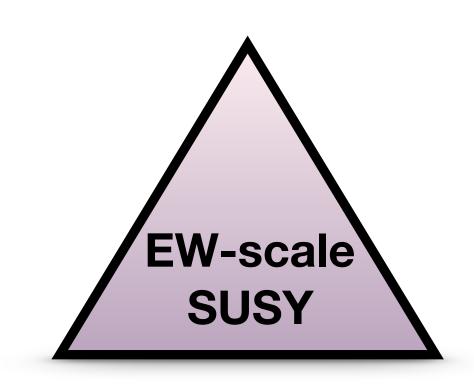
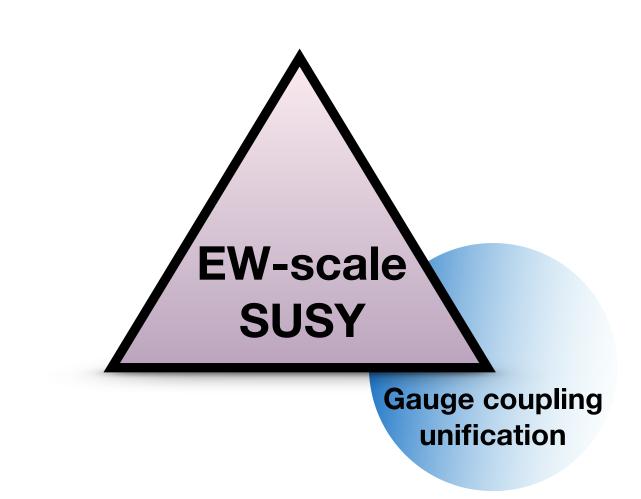
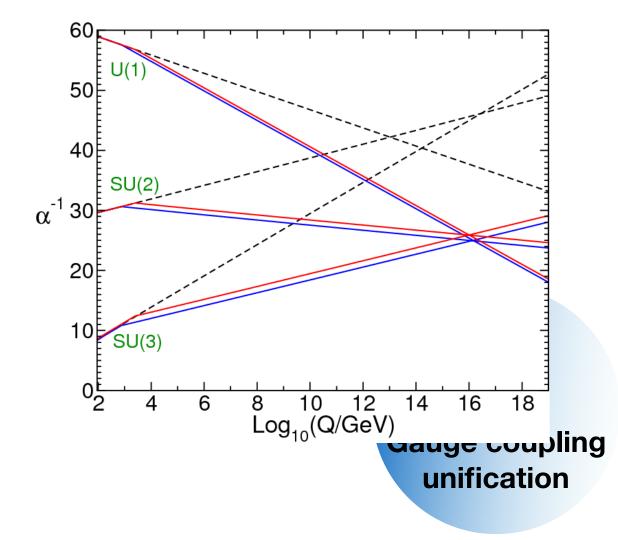

University of Sussex

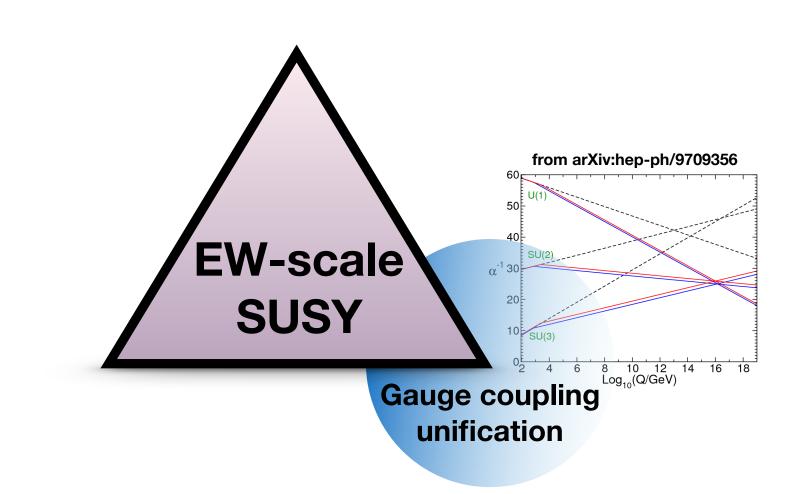
Searches for supersymmetry

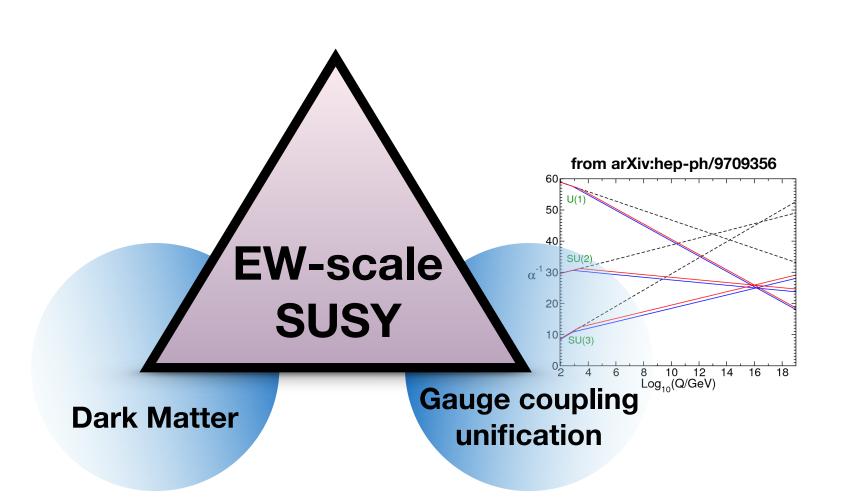
Iacopo Vivarelli - University of Sussex

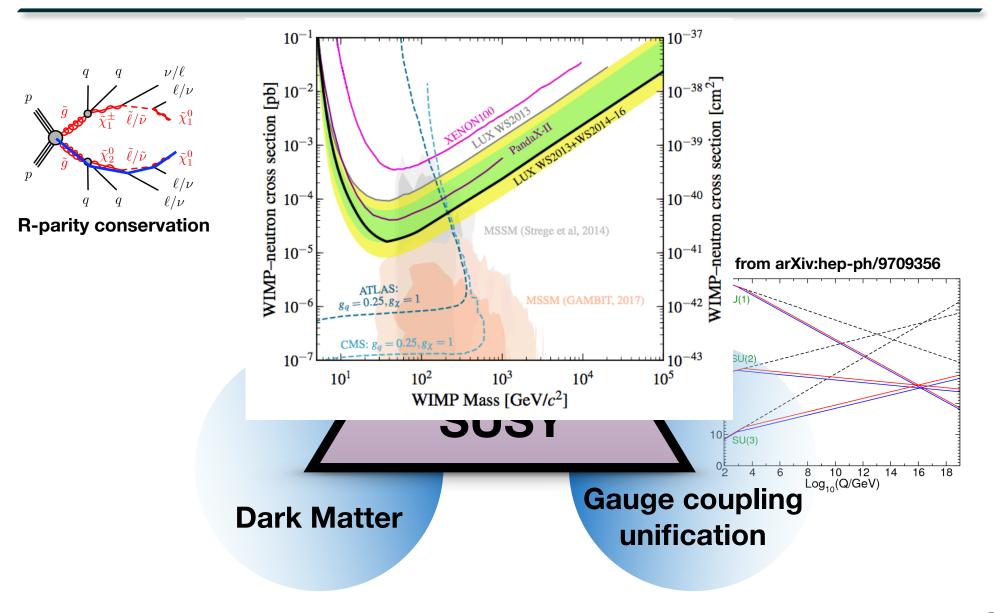

On behalf of the ATLAS, CMS and LHCb collaborations LP2017 - Sun Yat-Sen University - Guangzhou

