FLAVOR CONSTRAINTS ON NEW PHYSICS

JURE ZUPAN U. OF CINCINNATI

1

Lepton Photon, Guangzhou, Aug 8 2017

SENSITIVITY TO NEW PHYSICS

2

- SM@tree level: no Flavor Changing Neutral Currents
 - all FCNC processes loop suppressed
 - e.g., meson mixing
- can be modified by NP
- NP contribs. scale as

 $\delta C^{\rm NP} \propto \frac{\sin \theta_i \sin \theta_j}{M_{\rm NP}^2}$

 depends on mix. angles and NP masses

LOW ENERGY PRECISION BOUNDS

NP scale A (TeV) 10² 10² 10 UTFit 0707.0636, 1411.7233 ReCĸ an impressive Im C_K 2007→~now progress on Im C_D CBd flavor bounds C_{Bs} in last 10 years **10**⁴ • in D, B_s mixing 10³ • also from ε_K 10² 10 $\frac{1}{\Lambda 2} (\bar{b}_L \gamma^\mu d_L) (\bar{b}_L \gamma_\mu d_L)$ C

3

J. Lupan Travor constraints on

UTFit 0707.0636, 1411.7233

for latest charm see also Bazavov et al, 1706.04622

PRESENT EXPERIMENTAL SITUATION

• many different transitions measured

see also talks by Greig Cowan; Monica Pepe Altarelli

• two quark level transitions show $\sim 4\sigma$ deviations from the SM*

* there are other interesting deviations, e.g., ~3σ deviation in ε'/ε, see, e.g., Buras et al, 1507.06345; RBC-UKQCD, 1502.00263
 J. Zupan Flavor constraints on NP
 4
 Lepton Photon, Guangzhou, Aug 8 2017

UPSHOT

- $b \rightarrow sll$ flavor anomaly
 - theoretically clean, $\sim 4\sigma$ excess
 - does it make sense from NP perspective?
 - reasonable scale for NP models*

6

*mostly face the I. I. Rabi's muon question: "Who ordered that?"

EXPERIMENTAL SITUATION

• $b \rightarrow sll$: generated at 1-loop in the SM

in the SM b→see the same as b→sµµ
Lepton Flavor Universality in the SM

7

$b \rightarrow sll$: EXPERIMENT

two bins

 $R_{K^*} = \frac{\mathrm{BR}(B \to K^* \mu^+ \mu^-)}{\mathrm{BR}(B \to K^* e^+ e^-)}$

• three clean observables: R_K and R_{K^*}

$$R_K = \left. \frac{Br(B \to K\mu\mu)}{Br(B \to Kee)} \right|_{[1,6]\text{GeV}^2}$$

• 2.6
$$\sigma$$
 anomaly in R_K

$b \rightarrow sll$: EXPERIMENT

WHAT DO WE LEARN?

• R_K can only be explained by NP in

$$\mathcal{O}_{9}^{(\prime)\ell} = \frac{\alpha_{\rm em}}{4\pi} (\bar{s}\gamma^{\mu} P_{L(R)}b) \ (\bar{\ell}\gamma_{\mu}\ell), \qquad \mathcal{O}_{10}^{(\prime)\ell} = \frac{\alpha_{\rm em}}{4\pi} (\bar{s}\gamma^{\mu} P_{L(R)}b) \ (\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$$

- scalar currents constrained by $B_S \rightarrow ll$
- R_K and R_{K^*} different parity, complementary info, e.g. for central bin

$$R_K \simeq 1 + 2 \frac{\operatorname{Re} C_{b_{L+R}(\mu-e)_L}^{\mathrm{BSM}}}{C_{b_L\mu_L}^{\mathrm{SM}}}$$

$$R_{K^*} \simeq R_K - 4p \frac{\operatorname{Re} C_{b_R(\mu-e)_L}^{\mathrm{BSM}}}{C_{b_L\mu_L}^{\mathrm{SM}}}$$

see, e.g., Alonso, Grinstein, Martin Camalich, 1407.7044

• NP can be either in muons or electrons

see, e.g., D'Amico et al., 1704.05438

- in both cases $(\bar{s}b)_L$ ok
- for electrons also $(\bar{s}b)_R(\bar{e}e)_R$ possible (from quadratic dep.)

