Searches for Beyond SM Higgs bosons

on behalf of ATLAS and CMS Collaborations

Soshi Tsuno (KEK)

LP'2017 Sun Yat-Sen University, Guangzhou

JHEP08(2016)045

-

Recent Higgs boson study tell us :

Introduction

- symmetry breaking does exists

(mass generation through scalar field)

But need to know how it does happen?

- precise measurements (previous talks),
- searches for another scalar particles. <= this talk

The extension of the Standard Model has many attractive features:

- solve fine tune problem (naturalness),
- give an insight of hierarchy problem,
- even predicts dart matter candidates.

Discovery of the Higgs boson also opens a new opportunity to new physics.

- Higgs as a probe to the new physics beyond the SM \leq = this talk

 $\Phi =$

Contents

- **1. Search for another Higgs sector :** MSSM Higgs bosons
- **2.** Higgs as a probe to new physics : Heavy resonance $X \rightarrow VH$ or HH
- 3. Anomalous Higgs couplings :
- 4. Summary

Not cover everything:

Visit **ATLAS**:

https://atlas.cern

CMS: http://cms.cern

Search for another Higgs sectors

- MSSM Higgs bosons

Minimum extension of the SM :

August.7.2017

Minimum extension of the SM :

Minimum extension of the SM :

 $H/A \rightarrow \tau\tau$ search

Sensitive to high $tan\beta$ region :

Analysis :

- Since production mode depends on the size of $tan\beta$, enhance high p_T tau **without b-jet** (ggH) or **with b-jet** (bbH).
- Dominant background is a jet events mis-identified as tau. (W+jets, top, multi-jet process) They are estimated by data.

Experimental challenge :

- High $p_T \tau$ reconstruction

There is no control data for such high $p_T \tau$.

Extra \sim 20% uncertainties using di-jet events are added on the top of the tau ID (5%).

- Theory uncertainty: the treatment of b-quark in the initial state.

$H/A \rightarrow \tau \tau$ search con't

Reconstruct mass :

$$m_{\rm T}^{\rm tot} \equiv \sqrt{(\mathbf{p}_{\rm T}^{\tau_1} + p_{\rm T}^{\tau_2} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\tau_1} + \mathbf{p}_{\rm T}^{\tau_2} + \mathbf{E}_{\rm T}^{\rm miss})^2}$$

Model independent limits are obtained :

 σ x Br : 0.85 – 0.0058pb for ggH, 0.95 - 0.0041 pb for bbH.

LP2017

Interpretation to typical MSSM benchmark scenario :

LP2017

Charged Higgs searches con't

Low tanβ region:

- Use $H^+ \rightarrow tb$ decay mode.
- Multivariate analysis (BDT) dividing jets and b-jets.

Significant systematics is tt + jets modeling (theory).
 NLO precision (Sherpa+OneLoops) is used with 50% uncertainty in multiple interaction (MPI).

Higgs as a probe to new physics

- Heavy resonance $X \rightarrow VH$ or HH

Many di-boson channels

$X \rightarrow di$ -bosons ($W/Z/H/\gamma$) $\rightarrow 4$ or 6-fermions

 $Access\ m_X \sim a\ few\ TeV$

	Final state	ATLAS	CMS
	γγ, Ζγ	submit to Phys.Lett.B.,36.7fb ⁻¹ arXiv:1707.04147 arXiv:1708.00212	$\begin{array}{r} {\sf Run1(19.7fb-1) + {\sf Run2(16.2fb^{-1})}\\ \underline{{\sf Phys.Lett.B.767(2017)147}}\\ \underline{{\sf arXiv:1610.02960}} \end{array}$
Only cover VH, HH.	ΖΖ (IIII, ΙΙνν, ΙΙqq, ννqq)	L =36.1fb ⁻¹ <u>ATLAS-CONF-2017-058</u> <u>ATLAS-CONF-2016-082</u>	$L = 2.3 fb^{-1}$ <u>CMS-PAS-HIG-16-001</u> <u>CMS-PAS-HIG-16-033</u>
	WW (IvIv. Ivaa. aaaa)	L = 36.1fb ⁻¹ <u>ATLAS-CONF-2017-051</u> <u>ATLAS-CONF-2016-074</u>	L = 2.3fb ⁻¹ <u>CMS-PAS-HIG-16-023</u>
	HV (bbll, bbvv, bblv, bbqq)	$L = 36.1 \text{fb}^{-1}$ $\underbrace{\text{NEW}}_{\text{ATLAS-CONF-2017-018}}_{\text{ATLAS-CONF-2017-055}}$	L = 2.2-2.5fb ⁻¹ <u>Phys.Lett.B768(2016)137</u>
	HH (bbbb, bblvlv, bbττ, bbγγ)	L = 13.3fb ⁻¹ <u>NEW ATLAS-CONF-2016-049</u> <u>ATLAS-CONF-2016-071</u> <u>ATLAS-CONF-2016-004</u>	$L = 35.9 fb^{-1}$ $CMS-PAS-HIG-17-008$ $CMS-PAS-HIG-17-006$ $CMS-PAS-HIG-16-029$ $CMS-PAS-HIG-16-002$