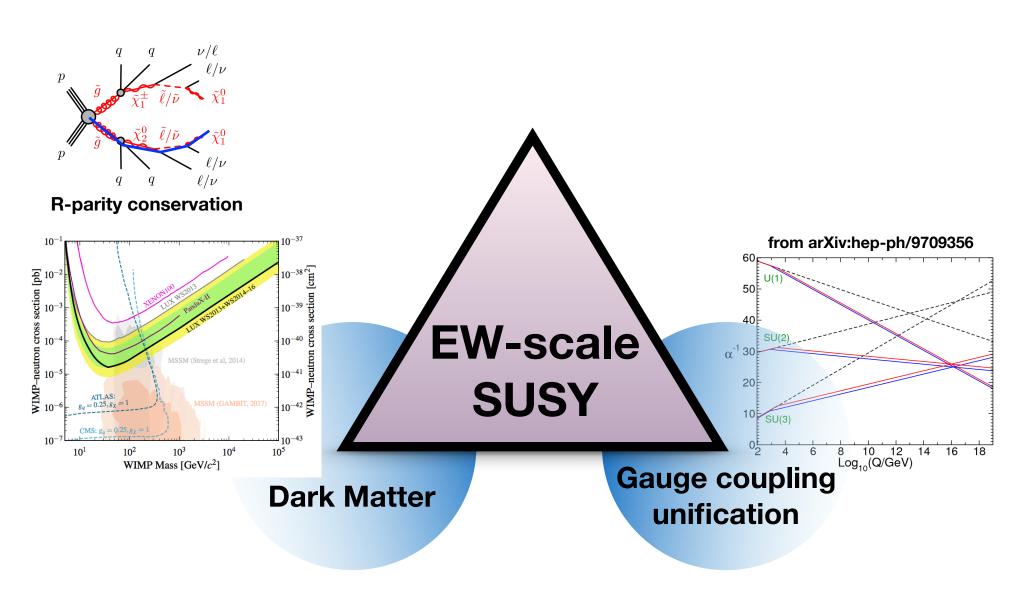


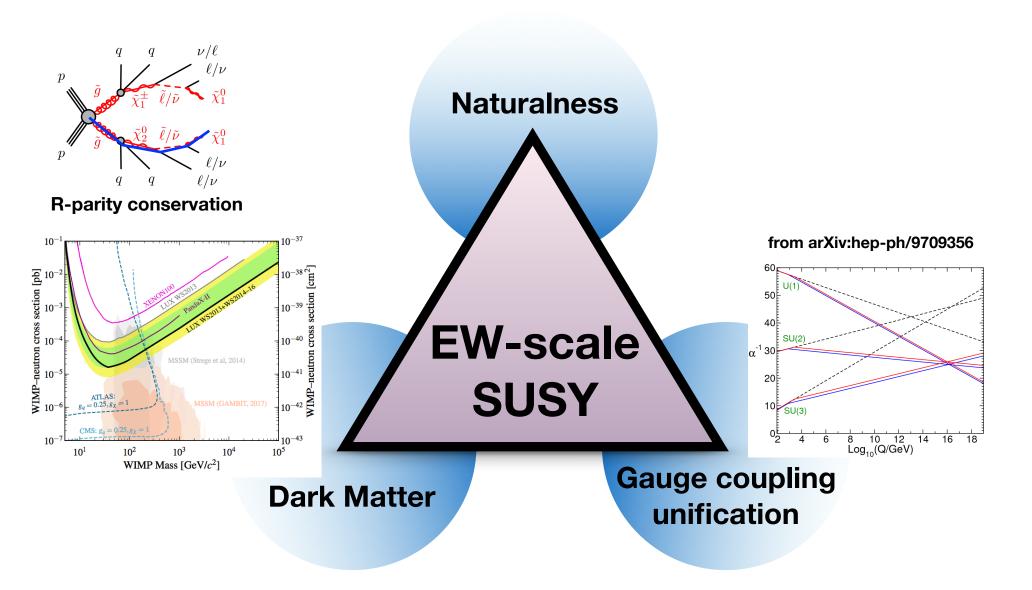


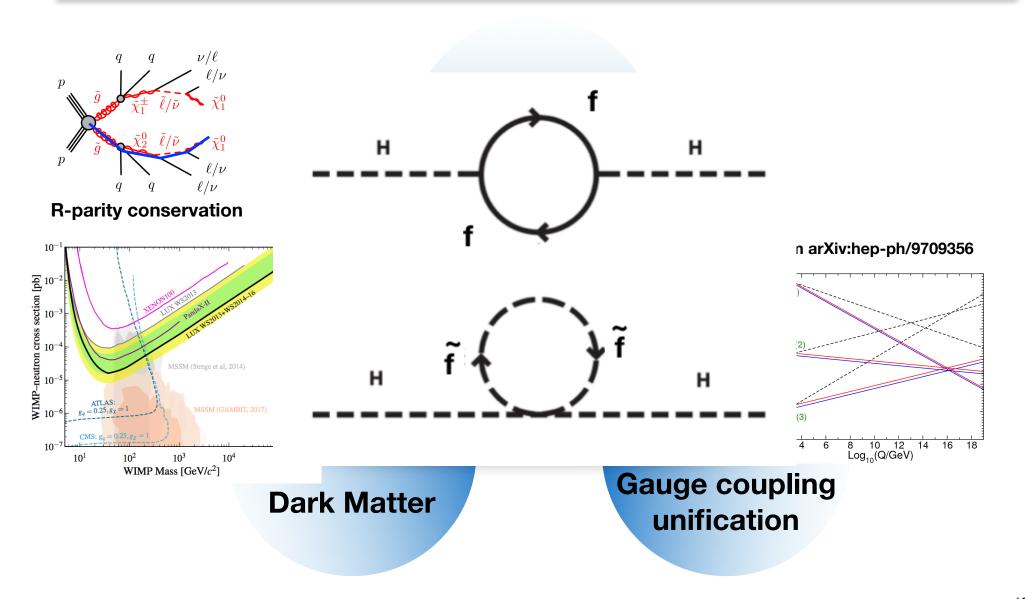


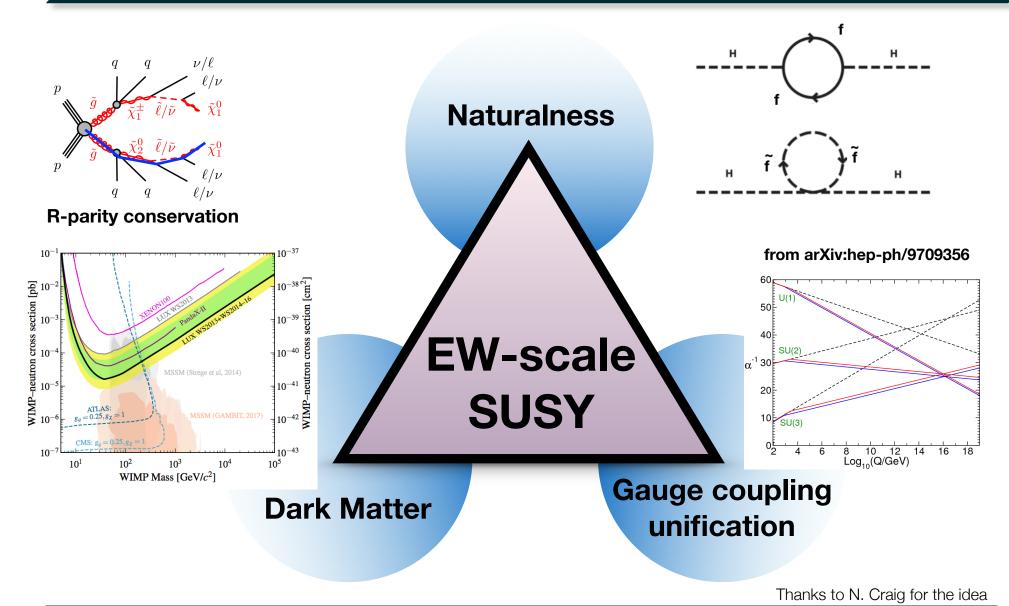






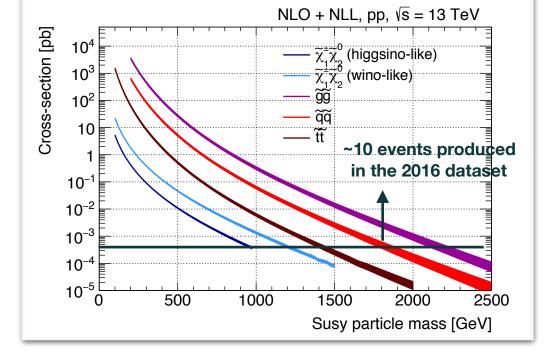

University of Sussex





Jets from squark/

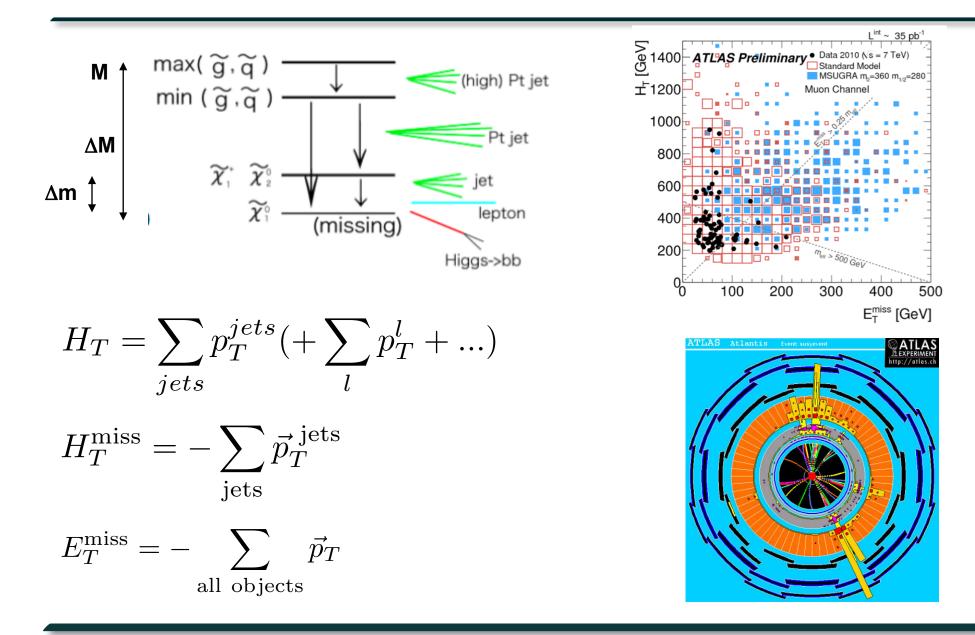
gluino decay


Invisible to the detector $\rightarrow E_T^{miss}$

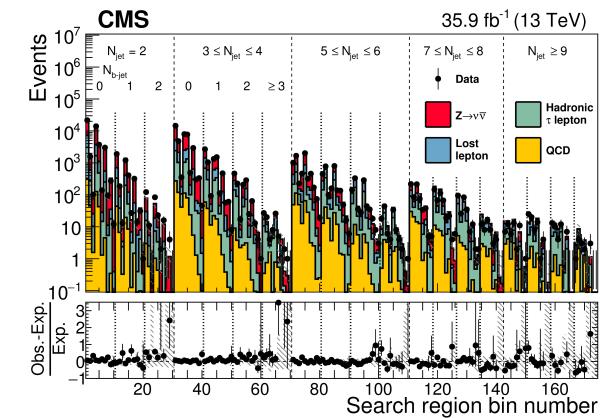
Signatures of EW-scale SUSY

Generic expectation for sparticles with ~1 TeV mass:

- Production cross section dominated by strong interactions.
- Abundant production of gluinos and squarks.


p

Inclusive searches


https://arxiv.org/abs/1704.07781

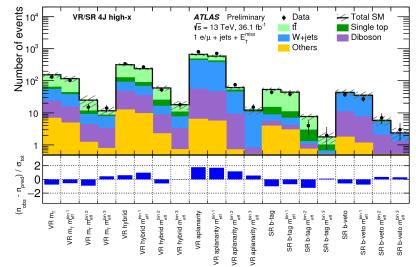
- Thorough search in signal-like phase space region with no leptons
 - Standard Model background estimated with a mixture of MC- and datadriven techniques.

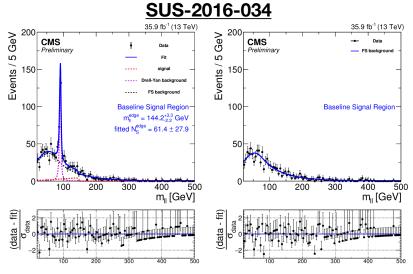
Example: <u>https://arxiv.org/abs/</u> <u>1704.07781</u>

Phase space binned in $N_{jets},\,N_{bjets},\,H_{T},\,H_{T}^{miss}$

No excess above the Standard Model predictions

Inclusive searches for EW-scale SUSY

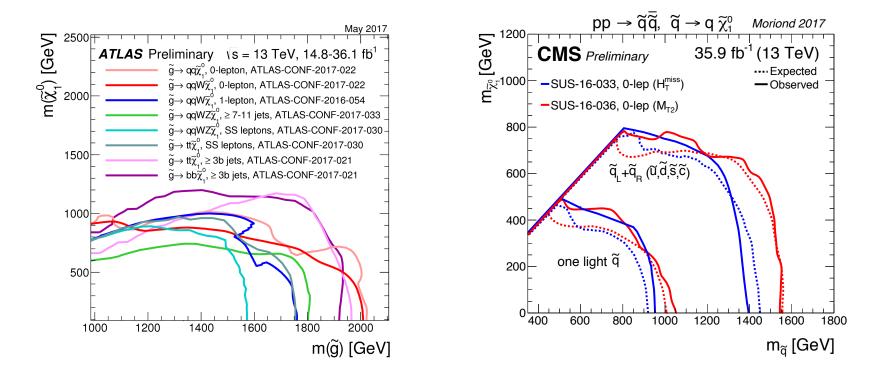



- Final states with leptons typically **target longer decay chains**:
 - One-lepton final states looking for inclusive production of vector bosons.
 - Two-lepton final states looking for a **Z peak or a shoulder in** the $m_{\rm II}$ distribution.
 - Searches for final states with **SS leptons** profit from **Majorana nature of gluinos.**
 - Extremely versatile searches, see <u>arXiv:1706.03731</u> and <u>arXiv:1704.07323</u>.

