

LEPTON PHOTON 2017

Oliver Buchmueller, Imperial College London

LEPTON PHOTON 2017

XXVIII INTERNATIONAL SYMPOSIUM ON LEPTON PHOTON INTERACTIONS AT HIGH ENERGIES AT YAT-SEN UNIVERSITY (SYSU), GUANGZHOU, CHINA

Preface

I will mainly revert to material/searches shown in:

Searches for Beyond SM Higgs Bosons, Soshi TSUNO Searches for SUSY at LHC, *lacopo VIVARELLI* Exotics searches at LHC, *Sunil SOMALWAR*

and outline how these results can be (hands-on) interpreted in the context of Dark Matter and in turn be compared with other experiments like Direct Detection or Indirect Detection experiments.

(Very Strong) Evidence for Dark Matter

(Very Strong) Evidence for Dark Matter

Supersymmetry

Extension of the Standard Model: Introduce a new symmetry Spin ½ matter particles (fermions) ⇔ Spin 1 force carriers (bosons) Standard Model particles SUSY particles

New Quantum number: R-parity:

 $R_p = (-1)^{B+L+2s} =$

+1 SM particles-1 SUSY particles

- <u>R-parity conservation</u>:
- SUSY particles are produced in pairs
- The lightest SUSY particle (LSP) is stable

Dark Matter in Supersymmetry with MasterCode

1

Global Fit to indirect and direct constraints on SUSY!

Source:

http://mastercode.web.cern.ch/mastercode/

	Observable	Source Th./Ex.	Constraint	$\Delta \chi^2$ (CMSSM)	$\Delta \chi^2$ (NUHM1)	$\Delta \chi^2$ ("SM")
ì	m _t [GeV]	43	173.2 ± 0.90	0.05	0.06	-
ł	$\Delta \alpha_{\rm bad}^{(5)}(M_Z)$	42	0.02749 ± 0.00010	0.009	0.004	-
1	M _Z GeV	44	91.1875 ± 0.0021	2.7×10 ⁻⁵	0.26	-
Ì	Γ_Z [GeV]	26 / 44	$2.4952 \pm 0.0023 \pm 0.001_{SUSY}$	0.078	0.047	0.14
1	σ _{had} [nb]	26 / 44	41.540 ± 0.037	2.50	2.57	2.54
1	R_{l}	26 / 44	20.767 ± 0.025	1.05	1.08	1.08
]	$A_{\rm fb}(\ell)$	26 / 44	0.01714 ± 0.00095	0.72	0.69	0.81
- [$A_{\ell}(P_{\tau})$	26 / 44	0.1465 ± 0.0032	0.11	0.13	0.07
-[Rb	26 / 44	0.21629 ± 0.00066	0.26	0.29	0.27
- [Re	26 / 44	0.1721 ± 0.0030	0.002	0.002	0.002
	$A_{\rm fb}(b)$	26 / 44	0.0992 ± 0.0016	7.17	7.37	6.63
	$A_{\rm fb}(c)$	26 / 44	0.0707 ± 0.0035	0.86	0.88	0.80
	Ab	26 / 44	0.923 ± 0.020	0.36	0.36	0.35
	Ac	26 / 44	0.670 ± 0.027	0.005	0.005	0.005
ł	$A_{\ell}(SLD)$	26 / 44	0.1513 ± 0.0021	3.16	3.03	3.51
ł	$\sin^2 \theta_w(Q_{fb})$	26 / 44	0.2324 ± 0.0012	0.63	0.64	0.59
ļ	MW [GeV]	26 / 94	$80.399 \pm 0.023 \pm 0.010_{808Y}$	1.77	1.39	2.08
	$a_{\mu}^{n\alpha\nu} - a_{\mu}^{\alpha m}$	53 / 42,54	$(30.2 \pm 8.8 \pm 2.0_{SUSY}) \times 10^{-10}$	4.35	1.82	11.19 (N/A)
	M _h [GeV]	28 / 55,56	$> 114.4 \pm 1.5_{SUSY} $	0.0	0.0	0.0
	BR _{b→sγ}	[45] / [46]	$1.117 \pm 0.076_{EXP}$ $\pm 0.082_{SM} \pm 0.050_{SUSY}$	1.83	1.09	0.94
ł	$BR(B_s \rightarrow \mu^+ \mu^-)$	29 / 41	CMS & LHCb	0.04	0.44	0.01
ľ	BR _{B-bre}	29 / 46	$1.43 \pm 0.43_{EXP+TH}$	1.43	1.59	1.00
ł	$BR(B_d \rightarrow \mu^+ \mu^-)$	29 / 46	$< 4.6[\pm 0.01_{SUSY}] \times 10^{-9}$	0.0	0.0	0.0
1	$BR_{B \rightarrow X, H}^{EXP/SM}$	47 / 46	0.99 ± 0.32	0.02	≪ 0.01	≪ 0.01
1	BRK-AW	29 / 48	$1.008 \pm 0.014_{\rm EXP+TH}$	0.39	0.42	0.33
ł	BR EXI/SM	491/150	< 4.5	0.0	0.0	0.0
ł	$\Delta M_{B_*}^{EXP/SM}$	49 / 51,52	$0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$	0.02	0.02	0.01
		[29] / [46] 51] 52]	$1.00\pm 0.01_{\rm EXP}\pm 0.13_{\rm SM}$	≪ 0.01	0.33	≪ 0.01
ľ	$\Delta \epsilon_{K}^{EXP/SM}$	49 / 51,52	$1.08 \pm 0.14_{\rm EXP+TH}$	0.27	0.37	0.33
Ì	$\Omega_{\rm CDM}h^2$	31 / 13	$0.1120 \pm 0.0056 \pm 0.012_{\rm SUSY}$	8.4×10 ⁻⁴	0.1	N/A
1	σp	25	$(m_{\tilde{\chi}_{p}^{0}}, \sigma_{p}^{\alpha_{1}})$ plane	0.13	0.13	N/A
1	jets $+ B_T$	18,20	$(m_0, m_{1/2})$ plane	1.55	2.20	N/A
	$H/A, H^{\pm}$	21	$(M_A, \tan \beta)$ plane	0.0	0.0	N/A
Ì	Total χ^2 /d.o.f.	All	All	28.8/22	27.3/21	32.7/23 (21.5/22)
						0.02 (10.02)