combined signif. from "clean" observables >4σ Altmannshofer, Stangl, Straub, 1704.05435; D'Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano, 1704.05438; Capdevila, Crivellin, Descotes-Genon, Matias, Virto, 1704.05340; Hiller, Nisandzic, 1704.05444; Geng, Grinstein, Jager, Martin Camalich, Ren, Shi, 1704.05446; Chobanova, Hurth, Mahmoudi, Neshatpour, Santos, 1705.10730 J. Zupan Flavor constraints on NP 10 Lepton Photon, Guangzhou, Aug 8 2017

• NP can be either in muons or electrons

see, e.g., D'Amico et al., 1704.05438

- in both cases $(\bar{s}b)_L$ ok
- for electrons also $(\bar{s}b)_R(\bar{e}e)_R$ possible (from quadratic dep.)

combined signif. from "clean" observables >4σ Altmannshofer, Stangl, Straub, 1704.05435; D'Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano, 1704.05438; Capdevila, Crivellin, Descotes-Genon, Matias, Virto, 1704.05340; Hiller, Nisandzic, 1704.05444; Geng, Grinstein, Jager, Martin Camalich, Ren, Shi, 1704.05446; Chobanova, Hurth, Mahmoudi, Neshatpour, Santos, 1705.10730 J. Zupan Flavor constraints on NP 10 Lepton Photon, Guangzhou, Aug 8 2017

GLOBAL FITS

- in principle much more info
 - $Br(B \rightarrow K^{(*)}\mu\mu), Br(B_s \rightarrow \phi\mu\mu),$ $Br(B \rightarrow X_s\mu\mu)$
 - angular obs. in $B^0 \to K^{*0} \mu \mu$, $B_s \to \phi \mu \mu$
- sensitive to hadronic inputs
 - require form factors predict. (QCD sum rules), charm loops, nonfactor. contribs.
- prefer NP in muons

GLOBA

- in principle much more info
 - $Br(B \rightarrow K^{(*)}\mu\mu), Br(B_s \rightarrow \phi\mu\mu),$ $Br(B \rightarrow X_s\mu\mu)$
 - angular obs. in $B^0 \to K^{*0} \mu \mu$, $B_s \to \phi \mu \mu$
- sensitive to hadronic inputs
 - require form factors predict. (QCD sum rules), charm loops, nonfactor. contribs.
- prefer NP in muons

Simone Bifani, seminar at CERN (overlaid predictions from SJ&Martin Camalich 2014)

WHAT KIND OF NP?

- from now on will assume that NP in $b \rightarrow s \mu \mu$
- what is the NP scale?
 - the Wilson coeffs. in previous slides

$$V_{tb}V_{ts}^*\frac{\alpha_{\rm em}}{4\pi v^2}C_I = \frac{C_I}{(36\,{\rm TeV})^2}$$

$$C_I^{NP} \sim O(1)$$

- types of NP
 - tree level (heavy or light)
 - loop level

TREE LEVEL

- two distinct types:
- mediated by a Z'
 - *SU*(2)_{*L*} singlet or triplet

Altmannshofer, Straub, 1308.1501; Altmannshofer, Gori, Pospelov, Yavin, 1403.1269; Greljo, Isidori, Marzocca, 1506.01705; J. Zupan Flavor constraints on NP leptoquark

see, e.g., Hiller, Nisandzic, 1704.05444; Hiller, Schmaltz, 1411.4773; +many refs Lepton Photon, Guangzhou, Aug 8 2017

13

LEPTOQUARKS

3 options if a single LQ dominates

LEPTOQUARKS

Hiller, Nisandzic, 1704.05444

• at 1-loop constraints from B_s - \bar{B}_s mixing

GENERAL CONSIDERTATIONS ABOUT Z'