SUSY-2016-12, to appear

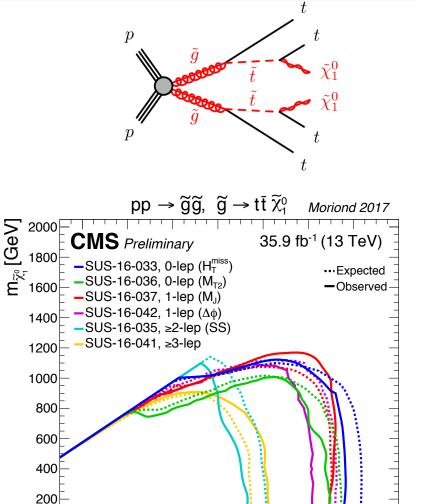
US

University of Sussex



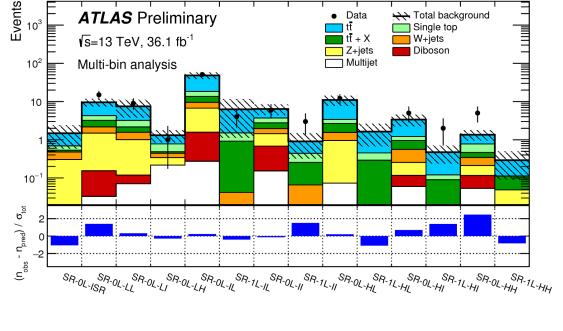
"Vanilla" SUSY exclusion limits

 2-TeV exclusion on gluinos starts to be a reality. Eight-fold degenerate squark production excluded up to ~ 1.5 TeV


- One-fold squark degeneracy limit ~ 1 TeV.
- Limits on **simplified models** Run 1 experience tells us that **they translate quite reliably** on more generic exclusions.

Natural SUSY under test

 Gluino pair productionand decay through (possibly of-shell) stop also excluded up to a mass of 2 TeV.


1400

1600

1800

2000

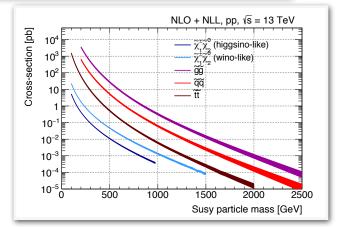
m_ã [GeV]

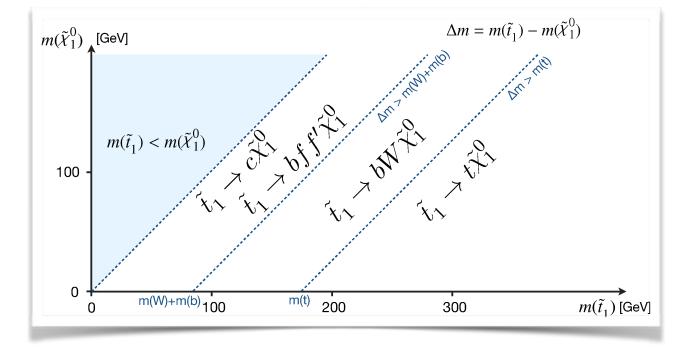
ATLAS-CONF-2017-021

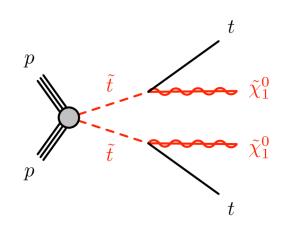
0

800

1000

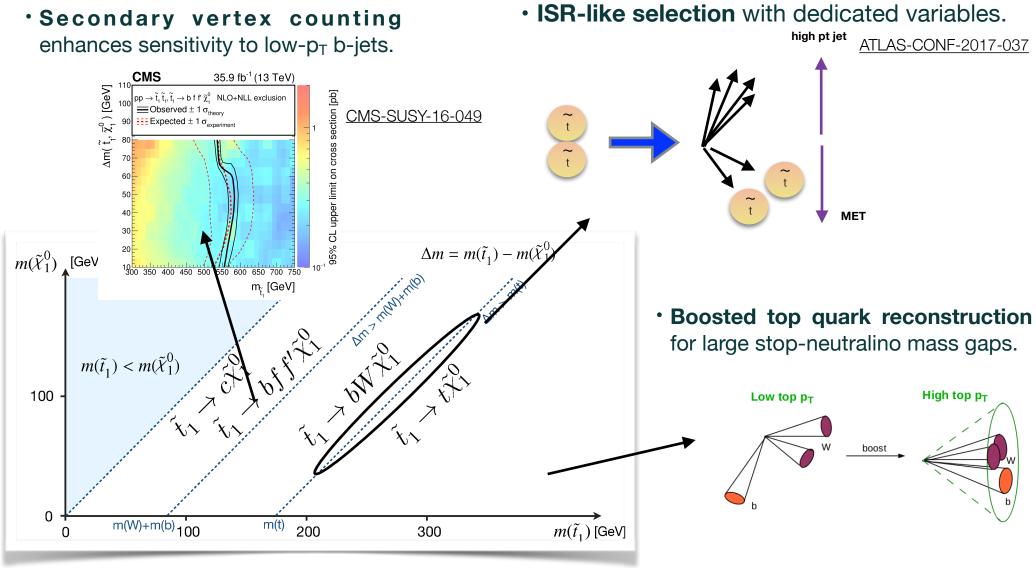

1200


2200

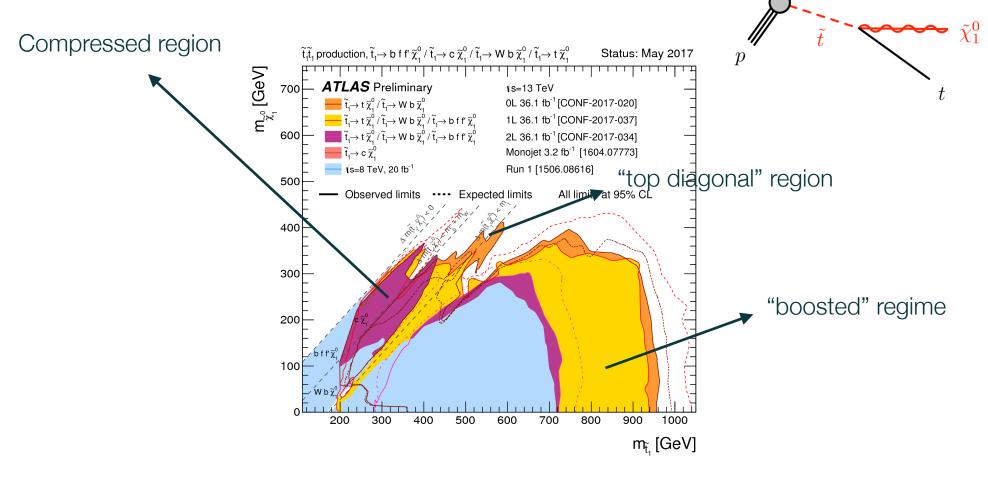

University of Sussex

Stop pair production

- Gluino pair production not observed → stop pair production?
 - · cross section nearly two orders of magnitude lower.
- Large top quark mass makes stop decay topology complex:
 - If no SUSY particle other than the stop and the neutralino LSP takes part in the process then the decay is $\tilde{t} \to t^{(*)} \tilde{\chi}_1^0$ with 100% BR.



Techniques



I.Vivarelli - Searches for SUSY - Lepton-Photon 2017

- Sensitivity exceeds 1 TeV in favourable scenarios.
- (Almost) no gaps left behind.

p

More realistic models

• What if the stop-neutralino model is too simple?

Intermezzo - the electroweak sector University of Sussex

"Standard Model" (scalars and vectors, before EW simmetry breaking)

 $B \\ \vec{W} \\ H_u, H_d$

Intermezzo - the electroweak sector

"Standard Model" (scalars and vectors, before EW simmetry breaking)

SUSY partners (fermions)

 $\begin{array}{c}
B \\
\vec{W} \\
H_u, H_d
\end{array} \longrightarrow \begin{array}{c}
\tilde{B} \\
\tilde{W} \\
\tilde{W} \\
\tilde{h}
\end{array}$

b-ino, 1 neutral state

w-ino, 1 neutral, 2 charged states

higgs-ino, 2 neutral, 2 charged states

 $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$

 $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$

Intermezzo - the electroweak sector

B

 \tilde{W}

 \tilde{h}

"Standard Model" (scalars and vectors, before EW simmetry breaking)

B

 \vec{W}

 H_u, H_d

SUSY partners (fermions)

b-ino, 1 neutral state

w-ino, 1 neutral, 2 charged states

higgs-ino, 2 neutral, 2 charged states

Intermezzo - the electroweak sector

"Standard Model" (scalars and vectors, before EW simmetry breaking)

SUSY partners (fermions)

 $\begin{array}{c}
B \\
\vec{W} \\
H_u, H_d
\end{array} \longrightarrow \begin{array}{c}
B \\
\tilde{W} \\
\tilde{h}
\end{array}$

Let's neglect the mixing

higgs-ino, 2 neutral, 2 charged states

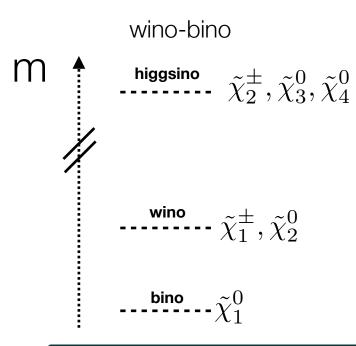
 $ilde{\chi}^0_1, ilde{\chi}^0_2, ilde{\chi}^0_3, ilde{\chi}^0_4$

 $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$

Intermezzo - the electroweak sector

"Standard Model" (scalars and vectors, before EW simmetry breaking)

SUSY partners (fermions)


 $\begin{array}{c}
B \\
\vec{W} \\
H_u, H_d
\end{array} \longrightarrow \begin{array}{c}
\tilde{B} \\
\tilde{W} \\
\tilde{M} \\
\tilde{h}
\end{array}$

b-ino, 1 neutral state

w-ino, 1 neutral, 2 charged states

higgs-ino, 2 neutral, 2 charged states

Let's neglect the mixing

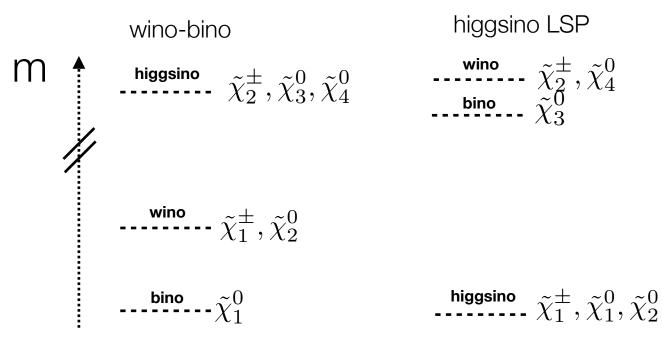
 $ilde{\chi}^0_1, ilde{\chi}^0_2, ilde{\chi}^0_3, ilde{\chi}^0_4$

 $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$

Intermezzo - the electroweak sector

"Standard Model" (scalars and vectors, before EW simmetry breaking)