Dark Matter in Supersymmetry with MasterCode

Global Fit to indirect and direct constraints on SUSY!

Direct Detection

observables

Source:

http://mastercode.web.cern.ch/mastercode/

	Observable	Source Th./Ex.	Constraint	$\Delta \chi^2$ (CMSSM)	$\Delta \chi^2$ (NUHM1)	$\Delta \chi^2$ ("SM")
Ĩ	m_t [GeV]	43	173.2 ± 0.90	0.05	0.06	-
1	$\Delta \alpha_{had}^{(5)}(M_Z)$	42	0.02749 ± 0.00010	0.009	0.004	-
1	M_Z [GeV]	44	91.1875 ± 0.0021	2.7×10 ⁻⁵	0.26	-
Ī	Γ_Z [GeV]	26 / 44	$2.4952 \pm 0.0023 \pm 0.001_{\rm SUSY}$	0.078	0.047	0.14
1	σ_{had}^{o} [nb]	26 / 44	41.540 ± 0.037	2.50	2.57	2.54
ľ	R_l	26 / 44	20.767 ± 0.025	1.05	1.08	1.08
-[$A_{\rm fb}(\ell)$	26 / 44	0.01714 ± 0.00095	0.72	0.69	0.81
-[$A_{\ell}(P_{\tau})$	26 / 44	0.1465 ± 0.0032	0.11	0.13	0.07
1	Rb	26 / 44	0.21629 ± 0.00066	0.26	0.29	0.27
	R _c	26 / 44	0.1721 ± 0.0030	0.002	0.002	0.002
L	$A_{\rm fb}(b)$	26 / 44	0.0992 ± 0.0016	7.17	7.37	6.63
ļ	$A_{fb}(c)$	26 / 44	0.0707 ± 0.0035	0.86	0.88	0.80
ŀ	Ab	26 / 44	0.923 ± 0.020	0.36	0.36	0.35
1	Ac	26 / 44	0.670 ± 0.027	0.005	0.005	0.005
ł	$A_{\ell}(SLD)$	26 / 44	0.1513 ± 0.0021	3.16	3.03	3.51
ł	$\sin^{-}\theta_{w}(Q_{fb})$	26 / 44	0.2324 ± 0.0012	0.63	0.64	0.59
L	MW [GeV]	26 / 94	$80.399 \pm 0.023 \pm 0.010_{808Y}$	1.77	1.39	2.08
	$a_{\mu}^{nAF} - a_{\mu}^{om}$	53 / 42,54	$(30.2 \pm 8.8 \pm 2.0_{SUSY}) \times 10^{-10}$	4.35	1.82	11.19 (N/A)
	M _h GeV	28 / 55,56	$> 114.4 \pm 1.5 gusy$	0.0	0.0	0.0
۰.	$BR_{b \rightarrow s\gamma}^{EXP/SM}$	45 / 46	$1.117 \pm 0.076_{EXP}$	1.83	1.09	0.94
			$\pm 0.082_{SM} \pm 0.050_{SUSY}$			
	$R(B_s \rightarrow \mu^+ \mu^-)$	[29] / [41]	CMS & LHCb	0.04	0.44	0.01
	$BR_{B \rightarrow \tau \nu}^{EX \nu/SM}$	29 / 46	$1.43 \pm 0.43_{EXP+TH}$	1.43	1.59	1.00
	$R(B_d \rightarrow \mu^+ \mu^-)$	29 / 46	$< 4.6[\pm 0.01_{SUSY}] \times 10^{-9}$	0.0	0.0	0.0
	$BR_{B \rightarrow X_* U}^{EXV/SM}$	47 / 46	0.99 ± 0.32	0.02	≪ 0.01	≪ 0.01
	$BR_{K \rightarrow \mu\nu}^{EXP/SM}$	29 / 48	$1.008 \pm 0.014_{\rm EXP+TH}$	0.39	0.42	0.33
