

INO/ICAL

Hyper-K & DUNE

- Water Cherenkov detector
- **190 kton fiducial volume** (1tank conf.) corresponding to ~10 times of Super-K
- 40,000 PMT (~40% coverage) of improved photodetection efficiency(x2 compared to SK PMT)
- Increase 2.2 MeV gamma detection eff. by n-H capture

- Liquid Argon detector based time projection chamber technique (TPC)
- Though fiducial mass is relatively small (40 kton), high resolution imaging would offer possibilities to discriminate v and \overline{v}

Hyper-K & DUNE Atmospheric Sensitivities

- **>3σ sensitivity for both MH cases** for sin²θ₂₃>0.45 with 10yr data (2.6Mtonyr)
- **Comparable MH sensitivity** to Hyper-K due to high detector resolution
- Possible to discriminate θ_{23} octant at >3 σ for $|\theta_{23}$ -45|>4deg

PINGU and ORCA

IceCube / PINGU:

- Inner detector configuration of IceCube/ DeepCore at South pole
 - 6 Mton effective mass
- Lower threshold (~GeV) with 22 m spacing of string
- ~60,000 atm. v / year expected

KM3NET / ORCA:

- Low energy branch of KM3NeT in Mediterranean Sea
- Dense array of multi-PMT digital optical modules (DOMs)

36

 \sim 500

6 ∼3,8 ...

DOM spacing [m]

Volume [10⁶ m³]

PINGU / ORCA Sensitivities

Mass Hierarchy θ_{23} Octant v_{τ} Appearance J. Phys. G44, 054006 (2017) 12 2.75 Precision on v_{τ} normalization PINGU 4 year, maximal mixing NOvA – projected 2020 (95% CL) SK (90%CL) NO median sensitivity 11 ····· expected 2.70 PINGU 4 year, Fogli 2012 θ₂₁ input T2K – projected 2020 Preliminary 68% CL (stat.) PINGU 4 year, NuFit 2014 inputs 10 3 ±1σ 2.65 95% CL (stat.) Normal mass ordering assumed, 90% CL contours OPERA (90% CL) 9 ±2σ 2.60 $[10^{-3} eV^2]$ 8 PINGU (4 yr)7 2 6 5 Δm^2_{32} [] Ó n_σ 4 3 2.30 **5**c 2 2.25 1 NuFit v2.0 NO best Preliminary 2.20 PRELIMINARY 0^L2 6 10 12 0 2.15 8 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.55 0.30 0.40 0.45 0.50 0.60 0.65 Livetime (months) $\sin^2 \theta_{23}$ $\sin^2 \theta_{23}$

INO / ICAL

•

٠

Pramana - J. Phys. (2017) 88 : 79

Magnetized Iron Calorimeter (ICAL) composed of resistive plate chamber (RPC) in India

- 48x16x14.5 m, 50 kton mass
- **v** and \overline{v} separation by muon charge
- Expect MH determination at **2.2σ using 10 yr data** (3σ if hadron information is introduced)

Future Projects: Proton Decay

Hyper-Kamiokande

DUNE

JUNO

IceCube/PINGU

KM3NET/ORCA

INO/ICAL

JUNO $P \rightarrow \overline{v} K^+$ **Sensitivity**

arXiv:1507.05613

- Main target: $K^+ \longrightarrow \mu^+ \nu_{\mu}$
- Three-fold coincidence of K⁺, μ⁺, e⁺ with well-defined energies (K⁺:105 MeV, μ⁺: 152 MeV)
- Signal efficiency: 64%
- Background: neutrino induced K⁺ production total 0.05 ev/yr

Prospect of Proton Decay Searches

 $P \rightarrow e^+ \pi^0$:

- Hyper-K will reach 10³⁵ yrs
- High eff. (~70%) and almost BG free (0.06 ev/Mton·yrs)
- Large BG reduction becomes possible by tagging 2.2 MeV γ from neutron capture

 $P \rightarrow \overline{\nu} K^+$:

- Better sensitivity for DUNE
- High eff. (97%) with low BG rate (~1 ev/ yrs) by high resolution imaging performance

Summary

Atmospheric Neutrino:

- Still interesting for testing standard three flavor mixing scheme.
- Matter oscillation produces sensitivity of neutrino mass hierarchy. SK data weakly prefers normal hierarchy (Δm²₃₂>0).
 - v_{τ} appearance is established with ~5 σ . Measured v_{τ} cross section consistent with prediction.
 - Strong constraints on sterile neutrino from atmospheric neutrino observation.

Proton Decay:

٠

•

- Unique method to probe GUT theory.
- No evidence for proton decay yet. Lifetime limit improved: 1.6x10³⁴ and 8.0x10³³ years for $P \rightarrow e^+ \pi^0$ and $P \rightarrow \nabla K^+$, respectively.

Future:

٠

٠

- > **3** σ **potential** for detecting mass hierarchy (HK, DUNE, PINGU, ORCA, INO).
- x10 improvement will be possible for proton decay.