SUSY partners (fermions)


w-ino, 1 neutral, 2 charged states

higgs-ino, 2 neutral, 2 charged states

b-ino, 1 neutral state

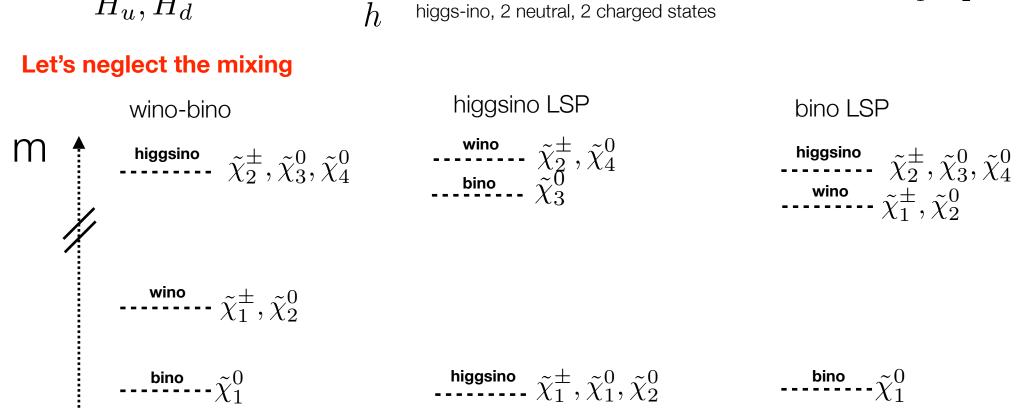
 $\begin{array}{c}
B \\
\vec{W} \\
H_u, H_d
\end{array} \longrightarrow \begin{array}{c}
B \\
\tilde{W} \\
\tilde{h}
\end{array}$

Let's neglect the mixing

 $\tilde{\chi}^0_1, \tilde{\chi}^0_2, \tilde{\chi}^0_3, \tilde{\chi}^0_4$

 $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$

Intermezzo - the electroweak sector


"Standard Model" (scalars and vectors, before EW simmetry breaking)

SUSY partners (fermions)

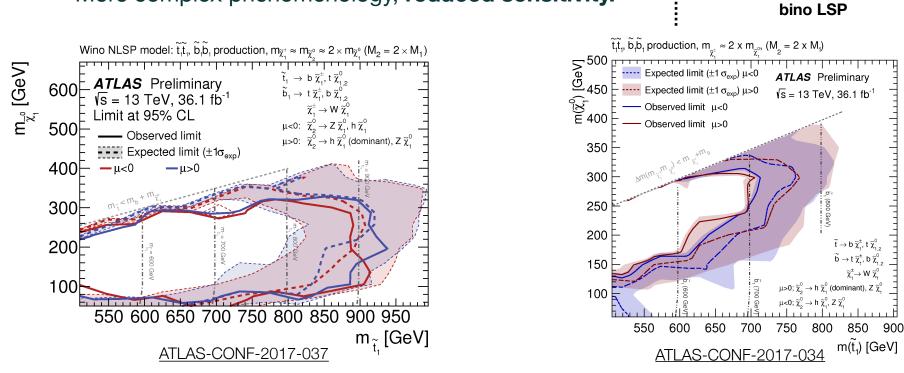
w-ino, 1 neutral, 2 charged states

b-ino, 1 neutral state

 $\begin{array}{c}
B \\
\vec{W} \\
H_u, H_d
\end{array} \longrightarrow \begin{array}{c}
B \\
\tilde{W} \\
\tilde{h}
\end{array}$

University of Sussex

b(t)


 W^{\pm}

 $\tilde{t}_1(\tilde{b}_1)$

wino NLSP

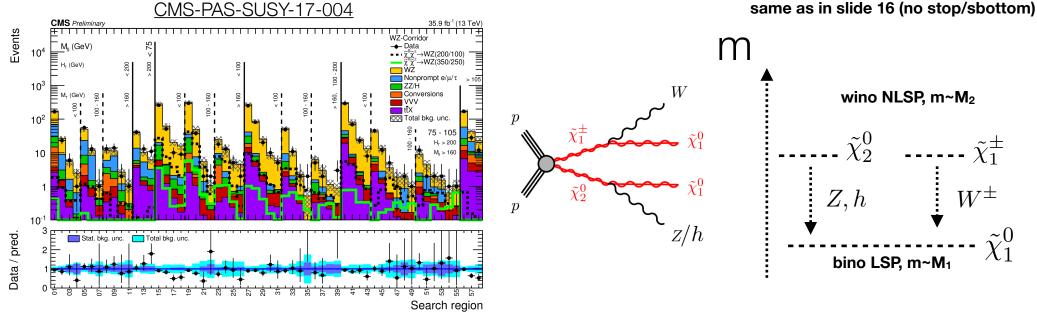
More realistic models

- What if the stop-neutralino model is too simple?
 - pMSSM oriented simplified models.
 - For example: assume **bino LSP**, and a **wino doublet** as NSLP.
 - More complex phenomenology, reduced sensitivity.

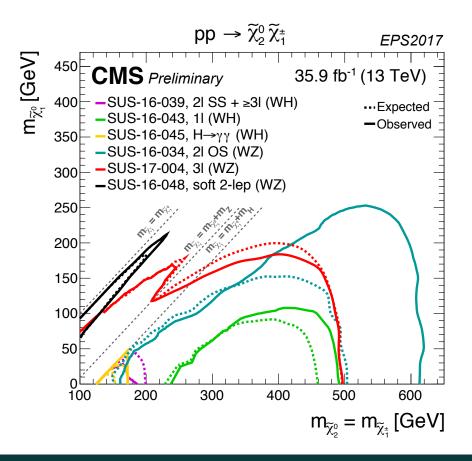
m

t(b)

Z, h

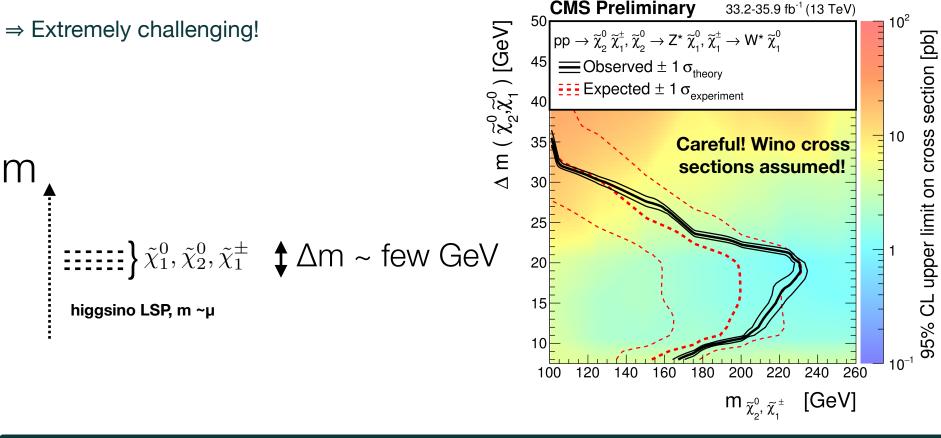

 $\tilde{\chi}_2^0$

EW production


- Maybe SUSY is produced via EW interactions?
 - Direct production of charginos, neutralinos, sleptons.
 - Beware: cross sections **depend on the EW state composition** in terms of bino, wino, higgsino, or (for slepton) chirality.
 - · Wino-bino hierarchy. Several event categories:
 - 3L, SS leptons, 2L2J (transitions with WZ, WH).
 - 1Lbb, 1Lγγ (WH).

- Common wino NLSP mass excluded up to ~600 GeV assuming BR into WZ of 100%
 - Significantly weaker limits with increasing BR into WH.

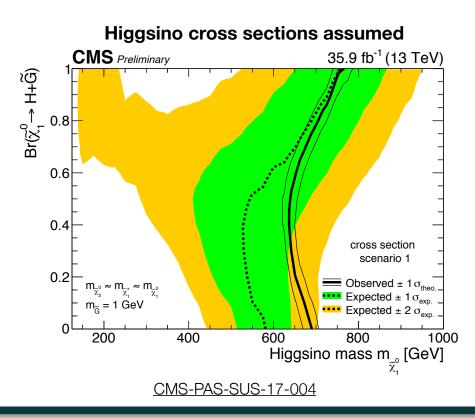
EW production and naturalness

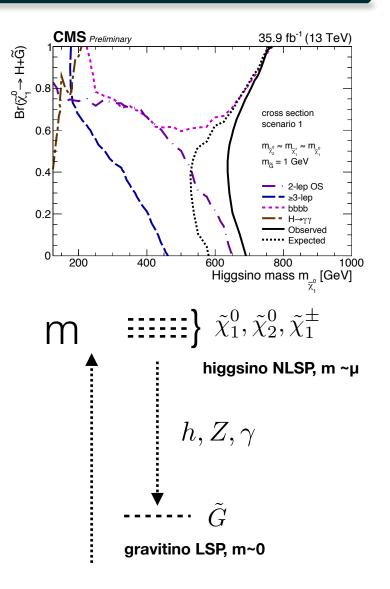

Naturalness wants light higgsinos.

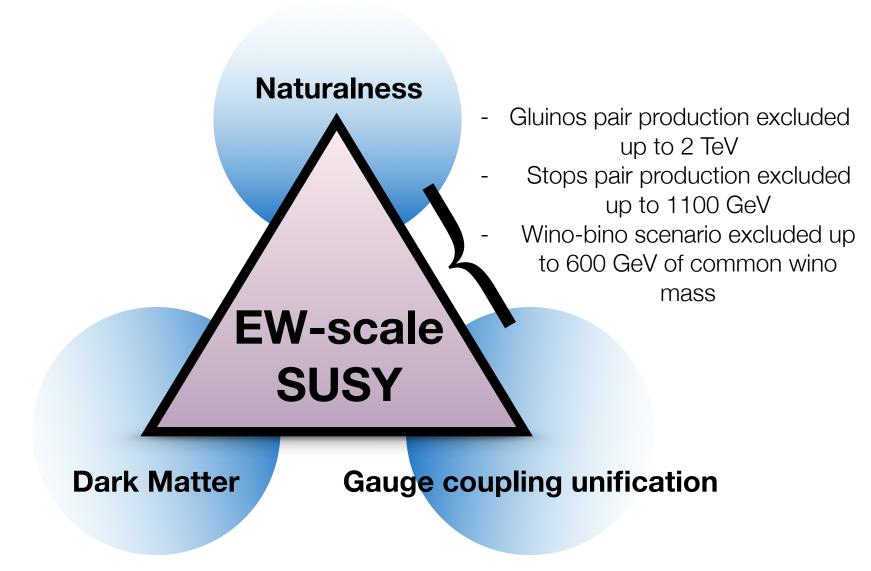
- If higgsinos are **decoupled (heavy bino and wino)**, then Δm is **typically o(GeV)** (but it can be as low as 300 MeV).

- ... and the cross section is small...