THE Z' MODELS

- bounds from ATLAS, CMS from $pp \rightarrow Z' \rightarrow \mu \mu$ Greljo, Marzocca, 1704.09015
 - e.g., for MFV ansatz

$$\frac{c_{Q_{ij}L_{22}}^{(3,1)} \sim \left(\mathbf{1} + \alpha Y_u Y_u^{\dagger} + \beta Y_d Y_d^{\dagger}\right)_{ij}}{J_{\mu} = g_Q^{(1),ij}(\bar{Q}_i \gamma_{\mu} Q_j) + g_L^{(1),kl}(\bar{L}_k \gamma^{\mu} L_l)}$$

- "LHC safe" models
 - $U(1)_{\mu-\tau}$ models with vector-like quarks
 - models with more than one mediator (mixing suppression), e.g. $U(1)_q x U(1)_{\mu-\tau}$
 - composite ρ exchanges
 - fully horizontal Z' models with third-family charges only, e.g., $U(1)_{B3-\tau}$, $U(1)_{B3-3\mu}$

interesting textures in the neutrino mass matrix

Bhatia, Chakraborty, Dighe, 1701.05825

17

J. Zupan Flavor constraints on NP

Lepton Photon, Guangzhou, Aug 8 2017

LOOP LEVEL

- three distinct options
- Z' w / loop to bs

Kamenik, Soreq, JZ, 1704.06005

• Z' w / loop

Bélanger, Delaunay, 1603.03333

 box w / NP fields

Gripaios, Nardecchia, Renner, 1509.05020; Bauer, Neubert, 1511.01900; Becirevic, Sumensari, 1704.05835

J. Zupan Flavor constraints on NP

18

Lepton Photon, Guangzhou, Aug 8 2017

LOOP LEVEL

three distinct options

TOP-PHILIC Z'

 d^{i}

Kamenik, Soreq, JZ, 1704.06005

cf. NA62 reach:

10% of the SM

- where is the flavor structure coming from?
- why the $(\bar{s}b)_{V-A}$ chiral structure?
- automatic for top-philic Z'
 - $b \rightarrow s$ due to SM W in the loop

SM value

J. Zupan

nts on NP

- MFV structure: all FV due to CKM
 - there is a correlated signal in $K \rightarrow \pi v v$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \simeq (8.4 \pm 1.0) \times 10^{-11} \times \frac{1}{3} \sum_{\ell} \left| 1 + 0.11 (C_9^{\ell, \text{NP}} - C_{10}^{\ell, \text{NP}}) - C_{10}^{\ell, \text{NP}} \right|$$

19

see also Bordone, Buttazzo, Isidori, Monnard, 1705.10729 Lepton Photon, Guangzhou, Aug 8 2017

 $c^{(3,1)}_{Q_{ij}L_{22}} \sim \left(\mathbf{X} + \alpha Y_u Y_u^{\dagger} + \beta Y_d Y_d^{\dagger} \right)$

UPSHOT

- $b \rightarrow c \tau v$ flavor anomaly
 - theoretically clean, $\sim 4\sigma$ excess
 - NP effect large: O(20%) of SM tree level
 - NP interpr. often in conflict with other constraints

EXPERIMENTAL SITUATION

- seen in several experiments
- theory well under control Bernlochner, Ligeti, Papucci, Robinson, 1703.05330

for theory predictions see, e.g.,

Bailey et al, 1206.4992

Fajfer, Kamenik, Nisandzic, 1203.2654

Bigi, Gambino, Schacht, 1707.09509

$$R(D^{(*)}) = \frac{\Gamma(\overline{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\overline{B} \to D^{(*)}l\bar{\nu})}, \qquad l = \mu, e$$

NEW PHYSICS

- the most obvious candidates ruled out
 - charged Higgs: total B_c lifetime, $b \rightarrow c\tau v q^2$ distributions, searches in $pp \rightarrow \tau \tau$
 - W': related Z' ruled out from $pp \rightarrow \tau \tau$
- left with leptoquarks, will show two
 - RPV sbottom: explains $b \rightarrow c \tau v$, not $b \rightarrow c \tau \mu$
 - vector leptoquark: explains $b \rightarrow c \tau v \& b \rightarrow s \mu \mu$
 - also possible if more than one scalar leptoquark
 Crivellin, Muller, Ota, 1703.09226