	BRK-JTW	49 / 50	< 4.5	0.0	0.0	0.0
	$\Delta M_{B_*}^{\rm EXP/SM}$	49 / 51,52	$0.97 \pm 0.01_{EXP} \pm 0.27_{SM}$	0.02	0.02	0.01
		[29] / [46] 51] 52]	$1.00\pm 0.01_{\rm EXP}\pm 0.13_{\rm SM}$	≪ 0.01	0.33	≪ 0.01
	$\Delta \epsilon_{K}^{EXP/SM}$	49 / 51,52	$1.08 \pm 0.14_{EXP+TH}$	0.27	0.37	0.33
	$\Omega_{CDM}h^2$	311 / 113	$0.1120 \pm 0.0056 \pm 0.012$ susv	8.4×10 ⁻⁴	0.1	N/A
1	σ_p^{51}	25	(m_{s0}, σ_p^{SI}) plane	0.13	0.13	N/A
ł	jets + Br	18.20	(mo, m ₁ (a) plane	1.55	2.20	N/A
ł	$H/A, H^{\pm}$	21	$(M_A, \tan\beta)$ plane	0.0	0.0	N/A
h	Total v ² /d.o.f	All	All	28.8/22	27.3/21	32,7/23 (21,5/22)
	p-values			15%	16%	9% (49%)
- L						

SUSY particles

MasterCode: The two worlds of SUSY models

pMSSM11: Status LHC RUN 1 (pre-LHC 13 TeV)

squark coann.

DM mechanisms:

To satisfy cosmological DM density constraint requires, in general, specific relations between sparticle masses that suppress the relic density via coannihilation effects and/or rapid annihilations through direct channel resonances.

Define indicative measures to highlight different DM mechanisms in the preferred regions of the fit:

$\left(\frac{M_{\tilde{\tau}}}{m_{\chi_1^0}} - 1\right) < 0.15$	Stau coannihilation	$\left(\frac{M_{\tilde{l}}}{m_{\chi_1^0}}-1\right)<0.15$	Slepton Co-annihilation		
$\left(\frac{M_{\chi_1^{\pm}}}{m_{\chi_1^0}} - 1\right) < 0.25$	Chargino Co-annihilation	$\left(\frac{M_{\tilde{g}}}{m_{\chi_1^0}} - 1\right) < 0.25$	Gluino Co-annihilation		
$\left(\frac{M_{\tilde{q}}}{m_{\chi_1^0}} - 1\right) < 0.20$	Squark Co-annihilation	Hybrid In addition to regions where	Hybrid regions: In addition to the `primary' regions where only one of the		
$\left \frac{M_B}{m_{\chi_1^0}} - 2\right < 0.4$	B = h, Z or H/A funnel	conditions is s can also be `l where mor condition is	satisfied, there nybrid' regions re than one s satisfied If		
$\left \frac{\mu}{m_{\chi_1^0}} - 1 \right < 0.30$	Higgsino enriche "focus-point" like	ed present, these e using combi	e are indicated ined colours.		