High mass resonance searches $(X \rightarrow di$ -bosons including Higgs)

Production mode :

The "X" might be another Higgs.

If the final state is Higgs, decaying to bb or $\gamma\gamma$ mode is a good handle of the background.

Analysis strategy :

According to the mass of the resonance particle, $\ensuremath{m_X}$

 $m_X < \sim 1 TeV$

"Resolved" category

"Merged" category $m_X > \sim 1 \text{TeV}$

High mass $X \rightarrow HV$

Exploit all possible combination :

$$\begin{cases} H \rightarrow bb \\ V (W \text{ or } Z) \rightarrow II, Iv, jj, vv \end{cases}$$

Reconstruct mass :

- 4-fermion invariant mass if all "visible".
- Or in case neutrino in the final state, use

 $m_{\mathrm{T},Vh} = \sqrt{(E_{\mathrm{T}}^{h} + E_{\mathrm{T}}^{\mathrm{miss}})^{2} - (\vec{p}_{\mathrm{T}}^{h} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}})^{2}},$

Experimental challenge :

- B-jet performance is a key. ~5-10% ID syst.
- Mass resolution ~30-40%.

Cross section limit : $\sim 1.0 \times 10^{-2}$ pb @ m_A=1TeV

High mass X \rightarrow HH \rightarrow bbbb

Analysis:

- Both $H \rightarrow bb$ is reconstructed as single jet,
- Sub-jets are identified as b-jets,
- Reconstruct M_{jj} mass as HH resonance.

Experimental challenge :

- Trigger:

Combination of $H_T{>}800(900)GeV$ and $H_T{>}680{+}$ di-jet topology M_{jj} + $\Delta\eta$

LP2017

Anomalous Higgs couplings

- Flavor violation, Rare decay

Search for flavor violating decay

Lepton flavor violating decay:

- Many interesting physics connecting to neutrino flavor mystery.
 - FCNC is forbidden in SM. But how about Higgs?

$H \rightarrow \mu \tau$, $e\tau$ search: <u>CMS-PAS-HIG-17-001</u>

- Strong constraint Br($H \rightarrow e\mu$)~2x10⁻⁸ from $\mu \rightarrow e\gamma$ or $\mu \rightarrow 3e$ experiments. But tau decay mode is rather weakly constraint.

Flavor violation in quark sector:

- $t \rightarrow qH, H \rightarrow \gamma\gamma search : arXiv:1707.01404$
 - SM prediction: $Br(t \rightarrow qH) = 3x10^{-15}$
 - Use top-pair samples with two photons, construct top mass, $m_{\gamma\gamma j.}$
 - Limit obtained: $Br(t \rightarrow uH) < 2.4 \times 10^{-3}$