RPV $\tilde{b}_{R,L}$

• leptoquarks: $\tilde{b}_{R,L}$ with RPV interactions

 $\lambda_{iik}' L_i Q_j D_k^c$

- to avoid proton decay constraints: 1st, 2nd gen. squarks taken heavy
- direct searches $pp \rightarrow tt\tau\tau$: $m(\tilde{b}_R) > 650 \text{GeV}$
- unification still possible
- cannot explain $b \rightarrow s \mu \mu$

Deshpande, He, 1608.04817; Becirevic et al. 1608.07583

J. Zupan Flavor constraints on NP

Altmannshofer, Dev, Soni, 1704.06659

Leptoquark for both $b \rightarrow c\tau v$ and $b \rightarrow s\mu \mu$

25

Buttazzo, Greljo, Isidori, Marzocca, 1706.07808
 in EFT possible to explain all anomalies

$$\frac{1}{v^2}\lambda^q_{ij}\lambda^\ell_{\alpha\beta}\left[C_T \ (\bar{Q}^i_L\gamma_\mu\sigma^a Q^j_L)(\bar{L}^\alpha_L\gamma^\mu\sigma^a L^\beta_L) + C_S \ (\bar{Q}^i_L\gamma_\mu Q^j_L)(\bar{L}^\alpha_L\gamma^\mu L^\beta_L)\right]$$

$$\lambda_{sb}^q = \mathcal{O}(|V_{cb}|) , \quad \lambda_{ au\mu}^\ell = \mathcal{O}(|V_{ au\mu}|) , \quad \lambda_{\mu\mu}^\ell = \mathcal{O}(|V_{ au\mu}|^2)$$

- with MFV-like flavor structure
- predicts $Br(b \rightarrow s\tau\tau) \sim O(100)x SM$
- if NP contribs. dominated by one field
 - only one option: vector leptoquark

$$U_1^{\mu} \equiv (\mathbf{3}, \mathbf{1}, 2/3)$$

J. Zupan Flavor constraints on NP

Lepton Filoton, Guangzhou, Aug o 201.

Leptoquark for both $b \rightarrow c\tau v$ and $b \rightarrow s\mu \mu$

Buttazzo, Greljo, Isidori, Marzocca, 1706.07808
 in EFT possible to explain all anomalies

 $\frac{1}{v^2}\lambda_{ij}^q\lambda_{\alpha\beta}^\ell \left[C_T \ (\bar{Q}_L^i\gamma_\mu\sigma^a Q_L^j)(\bar{L}_L^\alpha\gamma^\mu\sigma^a L_L^\beta) + C_S \ (\bar{Q}_L^i\gamma_\mu Q_L^j)(\bar{L}_L^\alpha\gamma^\mu L_L^\beta) \right]$

 $\lambda_{sb}^q = \mathcal{O}(|V_{cb}|) , \quad \lambda_{ au\mu}^\ell = \mathcal{O}(|V_{ au\mu}|) , \quad \lambda_{\mu\mu}^\ell = \mathcal{O}(|V_{ au\mu}|^2)$

• with MFV-like flavor

- predicts $Br(b \rightarrow s\tau\tau) \sim C$
- if NP contribs. dominated by one field
 - only one option:
 vector leptoquark

$$U_1^{\mu} \equiv (\mathbf{3}, \mathbf{1}, 2/3)$$

J. Zupan Flavor constraints on NP

THE FUTURE

- many related modes / observables in $b \rightarrow c \tau v$ and $b \rightarrow s \mu \mu$
 - $\Lambda_b \rightarrow \Lambda_c \tau v, B_C \rightarrow J/\psi \tau v, B_S \rightarrow D_s^* \tau v, B_s \rightarrow \phi ll,$ $b \rightarrow sll$ inclusive, LFU in angular obs., ...
- a rule of thumb: Belle 2 50x statistics of Belle see talk by Yutaka Ushiroda
 - corresponds to ~reach in Λ_{NP} of 450=2.7x
 - like going from 13TeV LHC to 35TeV LHC
- similar for LHCb (Phase 2 Upgrade 100x stat.)