See also arXiv:1508.01173 for further details

Gluino vs Squark: LHC RUN 1

Gluino vs Squark: LHC RUN 2 (2015 + 2016 data)

Clear complementarity of collider and DD constraints:

- Collider covers regions not easily or not at all accessible to DD experiments
 - (i.e. low m_{DM} and also very small σ_{SI})
- > On the other hand, DD experiments push strongly the preferred region to lower σ_{SI} (and will continue to do so in the future)

EFT vs Simplified Model

Therefore, validity requires typically:

 $\frac{\text{DD Experiments:}}{M_{med}} > \text{ few hundred } MeV$

 $\frac{\text{ID Experiments:}}{M_{med}} > \text{ few hundred } GeV$

 $\frac{\text{Collider (LHC):}}{M_{med}} > \text{ few } \textbf{TeV}$

As the LHC probes the TeV scale, a comprehensive application of the EFT for DM searches is not possible.

Therefore, adopt simplified DM models as main vehicle to interpret DM searches for LHC!

For more info about EFT validity for DM collider searches see e.g.: arXiv:1307.2253 arXiv:1308.6799 arXiv:1405.3101 arXiv:1402.1275 2

LHC Dark Matter Working Group

End of Run-1: Discussion on how to present the Dark Matter search data in the experiments for Run-2, in a DM forum and now DM working group

First collection on DM models (simplified an look-alike) for LHC Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum

arXiv:1507.00966

Guidelines how to compare data from LHC and non-LHC search results Recommendations on presenting LHC searches for missing transverse energy signals using simplified *s*-channel models of dark matter arXiv:1603.04156

Guidelines for direct DM production searches with constraints on the heavy mediators Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels

arXiv:1703.05703

LHC Dark Matter Working Group

End of Run-1: Discussion on how to present the Dark Matter search data in the experiments for Run-2, in a DM forum and now DM working group

First collection on	Dark Matter Benchmark Models for Early LHC Run-2 Searches
This Working Group brings together theorists and experimentalists to define guidelines and recommendations for the benchmark models,	
interpretation, and characterisation necessary for broad and systematic searches for dark matter at the LHC.	
More details can be found at this page:	
http://lpcc.web.cern.ch/LPCC/index.php?page=dm_wg	
and	the mailing list is lhc-dmwg@cern.ch**.

**To join the WG mailing list, go to

http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=lhc-dmwg

Guidelines for direct DM production searches with constraints on the heavy mediators Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels

Mono-Mania (at the LHC)

Minimal Simplified Dark Matter Model

 $(\Gamma_{med} \text{ can also be free as long})$ As $\Gamma_{med} < M_{med}$

Mass-Mass plane [M_{med} – M_{DM}]

Main result of the interpretation of collider search in simplified model

ATLAS very similar

Comparison with Direct Detection

Provide simple formulas to perform the translation of the Mass-mass plane results into these planes. A full derivation of these formulas along with assumptions/caveat discussions is provided in the report. 35

Comparison with Direct Detection

Provide simple formulas to perform the translation of the Mass-mass plane results into these planes. A full derivation of these formulas along with assumptions/caveat discussions is provided in the report. ³⁶
Comparison with Direct Detection: Vector case

Comparison with Direct Detection: Vector Case

Comparison with Direct Detection: Vector Case

Comparison with Direct Detection: Axial-Vector

Comparison with Direct Detection: Axial-Vector

Scalar and Pseudoscalar

Of course, there is also a well-defined way to compare DD limits with collider results in the collider language: mass-mass plane:

Scalar and Pseudoscalar

Of course, there is also a well-defined way to compare DD limits with collider results in the collider language: mass-mass plane:

Comparing with Indirect Detection

Due to additional velocity suppression DD experiments, have sensitivity for Mmed > few GeV, but indirect detection can provide further constrains on pseudoscalar (PS) interactions.