5 GeV

Entries /

20

		/	-
Mode]	Branching Fraction [10 ⁻	-6]
Method	NRQCD [1487]	LCDA LO [1486]	LCDA NLO [1489]
${\rm Br}(h\to\rho\gamma)$	_	19.0 ± 1.5	16.8 ± 0.8
${ m Br}(h o \omega \gamma)$	—	1.60 ± 0.17	1.48 ± 0.08
${\rm Br}(h \to \phi \gamma)$	_	3.00 ± 0.13	2.31 ± 0.11
$\operatorname{Br}(h \to J/\psi \gamma)$	—	$2.79^{+0.16}_{-0.15}$	2.95 ± 0.17
$\operatorname{Br}(h \to \Upsilon(1S) \gamma)$	$(0.61^{+1.74}_{-0.61}) \cdot 10^{-3}$	_	$(4.61^{+1.76}_{-1.23}) \cdot 10^{-3}$
$\operatorname{Br}(h \to \Upsilon(2S) \gamma)$	$(2.02^{+1.86}_{-1.28}) \cdot 10^{-3}$	_	$(2.34^{+0.76}_{-1.00}) \cdot 10^{-3}$
$\operatorname{Br}(h \to \Upsilon(3S) \gamma)$	$(2.44^{+1.75}_{-1.30}) \cdot 10^{-3}$	_	$(2.13^{+0.76}_{-1.13}) \cdot 10^{-3}$

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 35.6 \text{ fb}^{-1}$

≥3000

82500

Candidates /

1000

500

LP2017

ö

0.99 1.00 1.04 1.01 1.02 1.03 1.05 m_{K⁺K} [GeV] Limit on Br :

 $Br(H\rightarrow\phi\gamma) < 4.8 \times 10^{-4}$

 $Br(H\rightarrow \rho\gamma) < 8.8 \times 10^{-4}$

(SM prediction Br $\sim 10^{-6}$)

Fit Result $\phi \rightarrow K^*K$

Total Background

Search for "new" exclusive decay m

ATLAS-CONF-2017-057 $H \rightarrow \rho \gamma$, $\phi \gamma$ search :

- Use $\phi \rightarrow K^+K^-$ and $\rho \rightarrow \pi^+\pi^-$
- Mass resolution ~4MeV
- Dominant background is γ + jets, side-band fit. -

Experimental challenge :

Huge improvement in trigger: 35GeV photon _ + 2 tracks with $p_T > 15 \text{GeV}$.

Higgs decays long-lived neutral particles

Higgs decay another exotic (scalar) bosons :

- Results in non-negligible lifetime of the bosons which can decay outside beam pipe.
- Main background : **different target**
 - bb if lifetime is short, it can decay inside tracking detector.
 - beam-induced bkg

if long lifetime, decays outside tracking detector.

 (2μ) [fb]

 $> 2\gamma_D + X)B^2(\gamma_D -$

σ(pp-

CMS-PAS-HIG-16-035

LJ Type1

Summary

1. Search for another Higgs sector :

MSSM Higgs bosons
 Strategic, excludes low and high tanβ regions. ~1TeV@tanβ~20-40
 HL-LHC will exploit up to 400 GeV for whole parameter space.
 (above 400GeV, tanβ~10 is rather weak..)

2. Higgs as a probe to new physics :

- Heavy resonance X \rightarrow VH or HH All decay modes (4, 6-fermion) are fully covered. Accessible to $m_X \sim a$ few TeV.

3. Anomalous Higgs couplings :

- Flavor violation, Rare decay LFV for tau starts limits on theory. Rare decay limit : ~10⁻⁴ (SM prediction: ~10⁻⁶) With 3000fb⁻¹, reach to Br(H \rightarrow J/ $\psi \gamma$) < 55x10⁻⁶ accessible to 2nd generation.

Backup

Perspective for HL-LHC

ATL-PHYS-PUB-2014-017

Constraint to SM Higgs measurements:

10 tan β **ATLAS** Simulation Preliminary 9 Combined h $\rightarrow \gamma \gamma$, ZZ^{*}, WW^{*} 8 $h \rightarrow Z\gamma, \mu\mu, \tau\tau, b\overline{b}$ Exp. 95% CL at vs= 14 TeV Simplified MSSM [$\kappa_v, \kappa_u, \kappa_d$] 6 $Ldt = 300 \text{ fb}^{-1}$: all unc. 5 $Ldt = 300 \text{ fb}^{-1}$: No theo. 3 $Ldt = 3000 \text{ fb}^{-1}$: all unc. Ldt = 3000 fb⁻¹ : No theo. 200 400 600 800 1000 1200 m_A [GeV]

Highlight: High-mass diphoton resonance

ATLAS: Update new analysis with full dataset of 2015+2016.