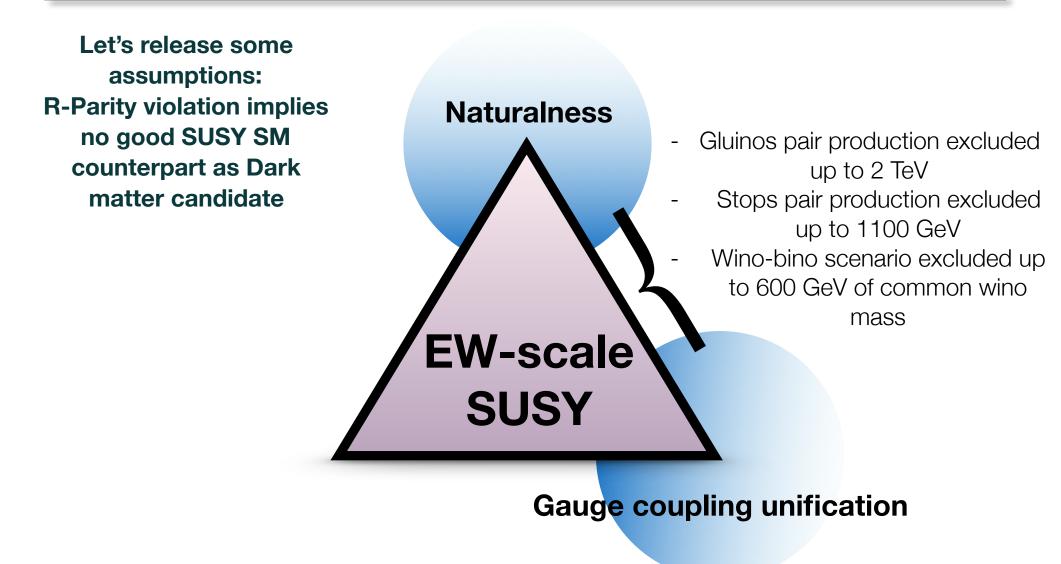
Selection highlights:

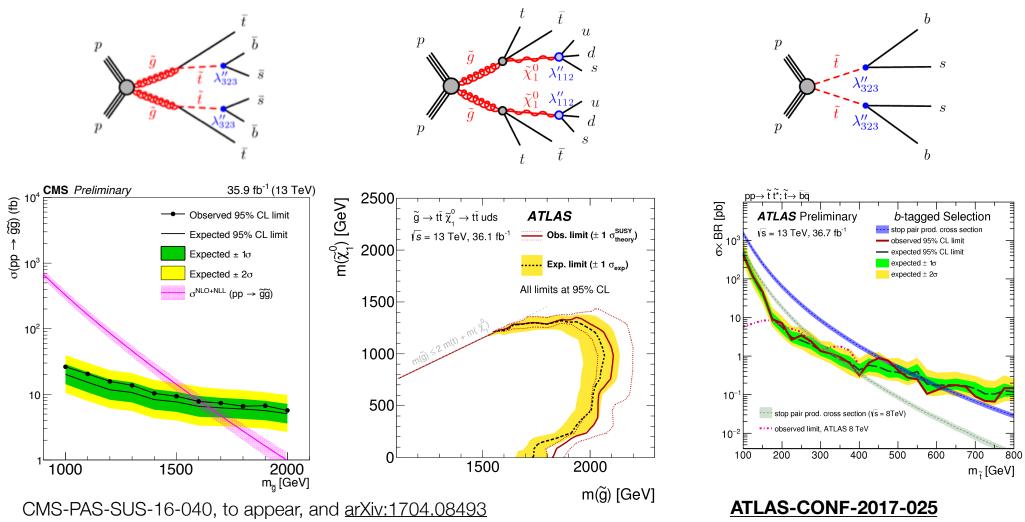

- Two OS leptons with low pT
- Large $E_T^{miss},\,0.6 < E_T^{miss}/H_T < 1$
- 4 GeV < m_{ll} < 50 GeV (and Y veto)




Higgsino NLSP

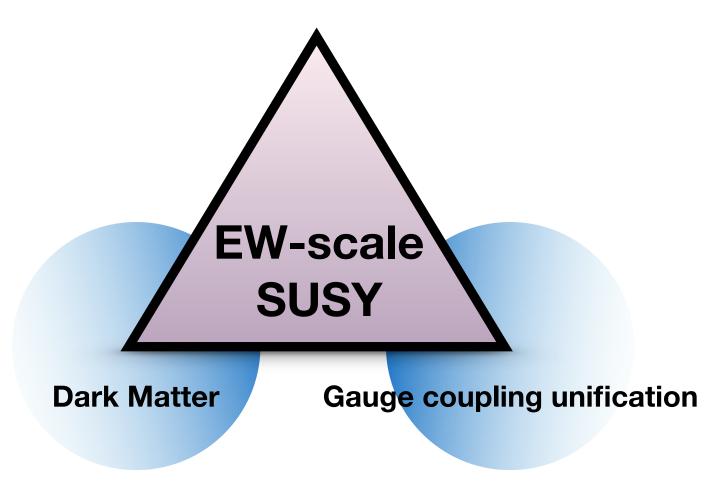
- Naturalness **does not require** a higgsino LSP. GMSB-like higgsino NLSP scenarios are potentially "natural".
 - Dedicated 1Lbb, 1Lγγ analyses:
 - <u>SUS-16-044</u>, <u>SUS-16-045</u>.





R-parity violating scenarios

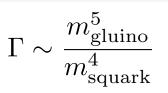
- **U**niversity of Sussex
- · Limits for R-parity violating natural SUSY are also competitive

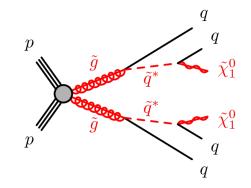

I.Vivarelli - Searches for SUSY - Lepton-Photon 2017

EW-scale supersymmetry

What if we drop the naturalness requirement altogether?

Beware: no "naturalness" criterium implies no need for "EW-scale" SUSY

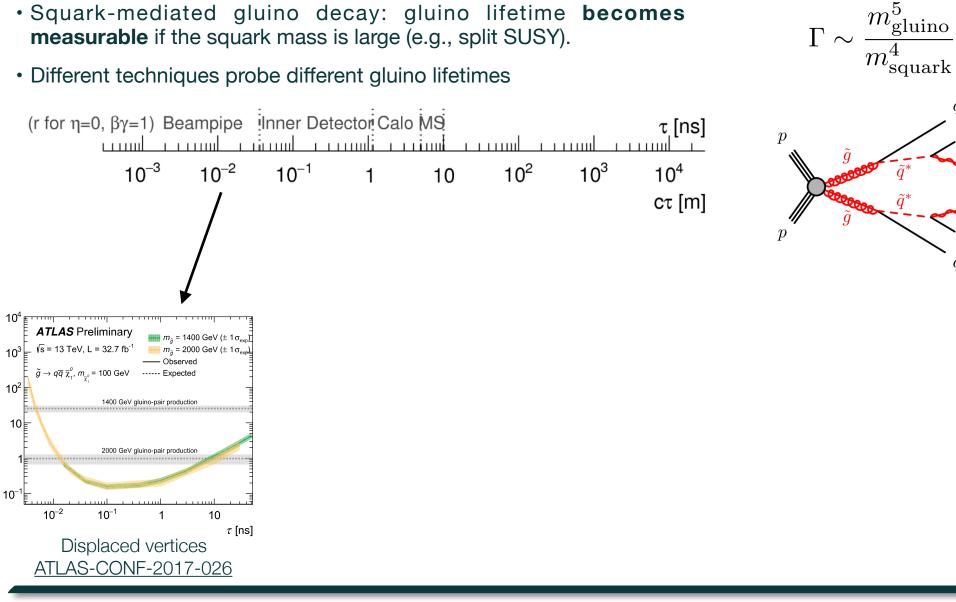




Long-lived gluinos

- Squark-mediated gluino decay: gluino lifetime **becomes measurable** if the squark mass is large (e.g., split SUSY).
- Different techniques probe different gluino lifetimes

 $(r \text{ for } \eta=0, \beta\gamma=1) \text{ Beampipe Inner Detector Calo M9} \qquad \tau \text{ [ns]} \\ 10^{-3} \quad 10^{-2} \quad 10^{-1} \quad 1 \quad 10 \quad 10^2 \quad 10^3 \quad 10^4 \\ \text{ct [m]}$

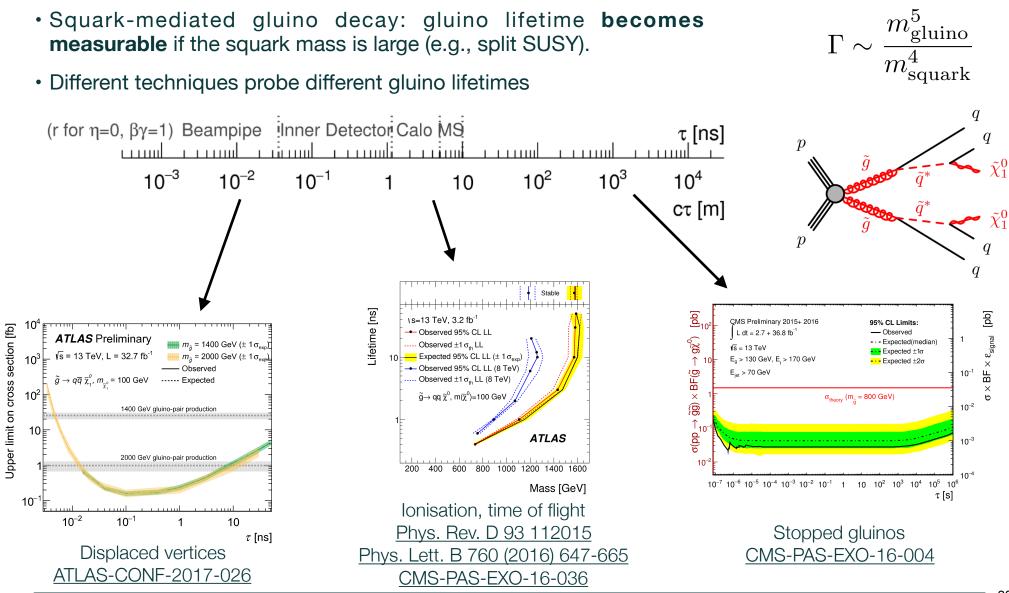


q

Long-lived gluinos

Upper limit on cross section [fb]