Hence, compare collider also with ID

Mono-jet ____ [EXO-16-048] FermiLAT ____ arXiv:1503.02641

DD and Collider Complementarity in nutshell ...

Wimp – Nucle	eon Interaction
<u> Spin-Independent (SI)</u>	<u>Spin-Dependent (SD)</u>
Basic M	ediators
<u>Vector</u> Besides low DM masses DD provides best sensitivity. Complementarity at low DM masses (<5 GeV)!	<u>Axial-vector</u> DD and collider are equal in overall sensitivity but probe different regions of parameter space! Complementarity in full parameter space!
<u>Scalar</u> Besides low DM masses DD provides best sensitivity. Complementarity at low DM masses (<5 GeV)!	PseudoscalarEffectively no limits from DD above a few GeV in M_{med} , Collider and ID probe region at larger M_{med} . Complementarity in M_{med} !

Summary

- The LHC experiments have established an impressive variety of very powerful direct searches that can be linked to DM production!
 - > The traditional SUSY searches are complemented by mono-X analyses.
- The challenge is now to find a good balance between simplicity and complexity for the DM interpretations of theses searches.
 - We have started to outline an interpretation programme that uses simplified DM models.
 - Today, the used simplified models are still very basic and therefore interpretations come along with several assumptions and some caveats – this will evolve with time!
 - Our goal is to establish the "big picture" in order to understand if/where our search strategy might have weak spots or even holes and this also requires appropriate interpretations of the searches and a MEANIGFUL comparison with other experiments.
- We have still almost two decades of data taking in front of us, with a factor 100 increase of statistic still to come!

The story continues ...

Imperial College

Iondon

BACKUP

Of course, there is also a well-defined way to compare DD limits with collider results in the collider language: mass-mass plane:

Of course, there is also a well-defined way to compare DD limits with collider results in the collider language: mass-mass plane:

Axial-Vector simplified model: $g_q=0.25$ and $g_{DM}=1.0$

$$\begin{split} M_A &= 1 \ {\rm TeV} \ \left(\frac{2.38 \times 10^{-42} \ {\rm cm}^2}{\sigma_{p,n}^{\rm SD}} \right)^{0.25} \\ & \cdot \left(\frac{g_{\rm DM} g_q}{0.25} \right)^{0.5} \left(\frac{\mu_n}{1 \ {\rm GeV}} \right)^{0.5} \ . \end{split}$$

Based on arXiV:1407.8257 Numerical calculation provide by. C. McCabe Pseudoscalar (PS) simplified model: $g_q=1.0$ and $g_{DM}=1.0$

DD limits in collider plane: σ_{SD(p,n)}

Interpretation od SUSY Searches in Simplified Models

58

How to summarize SMS limits?

Approach taken in the 2012 and 2013 Experimental SUSY PDG reviews [OB & Paul De Jong]:

http://pdg.lbl.gov/2012/reviews/rpp2012-rev-susy-2-experiment.pdf http://pdg.lbl.gov/2013/reviews/rpp2013-rev-susy-2-experiment.pdf

Model	Assumption	$m_{ ilde q}$	$m_{ ilde{g}}$
	$m_{ ilde{q}}pprox m_{ ilde{g}}$	1400	1400
CMSSM	all $m_{ ilde{q}}$	-	800
	all $m_{ ilde{g}}$	1300	-
Simplified model $\tilde{g}\tilde{g}$	$m_{ ilde{\chi}_1^0}=0$	-	900
	$m_{ ilde{\chi}_1^0} > 300$	-	no limit
Simplified model $\tilde{q}\tilde{q}$	$m_{ ilde{\chi}^0_1}=0$	750	-
	$m_{ ilde{\chi}_1^0}^{\sim 1} > 250$	no limit	-
Simplified model	$m_{ ilde{\chi}_1^0} = 0, m_{ ilde{q}} pprox m_{ ilde{g}}$	1500	1500
$ ilde{g} ilde{q}, ilde{g}ar{ ilde{q}}$	$m_{\tilde{\chi}_1^0} = 0$, all $m_{\tilde{g}}$	1400	-
	$m_{\tilde{\chi}_1^0}^{\gamma_1} = 0$, all $m_{\tilde{q}}$	-	900

This was an appropriate approach for the rather limited amount of inclusive searches and corresponding SMS interpretations available in 2011 (7 TeV).