- $L=36.7 \text{fb}^{-1}$ (2015+2016)
- Improved photon ID (conversion track recovery)
- Re-calibrated with 2016 dataset.
- **CMS:** Last update at Moriond 2017
 - paper published in April.
- **Summary :** Significance at $m_H \sim 750 \text{GeV}$ saga

	Old (2015)	New (2015+2016)	
ATLAS	3.9σ Run2, L=3.2fb ⁻¹ JHEP09(2016)001	<mark>2.6σ</mark> Run2, L=36.7fb ⁻¹ Phys.Lett.B. <u>arXiv:1707.04147</u>	
CMS	3.4σ Run1(19.7fb-1)+Run2(3.3fb ⁻¹) <u>PRL.117(2016)051802</u>	1.9 σ Run1(19.7fb-1)+Run2(16.2fb ⁻¹) <u>Phys.Lett.B.767(2017)147</u>	

Dark matter with Higgs

Collider experiment: "Direct production".

Wide interests of HEP community :

Production

LHC ...

 $p+p \rightarrow \chi + \chi$

Open a new signature with Higgs

Invisible Higgs decay:

- Mono-X searches (X=Z, jet, γ , ...)
 - SM Br(H \rightarrow vvvv) = 0.1%
 - Current SM measurements weakly constrain **Br(H→BSM)**<**~30%**

(NEW) Visible Higgs decay:

- Mono-H searches
 - Search H + MET signature,
 - No initial state radiation.

Invisible Higgs searches

Usual Higgs production, but decays "invisibly".

Experimental challenge :

- VBF trigger, forward/backward jets with large $\Delta\eta_{jj}$ and $m_{jj}.$
- Better control of the MET reconstruction to suppress multijet background.

Upper limit on Br(H \rightarrow inv.)<0.24 @95%C.L. <u>JHEP.02(2017)135</u>

(%) Relatively high p_T regime (Mono-jet, V(jj)) are not considered in this talk.

2.3 fb⁻¹ (13 TeV) Events/GeV 10⁴ 10³ Data **CMS** Preliminary $Z(\rightarrow vv)$ +iets ggH-tagged $W(\rightarrow l v)$ +jets Dibosons Top guark $Z/\gamma(\rightarrow II)$ +jets 102 QCD multijet H, B(H \rightarrow inv.)=100% 10 10 10^{-2} Data/Pred. 200 400 600 800 1000 1200 E_{T}^{miss} [GeV] $4.9 \text{ fb}^{-1} (7 \text{ TeV}) + \le 19.7 \text{ fb}^{-1} (8 \text{ TeV}) + 2.3 \text{ fb}^{-1} (13 \text{ TeV})$ 10 σ CMS 9 Preliminary 8 5 З Combined - VBF-tagged-2 - VH-tagged -Observed - Expected ---- aaH-taaaed 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $B(H \rightarrow inv.)$

- Use di-photon trigger (35/25GeV)
- MET significance and $p_T(\gamma\gamma)$ is strong parameter.
 - $S_{E_{\rm T}^{\rm miss}} = E_{\rm T}^{\rm miss} / \sqrt{\sum E_{\rm T}}$
- Final discriminant is $m_{\gamma\gamma}$ by line-shape fit.

$H \rightarrow bb + MET : arXiv:1707.01302$

- Use MET trigger (70-110GeV)
- 'Resolved' (m_{jj}) and 'Merged' (m_{J}) categories.
- b-jet uncertainty is dominant (~17%)

Search for lepton flavor violating decay

CMS-PAS-HIG-17-001 $H \rightarrow \mu \tau$, $e\tau$ search:

Strong constraint Br(H \rightarrow eµ)~2x10⁻⁸ from µ \rightarrow eγ or µ \rightarrow 3e experiments.

But tau decay mode is rather weakly constraint.

Analysis:

- Reconstruct a mass with collinear mass approximation.
- Dominant systematics is jet uncertainty ~10-20%.
- Limits are obtained on the $Br(H \rightarrow \mu \tau)$ and $Br(H \rightarrow e \tau)$.
- With Br limit, constrain to Yukawa coupling through

$$\Gamma(\mathrm{H} \to \ell^{\alpha} \ell^{\beta}) = \frac{m_{\mathrm{H}}}{8\pi} \left(|Y_{\ell^{\beta} \ell^{\alpha}}|^{2} + |Y_{\ell^{\alpha} \ell^{\beta}}|^{2} \right)$$