CONCLUSIONS

- the $b \rightarrow c\tau v$ and $b \rightarrow s\mu\mu$ anomalies clean from the theory side
- challenging but not impossible to explain both simultaneously
- imply many new signals at both high p_T (CMS, ATLAS) and in precision flavor (LHCb, Belle II, NA62, g-2,...)

BACKUP SLIDES

LOW ENERGY PRECISION BOUNDS

UTFit 0707.0636, 1411.7233

- an impressive progress on flavor bounds in last 10 years
- in D, B_s mixing

J. Lupan Travor constraints on

• also from ε_K

 $\frac{1}{\Lambda 2} (\bar{b}_L \gamma^\mu d_L) (\bar{b}_L \gamma_\mu d_L)$

LOW ENERGY PRECISION BOUNDS

UTFit 0707.0636, 1411.7233

- an impressive progress on flavor bounds in last 10 years
- in D, B_s mixing

J. Lupan Travor constraints on

• also from ε_K

 $\frac{1}{\Lambda 2} (\bar{b}_L \gamma^\mu d_L) (\bar{b}_L \gamma_\mu d_L)$

LEPTOQUARKS UPSHOT

L. di Luzio, 1706.01868

	Simplified Model		el S	Spin SM irr		ep	c_1/c_3	$R_{D^{(*)}}$	I	$R_{K^{(*)}}$	No a	$d_i \to d_j \nu \overline{\nu}$	
Γ	Z'			1 (1, 1, 0)))	0	×		\checkmark		×]
	V'			1	(1, 3, 0)))	∞	✓		\checkmark		×	
		S_1		0	$(\overline{3}, 1, 1)$	/3)	-1	✓		×		×	
		S_3		0	$(\overline{3},3,1)$	/3)	3	✓		\checkmark		×	
		U_1		1	(3, 1, 2)	/3)	1	\checkmark		\checkmark		\checkmark	
		U_3		1	(3, 3, 2/	/3)	-3	\checkmark		\checkmark		×	
													_
Ar	nomaly	\mathcal{O}	FS_Q		FS_L	Λ_A	[TeV]	$ \Lambda_{\mathcal{O}} $ [7]	leV]	$\Lambda_U['$	TeV]	$M_{\star}[\text{TeV}]$	
<i>b</i> ·	$\rightarrow c \tau \overline{\nu}$	$Q_{23}L_{33}$	1		1		3.4	3.4	:	9	.2	43	
b ·	$\rightarrow c \tau \overline{\nu}$	$Q_{33}L_{33}$	$ V_{cb} $		1		3.4	0.7	,	1	.9	8.7	
<i>b</i> -	$ ightarrow s\mu\overline{\mu}$	$Q_{23}L_{22}$	1		1		31	31		8	34	390	
$b ightarrow s \mu \overline{\mu}$		$Q_{33}L_{22}$	$ V_{ts} $	1		31		6.2		17		78	
$b ightarrow s \mu \overline{\mu}$		$Q_{33}L_{33}$	$ V_{ts} $	$ $ $^{\ddagger}m_{\mu}/m_{ au}$		31		1.5		4.1		19	
$b ightarrow s \mu \overline{\mu}$		$Q_{33}L_{33}$	$ V_{ts} $	*(n	$(m_{\mu}/m_{\tau})^2$		31	0.4	:	1	.0	4.7	

MINIMAL U(1)' MODEL

Kamenik, Soreq, JZ, 1704.06005

• new U(1)' gauge symmetry $\Phi = (\phi + \tilde{v})/\sqrt{2}$

scalar Φ~(1,1,0,q')

 $2/3 \quad a'$ SU(3)xSU(2)xU(1)xU(1)'

• vectorlike fermion *T*′~(*3*, *1*, *2*/*3*, *q*′)

all the SM fields singlets under U(1)'

• interactions with the SM through only three terms $\mathcal{L}_{\text{mix}} = -\lambda' |\Phi|^2 |H|^2 - \epsilon B^{\mu\nu} F'_{\mu\nu} - (y_T^i \bar{T}' \Phi u_R^i + \text{h.c.})$