University of Sussex

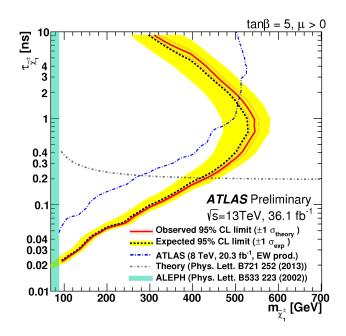

q

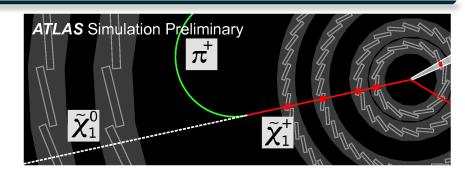
Long-lived gluinos

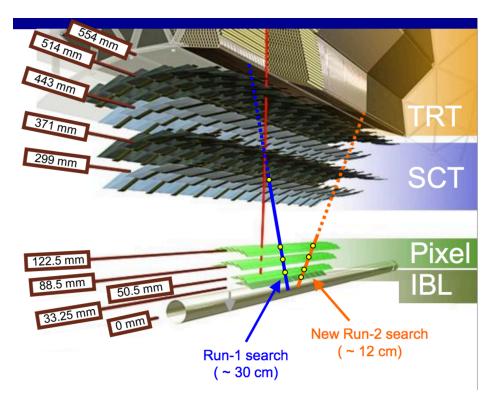
- · Squark-mediated gluino decay: gluino lifetime becomes $m_{\rm gluino}$ measurable if the squark mass is large (e.g., split SUSY). $m_{\rm squark}$ Different techniques probe different gluino lifetimes (r for $\eta=0, \beta\gamma=1$) Beampipe Inner Detector Calo MS τ [ns] pr r ring<u>i r r r r r r</u> TIM 10⁻³ 10³ 10⁴ 10⁻² 10^{-1} 10^{2} 10 1 cτ [m] pStable -ifetime [ns] s=13 TeV. 3.2 fb 10 Upper limit on cross section [fb] Observed 95% CL LI ATLAS Preliminary = 1400 GeV (± 1σ. Observed $\pm 1 \sigma_{th} LL$ √s = 13 TeV, L = 32.7 fb⁻² $m_{\tilde{a}} = 2000 \text{ GeV} (\pm 1 \text{ c})$ Expected 95% CL LL (± $1 \sigma_{exp}$ 10³ Observed 95% CL LL (8 TeV) Observed ----- Expected Observed ±1 σ_{th} LL (8 TeV) , m__ = 100 GeV 10² $\tilde{g} \rightarrow qq \tilde{\chi}^0, m(\tilde{\chi}^0)=100 \text{ GeV}$ 1400 GeV gluino-pair production 10╞ ATLAS 2000 GeV gluino-pair production 400 600 800 1000 1200 1400 1600 Mass [GeV] 10⁻¹ Ionisation, time of flight 10^{-2} 10^{-1} 1 10 Phys. Rev. D 93 112015 τ [ns] **Displaced vertices** Phys. Lett. B 760 (2016) 647-665 ATLAS-CONF-2017-026 CMS-PAS-EXO-16-036
 - I.Vivarelli Searches for SUSY Lepton-Photon 2017

University of Sussex

Long-lived gluinos




I.Vivarelli - Searches for SUSY - Lepton-Photon 2017


Wino-LSP scenario

University of Sussex ATLAS-CONF-2017-017

- Very common (in MSSM) SUSY scenario:
 - A chargino nearly degenerate with a neutralino (wino-like LSP).
 - The chargino **becomes long-lived** (typical $\tau = 0.2$ ns or $c\tau \sim 6$ cm).
 - Effort to increase to increase sensitivity at low lifetime.

US University of Sussex

The big picture

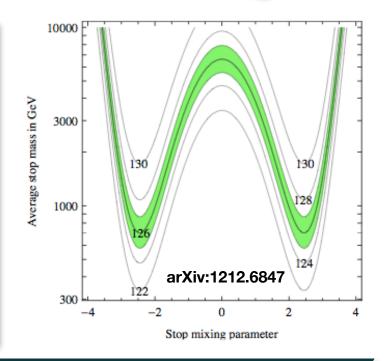
	Model	e, μ, τ, γ	∕ Jets	$E_{ m T}^{ m miss}$	∫L dt[ft	Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13$ TeV	$\sqrt{s} = 7, 8, 13 \text{ TeV}$ Reference
-	MSUGRA/CMSSM	0-3 e, μ/1-2 τ	2-10 jete/3	b Yes	20.3	, , , , , , , , , , , , , , , , , , ,	1.85 TeV	$m(\tilde{g})=m(\tilde{g})$	1507.05525
		0.0 ε,μ/1-2 τ	2-6 jets	Yes	36.1			$m(\tilde{\chi}_1^0) < 200 \text{ GeV}, m(1^{\text{st}} \text{ gen.} \tilde{q}) = m(2^{\text{nd}} \text{ gen.} \tilde{q})$	ATLAS-CONF-2017-022
	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$	mono-jet		Yes	3.2	7 608 GeV	1.57 164	$m(\tilde{a}) - m(\tilde{\lambda}_{1}^{0}) < 5 \text{ GeV}$	1604.07773
	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$ (compressed)	0	2-6 jets	Yes	36.1		2.02 TeV		ATLAS-CONF-2017-022
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$	0	2-6 jets 2-6 iets				2.02 TeV 2.01 TeV	$m(\tilde{\chi}_1^0) < 200 \text{ GeV}$	ATLAS-CONF-2017-022 ATLAS-CONF-2017-022
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_1^0$	-		Yes	36.1	<u>}</u>		$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\nu\nu)\tilde{\chi}_1^0$	3 e,μ	4 jets		36.1	<u>}</u>	1.825 TeV	$m(\tilde{\chi}_1^0) < 400 \text{GeV}$	ATLAS-CONF-2017-030
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0	7-11 jets		36.1	3	1.8 TeV	$m(\tilde{\chi}_1^0) < 400 \text{GeV}$	ATLAS-CONF-2017-033
	GMSB (Ĉ NLSP)	$1-2\tau + 0-1$	ℓ 0-2 jets	Yes	3.2	3	2.0 TeV		1607.05979
	GGM (bino NLSP)	2γ	-	Yes	3.2	3	1.65 TeV	cr(NLSP)<0.1 mm	1606.09150
	GGM (higgsino-bino NLSP)	γ	1 b	Yes	20.3	1.37	7 TeV	$m(\tilde{\chi}_{1}^{0})$ <950 GeV, $c\tau$ (NLSP)<0.1 mm, μ <0	1507.05493
	GGM (higgsino-bino NLSP)	Ŷ	2 jets	Yes	13.3	3	1.8 TeV	$m(\tilde{\chi}_1^0)$ >680 GeV, $c\tau$ (NLSP)<0.1 mm, μ >0	ATLAS-CONF-2016-066
	GGM (higgsino NLSP)	2 e, μ (Z)		Yes	20.3	š 900 GeV		m(NLSP)>430 GeV	1503.03290
	Gravitino LSP	0	mono-jet	Yes	20.3	F ^{1/2} scale 865 GeV		$m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{q}) = 1.5 \text{ TeV}$	1502.01518
a.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$	0	3 b	Yes	36.1	Y CALL STREET, S	1.92 TeV	m(𝔅10)<600 GeV	ATLAS-CONF-2017-021
ned.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_{1}^{0}$	0-1 e, µ	3 b	Yes	36.1	2	1.97 TeV	$m(\tilde{x}_1^0) < 200 \text{ GeV}$	ATLAS-CONF-2017-021
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow bt\tilde{\chi}_1^+$	0-1 <i>e</i> , μ	3 b	Yes	20.1	1.37	7 TeV	$m(\tilde{x}_1^0) < 300 \text{ GeV}$	1407.0600
	0								
-	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$	0	2 b	Yes	36.1	5 ₁ 950 GeV		m($\tilde{\chi}_{1}^{0}$)<420 GeV	ATLAS-CONF-2017-038
ŝ	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$	2 e, μ (SS)		Yes	36.1	51 275-700 GeV		$m(\tilde{\chi}_1^0) < 200 \text{ GeV}, \ m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_1^0) + 100 \text{ GeV}$	ATLAS-CONF-2017-030
ž	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$	0-2 <i>e</i> , µ	1-2 b		.7/13.3	117-170 GeV 200-720 GeV		$m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0})=55 \text{ GeV}$	1209.2102, ATLAS-CONF-2016-077
ğ	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$		0-2 jets/1-2		20.3/36.1	1 90-198 GeV 205-950 GeV		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	1506.08616, ATLAS-CONF-2017-020
p	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$	0	mono-jet		3.2	51 90-323 GeV		$m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1604.07773
	$\tilde{t_1}\tilde{t_1}$ (natural GMSB)	2 e, μ (Z)	1 <i>b</i>	Yes	20.3	150-600 GeV		m($\tilde{\chi}_{1}^{0}$)>150 GeV	1403.5222
5	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e,μ (Ζ)	1 <i>b</i>	Yes	36.1	2 290-790 GeV		$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$	ATLAS-CONF-2017-019
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , µ	4 b	Yes	36.1	320-880 GeV		$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	ATLAS-CONF-2017-019
	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, µ	0	Yes	36.1	90-440 GeV		$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2017-039
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$	2 e, µ	0	Yes	36.1	2* 710 GeV		$m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2017-039
	$\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}/\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau}\tau(\nu\tilde{\nu})$	2 τ		Yes	36.1	760 GeV		$m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2017-035
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu)$	3 e, µ	0	Yes	36.1	$x_{1}^{\pm}, \tilde{x}_{2}^{0}$ 1.16 TeV	$m(\tilde{\chi}_1^{\pm}) = m$	$\tilde{(X_2^0)}, m(\tilde{X}_1^0)=0, m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{X}_1^{\pm})+m(\tilde{X}_1^0))$	ATLAS-CONF-2017-039
direct	$\tilde{\chi}^{\pm}_{1}\tilde{\chi}^{0}_{2} \rightarrow W \tilde{\chi}^{0}_{1} Z \tilde{\chi}^{0}_{1}$	2-3 e, µ	0-2 jets	Yes	36.1	x [±] , χ̃ ⁰ 580 GeV		$m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0, \tilde{\ell}$ decoupled	ATLAS-CONF-2017-039
0	$ \begin{array}{c} \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, \ h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \end{array} $	<i>e</i> , μ, γ	0-2 b	Yes	20.3	$\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{0}$ 270 GeV		$m(\tilde{\chi}_1^{+})=m(\tilde{\chi}_2^{0}), m(\tilde{\chi}_1^{0})=0, \tilde{\ell}$ decoupled	1501.07110
	$\tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_{\rm R} \ell$	4 e, µ	0	Yes	20.3	635 GeV	$m(\tilde{\chi}_{1}^{0}) - m$	$n(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{2}^{0})+m(\tilde{\chi}_{1}^{0}))$	1405.5086
	GGM (wino NLSP) weak prod., $\tilde{\chi}_1^0$		-	Yes	20.3	W 115-370 GeV	11(42)=1	cr<1mm	1507.05493
	GGM (bino NLSP) weak prod., $\tilde{\chi}_1^0$		-	Yes	20.3	W 590 GeV		ct<1 mm	1507.05493
-									
	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$	Disapp. trl		Yes	36.1	430 GeV		$m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim$ 160 MeV, $\tau(\tilde{\chi}_{1}^{\pm})=$ 0.2 ns	ATLAS-CONF-2017-017
	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	dE/dx trk		Yes	18.4	495 GeV		$m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160$ MeV, $\tau(\tilde{\chi}_{1}^{\pm})<15$ ns	1506.05332
S	Stable, stopped \tilde{g} R-hadron	0	1-5 jets	Yes	27.9	š 850 GeV		$m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, 10 \ \mu s < \tau(\tilde{g}) < 1000 \text{ s}$	1310.6584
S	Stable g R-hadron	trk	-	-	3.2		1.58 TeV	-0	1606.05129
t'	Metastable \tilde{g} R-hadron	dE/dx trk	-	-	3.2		1.57 TeV	$m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, \tau>10 \text{ ns}$	1604.04520
pa	GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$	1-2 µ			19.1	537 GeV		10 <tanβ<50< td=""><td>1411.6795</td></tanβ<50<>	1411.6795
	GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	2γ	-	Yes	20.3	440 GeV		$1 < \tau(\tilde{\chi}_1^0) < 3$ ns, SPS8 model	1409.5542
	$\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$	displ. ee/eµ/ displ. vtx + j		-	20.3 20.3	1.0 TeV		$7 < c\tau(\tilde{\chi}_1^0) < 740 \text{ mm}, \text{ m}(\tilde{g}) = 1.3 \text{ TeV}$	1504.05162
	$\operatorname{GGM} \tilde{g}\tilde{g}, \tilde{\chi}_1^0 \to Z\tilde{G}$	uispi. vix + j	els -	-	20.3	ξ ⁰ ₁ 1.0 TeV		$6 < c\tau(\tilde{\chi}_1^0) < 480 \text{ mm}, \text{m}(\tilde{g}) = 1.1 \text{ TeV}$	1504.05162
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	$e\mu,e\tau,\mu\tau$	-	-	3.2	ý _r	1.9 TeV	λ ₃₁₁ =0.11, λ _{132/133/233} =0.07	1607.08079
	Bilinear RPV CMSSM	2 e, µ (SS)) 0-3 b	Yes	20.3		45 TeV	$m(\tilde{q})=m(\tilde{g}), c\tau_{LSP} < 1 mm$	1404.2500
	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu \mu v$	4 e, µ	-	Yes	13.3	τ ₁ [±] 1.14 TeV		$m(\tilde{\chi}_{1}^{0})$ >400GeV, $\lambda_{12k}\neq 0$ (k = 1, 2)	ATLAS-CONF-2016-075
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau v_e, e \tau v_\tau$	$3e, \mu + \tau$		Yes	20.3	\tilde{t}_1^{\pm} 450 GeV		$m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{133} \neq 0$	1405.5086
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$	0	4-5 large- <i>R</i> j	ets -	14.8	3.08 TeV		BR(t)=BR(b)=BR(c)=0%	ATLAS-CONF-2016-057
	$ \tilde{g}\tilde{g}, \tilde{g} \to qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to qqq \tilde{g}\tilde{g}, \tilde{g} \to tt\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to qqq $		4-5 large- <i>R</i> j		14.8	3 1	1.55 TeV	m($\tilde{\chi}_{1}^{0}$)=800 GeV	ATLAS-CONF-2016-057
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q$	1 e, µ	8-10 jets/0-4	4 <i>b</i> -	36.1	ž	2.1 TeV	m($\tilde{\chi}_{1}^{0}$)= 1 TeV, λ_{112} ≠0	ATLAS-CONF-2017-013
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$		8-10 jets/0-4	4 <i>b</i> -	36.1	ž	1.65 TeV	m(<i>ĩ</i> ₁)= 1 TeV, λ ₃₂₃ ≠0	ATLAS-CONF-2017-013
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$	0	2 jets + 2 l	b -	15.4	410 GeV 450-510 GeV			ATLAS-CONF-2016-022, ATLAS-CONF-2016-0
	$\tilde{t_1}\tilde{t_1}, \tilde{t_1} \rightarrow b\ell$	2 e, µ	2 b	-	36.1	0.4-1.4	45 TeV	$BR(\tilde{t}_1 \rightarrow be/\mu) > 20\%$	ATLAS-CONF-2017-036
or	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	510 GeV		m(𝑋1)<200 GeV	1501.01325