Dark Matter: Particle Hypothesis

Fermilab 95-759

Known DM properties

Dark Matter: Particle Hypothesis

Known DM properties:

- Gravitationally interacting
- Not short-lived
- Not hot
- Not baryonic

Hypothesis: Dark Matter is a new particle (or particles)

DM Mechanisms

stau coann.

 $\tilde{\chi}_1^{\pm}$ coann.

slep coann

gluino coann.

squark coann.

 $\left(\frac{M_{\tilde{\tau}}}{m_{\gamma^0}} - 1\right) < 0.15$

 $\left(\frac{M_{\chi_1^{\pm}}}{m_{\chi^0}} - 1\right) < 0.25$

Stau coannihilation

Chargino Co-annihilation

 $\left(\frac{M_{\tilde{l}}}{m_{\chi_1^0}} - 1\right) < 0.15$

 $\left(\frac{M_{\tilde{g}}}{m_{\chi^0_{\tau}}} - 1\right) < 0.25$

 $\left(\frac{M_{\tilde{q}}}{m_{\gamma^0}} - 1\right) < 0.20$

- Slepton **Co-annihilation**
- Gluino **Co-annihilation**

Squark **Co-annihilation**

 $\left| \frac{\mu}{m_{\chi^0_1}} - 1 \right| < 0.30$ Higgsino enriched "focus-point" like

Hybrid regions: In addition to the `primary' regions where only one of the conditions is satisfied, there are also *hybrid* regions where more than one condition is satisfied. These are indicated using combined colours.

 $\left| \frac{M_B}{m_{\chi_1^0}} - 2 \right| < 0.4$ B = h, Z or H/A funnel

See also arXiv:1508.01173 for further details

Comparison with Direct Detection Experiments

Comparison with Direct Detection Experiments

pMSSM11: RUN1 vs 13 TeV (2015 + 2016)

gluino coann.

 $m_{\tilde{q}}[\text{GeV}]$

 $m_{\tilde{a}}[\text{GeV}]$

pMSSM11 w LHC13 : best fit, 1σ , 2σ

lash s

pMSSM11 w/o LHC13 : best fit, 1σ , 2σ

squark coann.

pMSSM11: RUN1 vs 13 TeV (2015 + 2016)

Gluino vs Squark: LHC RUN 1

Gluino vs Squark: LHC RUN 2 (2015 + 2016 data)

Gluino: LHC RUN 1

82

Gluino: LHC RUN 2 (2015 + 2016 data)

Squark: LHC RUN 2 (2015 + 2016 data)

Gluino vs Squark: LHC RUN 1

Gluino vs Squark: LHC RUN 2 (2015 + 2016 data)

FROM EFT TO SIMPLIFIED MODELS

ATLAS Mono-Jet: Comparison with Direct Detection

ATLAS Mono-Jet: Comparison with Direct Detection

ATLAS Mono-Jet: Comparison with Direct Detection

Mono-Jet analyses better than direct detection?!

Claim [often made]: For low mass and the entire spin-dependent case monojet limits are stronger than direct detection limits!

Effective Field Theory (EFT) Interpretation

Example of considered operators:

 $O_V = rac{(ar{\chi}\gamma_\mu\chi)(ar{q}\gamma_\mu q)}{\Lambda^2}$ Vector operator, s-channel

$$\begin{array}{c} q \\ g_{q} \\ g_{q} \\ g_{\chi} \\ \chi \end{array} \\ \bar{\chi}$$

$$O_{AV} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}\gamma_{5}q)}{\Lambda^{2}}$$

Axial vector operator, s-channel

Assumption of EFT

If the operator (e.g. V or AV) mediator is suitably(!!) heavy it can be integrated out to obtain the effective V or AV contact operator. In this case (and only this case), the contact interaction scale Λ is related to the parameters entering the Lagrangian:

$$\Lambda = \frac{M_{mediator}}{\sqrt{g_q g_\chi}}$$

(relation in the full theory)

Fermi Interaction & Muon Decay

Fermi Interaction & Muon Decay

The Fermi 4-point interaction was able to explain well the beta-decay as well as the muon decay with one single interact strengths G_F (Fermi constant)

However, the cross-section grows as the square of the energy:

making it invalid for higher energies!