SIZE OF $b \rightarrow s \mu \mu$

•
$$t^{-}$$
 $\mathcal{M}_{u}^{t-T'} = \begin{pmatrix} y_{t}v/\sqrt{2} & 0\\ y_{T}^{t}\tilde{v}/\sqrt{2} & M_{T} \end{pmatrix}$

- the mixing angles for the two chiralities $\theta_R \sim y_T^t \tilde{v}/M_T = \theta_L \sim \theta_R v/M_T$
 - main effects due to mixing with t_R
- the induced $b \rightarrow sll$

$$C_{9,10}^{\mu,\text{NP}} = \frac{1}{2}q'q'_{\mu,V,A}\frac{m_t^2}{m_{Z'}^2}\frac{\tilde{g}^2}{e^2}s_R^2\log\left(\frac{m_T^2}{m_W^2}\right) + \dots,$$

 d^{i}

• fits the anomaly for $m_{Z'} \sim O(500 \text{ GeV})$, $\tilde{g}q' \sim O(1)$

- couplings to muons due to mixing with vectorlike leptons
 - depending on the details could explain $(g-2)_{\mu}$

DIRECT SEARCHES

- important contraints from dimuon searches
- production channels:
 - tree level $pp \rightarrow \bar{t}tZ'$,
 - 1-loop: $pp \rightarrow ZZ', jZ'$
- depends on $Br(Z' \rightarrow \mu \mu)$
 - e.g. below *t* threshold:
 - coupling to $\mu_L \Rightarrow Br(Z' \rightarrow \mu\mu) = 0.5$
 - coupling to $\mu_{L'}\tau_L \Rightarrow Br(Z' \rightarrow \mu\mu) = 0.2$

33

- interesting possible searches at CMS, ATI
 - $pp \rightarrow \bar{t}t(Z' \rightarrow \mu\mu), \bar{t}t(Z' \rightarrow \tau\tau), \bar{t}t(Z' \rightarrow \bar{t}t)$

R_K vs. R_{K^*}

Geng et al, 1704.05446

D'Amico et al., 1704.05438

SENSITIVITY TO NEW PHYSICS

- sensitivity to NP from virtual corrections
 - e.g. $b \rightarrow sl^+l^-$
- NP contribs. scale as

 $\delta C^{\rm NP} \propto \frac{\sin \theta_i \sin \theta_j}{M_{\rm NP}^2}$

 depends on mix. angles and NP masses

fig. from talk by G. Hiller at The First Three years of LHC, Mainz, Mar 2013

BOUNDS ON MODELS

• $B_s \rightarrow \mu \mu$ important discriminator of models

37

OTHER CONSTRAINTS

• nontrivial constraint from $Z \rightarrow 4l$

 especially for light Z' also important constraint from μμ p_T spectrum at the LHC

Bishara, Haisch, Monni, 1705.03465

 $b \rightarrow c \tau v$

numerical values

	R(D)	$R(D^*)$
BaBar	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$
Belle	$0.375^{+0.064}_{-0.063} \pm 0.026$	$0.293^{+0.039}_{-0.037} \pm 0.015$
LHCb		$0.336 \pm 0.027 \pm 0.030$
Exp. average	0.388 ± 0.047	0.321 ± 0.021
SM expectation	0.300 ± 0.010	0.252 ± 0.005
Belle II, 50 ab^{-1}	± 0.010	± 0.005

SBOTTOM SOLUTION

$R_D, R_D * PREDICTIONS$

Bernlochner, Ligeti, Papucci, Robinson, 1703.05330

• without light cone sum rule estimates

41

DIRECT SEARCHES IN TT

• $b \rightarrow c\tau v$ also implies a $1/V_{cb}$ enhanced $b\bar{b} \rightarrow \tau^+ \tau^-$

	Color singlet	Color triplet
Scalar	2HDM	Scalar LQ
Vector	W'	Vector LQ

RADIATIVE CORRECTIONS

loop corrections important

Feruglio, Paradisi, Pattori, 1705.00929, 1606.00524

- modifications of the W, Z couplings to leptons
- induced τ decays