simplified models, c.f. refs. for the assumptions made.

LHC has **radically changed** the way we think about SUSY

- Where are all the sparticles?
 - 7 years of LHC have given us only a striking agreement with the Standard Model. Many pre-LHC SUSY models now highly disfavoured by the data.
 - The pillars of **EW scale SUSY** are under severe scrutiny (and a bit of pressure)
- A very rich research programme if there is a discovery to be made, we do not want to miss it.

- ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u>
 <u>SupersymmetryPublicResults</u>
- CMS: <u>http://cms-results.web.cern.ch/cms-results/public-results/</u> preliminary-results/SUS/index.html
- LHCb: <u>http://lhcbproject.web.cern.ch/lhcbproject/Publications/</u> LHCbProjectPublic/Summary_QEE.html



Higgs boson discovery

 The Higgs boson mass in the MSSM is determined (at 1-loop) by EW parameters and by the stop masses and mixing

$$m_h^2 = m_Z^2 \cos^2 2\beta + \frac{3y_t^2 m_t^2}{4\pi^2} \left[\log\left(\frac{m_S^2}{m_t^2}\right) + X_t^2 \left(1 - \frac{X_t^2}{12}\right) \right] + \cdots$$

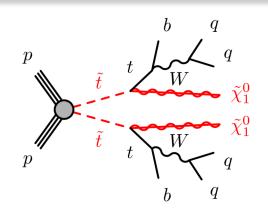
- Critical connection of stops and electroweakinos (actually higgsinos) **to the heart of the only argument in favour of EW-scale SUSY**
- However, Higgs at 125 GeV already hinting for heavy-ish stops (Barbieri-Giudice fine tuning measurement requires them to be ~ 500 GeV)

Simplified model approach

- Simplified model:
 - only one (or few) SUSY production mode
 - only one (or few) decay mode
 - only few SUSY particles involved in the decay

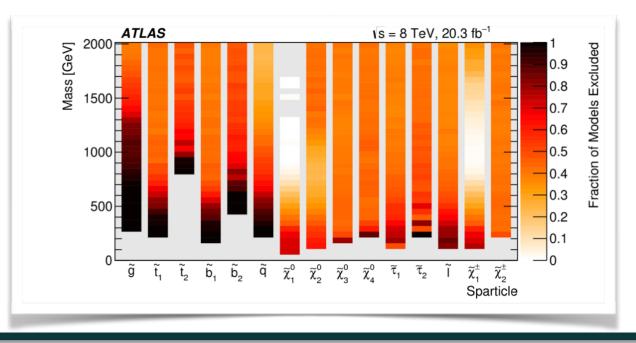
The good:

- Optimise for a well defined topology
- Intuitive understanding of sensitivity
- Exclusion limits easily reproducible by theory colleagues


The bad:

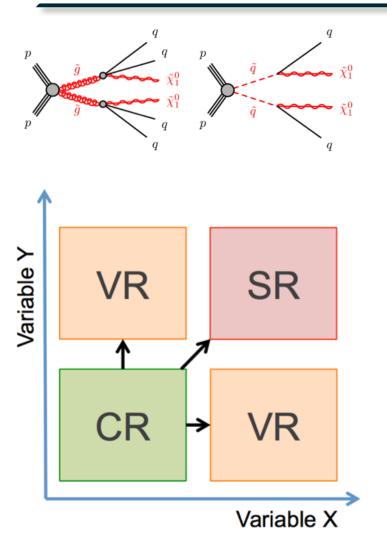
- The approach becomes quickly cumbersome at increasing complexity of final state

The ugly:


 Real model complexity hidden: sensitivity claimed on simplified model does not necessarily map to a real model

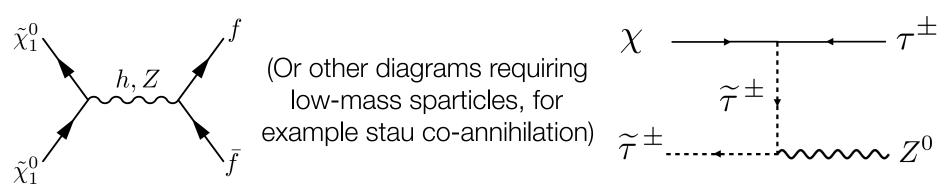
Disclaimer

- We use simplified models to optimise our analyses and (often) to interpret the result
- The translation to actual models **not always straightforward.** "Absolute" exclusion (when they exist) limits <u>are weaker.</u>
- Take our limits *cum grano salis*



How to read a limit

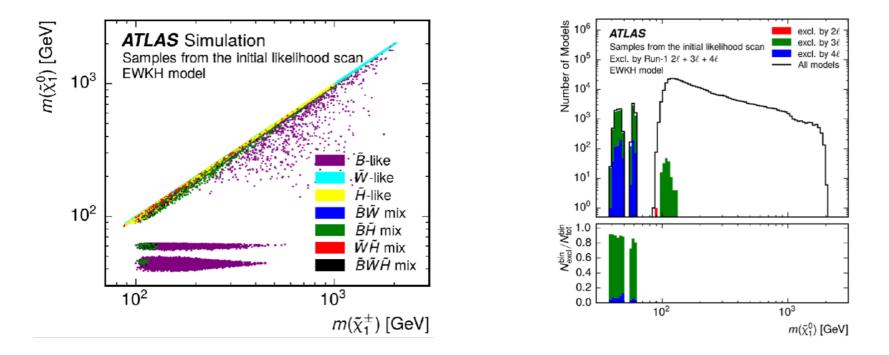
Highlights (RPC strong production)


- 0L + jets + E_T^{miss}: traditionally **the flagship** of the ATLAS SUSY
- To record these events, require a E_T^{miss} trigger
- Signal regions defined for different jet multiplicities and different m_{eff} selections
- Irreducible background prediction obtained from MC normalised in dedicated Control Regions
- Reducible background (e.g. multijet) completely data-driven

 Relic dark matter WIMP density depends on assumed velocity spectrum and on WIMP self-interaction cross section

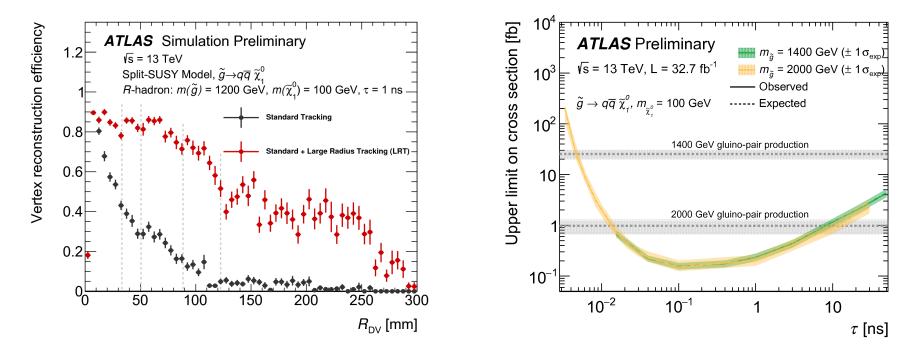
$$\Omega_{\chi} h^2 \simeq const. \cdot \frac{T_0^3}{M_{\rm Pl}^3 \langle \sigma_A v \rangle} \simeq \frac{0.1 \text{ pb} \cdot c}{\langle \sigma_A v \rangle}$$