Fermi Interaction & Muon Decay

The Fermi 4-point interaction was able to explain well the beta-decay as well as the muon decay with one single interact strengths G_F (Fermi constant)

However, the cross-section grows as the square of the energy:

making it invalid for higher energies!

Solution: Resolve the "blob" and replace the 4-point interaction with an ultraviolet complete theory!

 $\sigma \propto G_F^2 M_W^2$

Validity of Effective Field Theory Limits

Use vector and axial-vector mediators (e.g. Z') as example - scalar are similar in conclusion!

- Compare prediction of FT with EFT in $m_{med} m_{DM}$ plane. Three regions become visible:
- Region I: EFT and FT agree better then 20% ➤ EFT is valid!
- Region II: EFT yields significant weaker limits then FT
 > EFT limits are too conservative!
- Region III: EFT yields significant stronger limits then FT
 > EFT limits are too aggressive!

Validity of Effective Field Theory Limits

Use vector and axial-vector mediators (e.g. Z') as example - scalar are similar in conclusion!

Validity of Effective Field Theory Limits

Recent work from OB, M.Dolan, C.McCabe: arXiv:1308.6799
Compare Effective Field Theory (EFT) with Full Theory (FT)

Alternative Interpretation Ansatz: Simplified models

Recent work from OB, M.Dolan, C.McCabe: arXiv:1308.6799➢ Compare Effective Field Theory (EFT) with Full Theory (FT)

After three years of operation at the LHC the landscape for interpretation of searches has changed dramatically – new superior & modern approaches have replaced in many areas longstanding traditional ones (e.g. SUSY searches)

Alternative Interpretation Ansatz: Simplified models

Recent work from OB, M.Dolan, C.McCabe: arXiv:1308.6799 → Compare Effective Field Theory (EFT) with Full Theory (FT)

The problem is governed by five variables:

- \succ Couplings g_q and g_χ
- \succ Mediator mass m_{med} and mediator width Γ_{med}
- Dark matter candidate mass m_{DM}

ATLAS & CMS public results

Most results presented in this talk (and many more) can be accessed via the public page of the ATLAS and CMS experiments:

ATLAS SUSY: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ SupersymmetryPublicResults

CMS SUSY :https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsSUS

100 TeV Prediction from arXiv:1509.02904

MASTERCODE

Resolving tension (g-2) and LHC

From MasterCode papers: 1312.5250, 1408.4060 and 1504.03260

Resolving tension (g-2) and LHC

From MasterCode papers: 1312.5250, 1408.4060 and 1504.03260

Resolving tension (g-2) and LHC

From MasterCode papers: 1312.5250, 1408.4060 and 1504.03260
CMSSM

NUHM1

NUHM2

MasterCode: The two worlds of SUSY models

Models in Comparison in "Mq-Mg Search plane"

The full story

SUSY SUMMARY PLOT

squarks to be mass degenerate

[or only one light squark]!

Direct squark production – chosen limits

Gluino mediated squark production – limits chosen

ATLAS arXiv:1405.7875 Signature: 0L + 2-6 Jets $+ E_t^{miss}$ CMS arXiv:1502.00300 Signature: : 0L + Razor + b-tag Signature: 0/1 Leptons + 3 b-tag + E_t^{mis}

Imperial College London

Compressed stop – mind the gap!

ATLAS arXiv:1407.0608 Mono-jet & c-tag combined

ATLAS: arXiv:1407.0583 $1L + E_t^{mis} \& b$ -tag

CMS arXiv:1308.1586 1L + Et^{mis} and BDT & b-tag

Direct chargino/neutralino production

SUSY PROJECTION OF DIFFICULT CHANNELS

Imperial College London

Imperial College London

Imperial College

The Large Hadron Collider at CERN

Imperial College

Imperial College

Comparison with Direct Detection: Vector Case