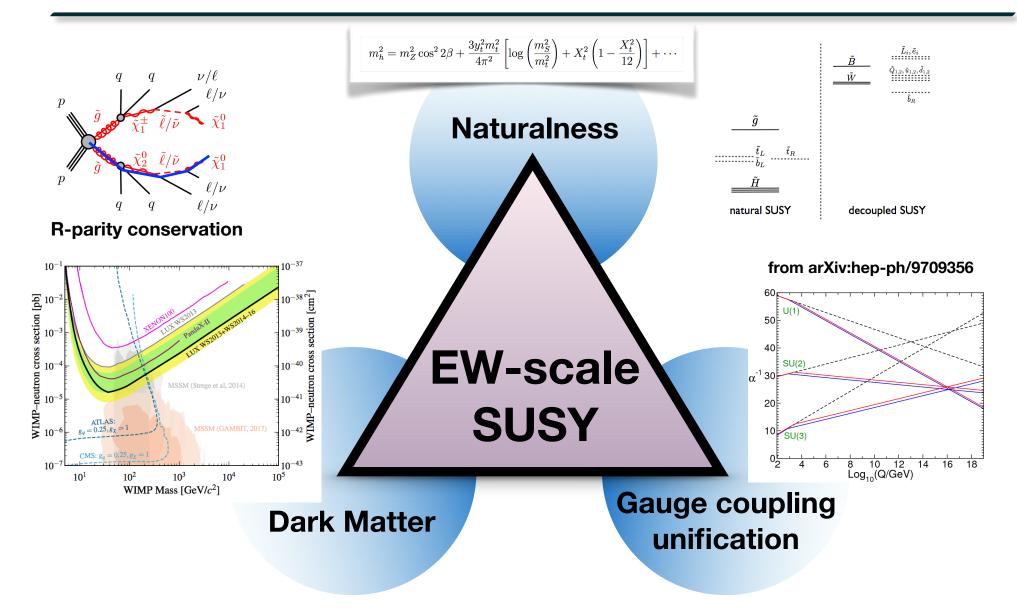
• Bino self-interaction cross-section **usually too low** (predicted density too high). Need mechanism to increase it.



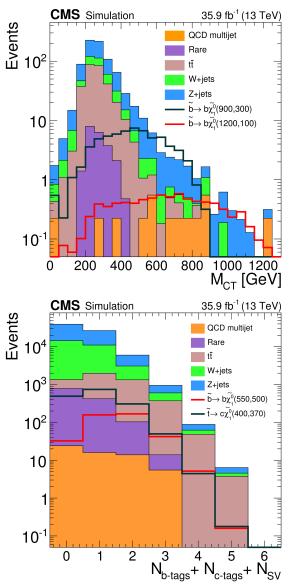
• Wino-Higgsino self-interaction cross-section usually too high.

Dark matter connection

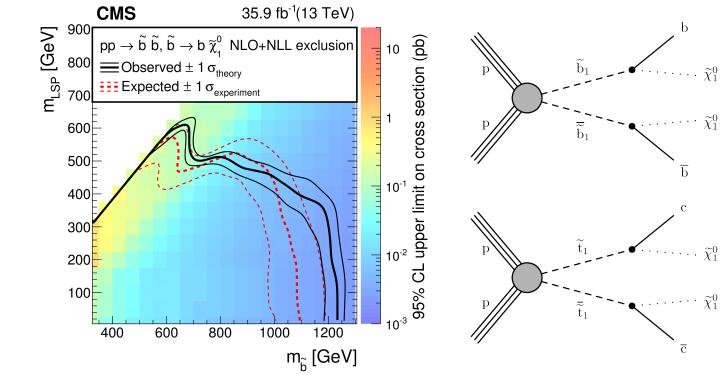

- Scan a **5-parameter pMSSM** (EWKH, scanning M₁, M₂, μ, tanβ, M_A)
- · Apply EW constraints and relic density abundance as upper limit
- Finally evaluate the impact of ATLAS EW run 1 electroweak analyses
- Very important impact on the h- and Z-funnel regions
- Hardly scratching the rest of the parameter space...


Long-lived gluinos

- Squark-mediated gluino decay: gluino lifetime **becomes measurable** if the squark mass is large (e.g., split SUSY).
 - Long-lived SUSY particles can yield a high-mass displaced vertex (DV).
- Current search: $DV + E_T^{miss}$ (RPC decay of the gluino).
- Dedicated large radius tracking improves tracking efficiency in the sensitive region.

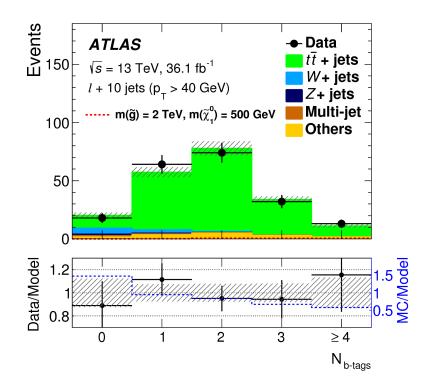


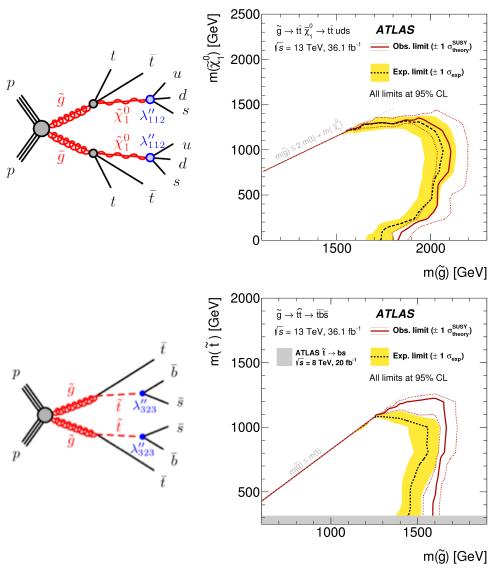
EW-scale supersymmetry



Sbottom pair production

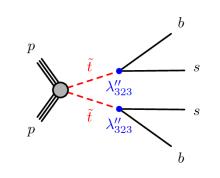
- Common SUSY-breaking mass parameter with stop_L imposes indirect constraints on sbottom mass
 - See <u>SUS-2016-32</u> and <u>ATLAS-CONF-2017-038</u>.
- M_{CT}: <u>contransverse mass</u>, a transverse mass type variable. It shows a kinematical end-point for top pair production.

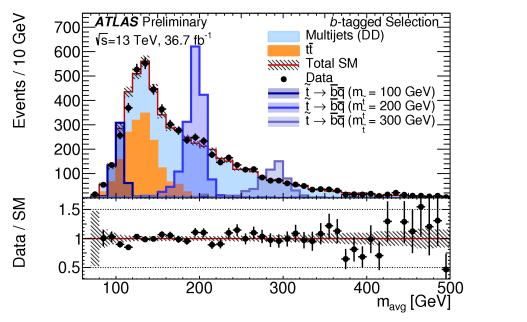

I.Vivarelli - Searches for SUSY - Lepton-Photon 2017

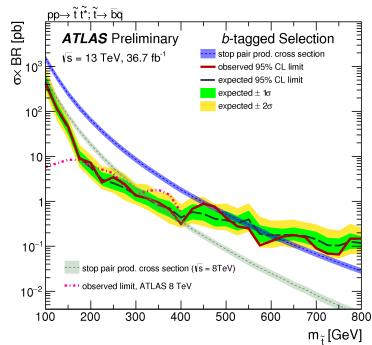

R-parity violating scenarios

University of Sussex

- Final states with up to 12 jets and a lepton
- Bin the phase space in jet and b-jet multiplicity:
 - (nearly) fully data-driven background estimate, with ttbar scaling in jets multiplicity and number of b-tagged jets.

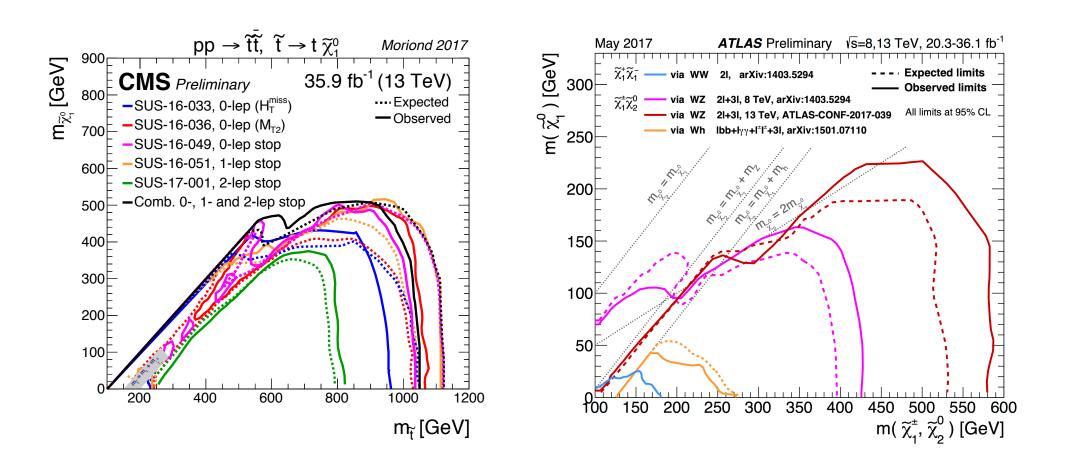


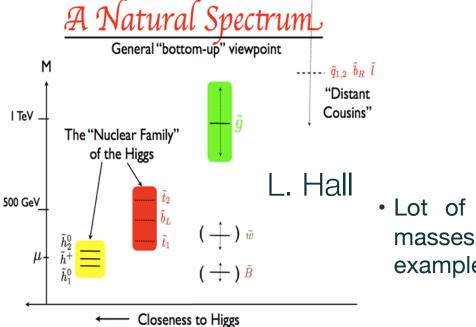


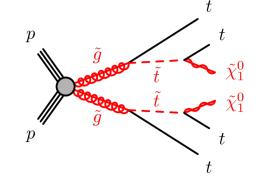

R-parity violating scenarios

University of Sussex ATLAS-CONF-2017-025

- Stop with RPV decays: look for 2x2 jet resonances:
 - Two-jet resonances with compatible mass
 - Signal regions no b-tags and two b-tags
- Stops excluded up to 600 GeV.




Summary plots



"Natural" SUSY under test

• The **Higgs boson mass** in the MSSM is determined (at 1-loop) by **EW parameters** and by the **stop masses and mixing.**

$$m_h^2 = m_Z^2 \cos^2 2\beta + \frac{3y_t^2 m_t^2}{4\pi^2} \left[\log\left(\frac{m_S^2}{m_t^2}\right) + X_t^2 \left(1 - \frac{X_t^2}{12}\right) \right] + \cdots$$

Final state involving up to 12 jets, up to 4 bjets, SS leptons

 Lot of work on understanding the y-scale: stop masses of few TeV may well be natural (see, for example, <u>H. Baer et al.</u>)

