# Determination of Top-Quark Properties

Yuji Yamazaki (Kobe University) on behalf of the ATLAS, CMS and LHCb Collaborations The 28<sup>th</sup> International Symposium on Lepton Photon Interactions at High Energies 8 August 2017 Sun Yat-Sen University, Guangzhou, China

## Contents

- Introduction: top production and decay
- Why to measure top quarks
- Top mass
- Top pair-production cross sections
- Top couplings
- Single-top production

# Top production in hadron colliders

- The only quark heavier than EW scale:  $m_t \simeq 173~{
  m GeV}$
- pair production: thru strong interaction



 $p\bar{p}$  @ Tevatron: 7.2 pb mostly  $q\bar{q} \rightarrow t\bar{t}$ 



pp @ LHC: mostly from  $gg \rightarrow t\overline{t}$ 

~ 820 pb @ 13 TeV
> 40 millions of top pairs already produced cf. Belle > 772 millions of Υ(4s)

- single-top production: weak processes
  - Quite large cross sections at the LHC



# Inclusive cross section behaviour



- Rapid rise: reflecting the gluon density
- 5 TeV data from CMS from 2015 data (reference *pp* run for heavy ions)

New result not included here: ATLAS 8TeV I+jets (±13pb) ATLAS-CONF-2017-054

# Top decay and reconstruction

- $t \rightarrow b + W \sim 100\%$ 
  - Helicity transferred to W
  - short lifetime (Γ ~ 1.3 GeV)
     The only quark that decays
     before hadronisation
  - pure *b*-quark:
     best source for *b*-calibration i.e.
     b-tag & b-jet energy
- Top pair reconstruction
  - single lepton: " $\ell$  + jets"
  - dilepton (2 $\ell$ )
    - one or two neutrinos in final state solution by mass constraints:  $m_{\ell \nu} = m_W$ ,  $m_{\ell \nu b} = m_t$
  - all-hadronic (all jets)





# Why do we measure top?

- LHC is a top factory
  - Precision measurement of mass
  - Couplings
- Precise measurements: gateway to new physics
  - Remember LEP/SLC Higgs mass "prediction"
- Today's signal is tomorrow's background
  - Precise understanding of cross section behavior
  - Studying rare processes (e.g. ttZ for ttH)
- It cannot be measured elsewhere for next 10+ years! .





# TOP MASS

# Top mass measurements: methods

#### "Direct mass"

 Measuring the 4-momentum of decay product



"Pole mass"

- Through cross section or cross section shapes
  - propagator appears in cross section calculations



#### Inclusive $t\overline{t}$ cross section in comparison TOP++ (NNLO+NNLL)

# "Direct mass" measurements

Best measurements are from "mature" 8TeV data, (being) published in 2016-17



# Direct mass through hadronic decay

Entries / 0.04

1000

800

600

400

200

Data / Prediction

- hadronic channel: using  $R_{3/2} = \frac{m_{jjb}}{m_{jj}} \simeq \frac{m_t}{m_W}$ 
  - reducing jet energy scale sensitivity
- 173.72 ± 0.55 (stat.) ± 1.01 (syst.) GeV
  - Jet energy scale (0.64 GeV)
  - Hadronisation modelling (0.60 GeV)







# Most precise measurementsfrom CMSPRD 93 (2016) 072004

- Mass from kinematic fits: controlling kinematic dependence on the mass reconstruction → good resolution
- Jet energy scale factor (JSF) was constrained by either
  - simultaneous determination of JSF and  $m_{top}$
  - or external knowledge from W reconstruction and the datadriven determination are given equal weight (hybrid method)





# Road to < 0.3 GeV precision

| Best<br>record:<br>0.49 GeV | Analysis (syst. error)                       | 1 <sup>st</sup> source (error)            | 2 <sup>nd</sup> source (error)       | 3 <sup>rd</sup> source (error)       |
|-----------------------------|----------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|
|                             | ATLAS dilepton (0.74)<br>PLB 761(2016)350    | Jet energy scale<br>(0.54)                | <i>b</i> -jet energy scale<br>(0.30) | ISR and FSR<br>(0.23)                |
|                             | ATLAS all hadron (1.01)<br>arXiv: 1702.07546 | Hadronisation<br>modelling (0.64)         | Jet energy scale<br>(0.60)           | <i>b</i> -jet energy scale<br>(0.34) |
|                             | CMS lepton+jets (0.49)<br>PRD 93(2016)072004 | <i>b</i> -jet energy scale<br>(0.32)      | Matrix element<br>generator (0.12)   | Jet energy<br>correction (0.12)      |
|                             | CMS dilepton (1.22)<br>PRD 93(2016)072004    | μ <sub>R</sub> , μ <sub>F</sub><br>(0.75) | b-fragmentation<br>(0.69)            | <i>b</i> -jet energy scale<br>(0.34) |
|                             | CMS all hadron (0.59)<br>PRD 93(2016)072004  | <i>b</i> -jet energy scale<br>(0.29)      | Background<br>estimation (0.20)      | In situ jet<br>energy scale (0.19)   |

experimental

model dependence

(Experimental uncertainties)  $\approx$  (model uncertainties)

- Worthwhile trying other mass reconstruction methods than direct mass
- Need more control to event generators
  - e.g. parton shower, hadronisation ...

# Could direct mass have some bias?

- Meson mass (e.g. J/ $\psi$  mass) well defined
  - decay particles are well defined
  - radiation (e.g.  $J/\psi \rightarrow \mu\mu\gamma$ ) well understood
- For top, decay particles include *partons* 
  - jet energy leaking out of cones (FSR)
  - Jet energy modified by colour reconnection
  - Jet energy increased by
     ISR and multi-parton interactions

 In principle the top could be off-shell, which may lead to distorted resonance shape in mass Net effect would be (a factor)  $\times \Lambda_{QCD}$ Could be ~ GeV

đ

b

U

# "Alternative method": Mass reconstructed from lepton + $J/\psi$ from b-jet

Using J/ $\psi$  momentum to represent b-jet





- Well-defined leptonic observable
- syst. error 0.9 GeV only
  - top  $p_T$  modelling (0.64)
  - b-fragmentation (0.37)

# "Pole mass" by $\sigma$ shapes: lepton kinematics





#### ATLAS-CONF-2017-044

- Kinematic distribution of leptons  $(e\mu)$ 
  - 8 distributions:  $p_T(e \text{ or } \mu)$ ,  $|\eta|$ , dilepton  $p_T^{e\mu}$ ,  $m^{e\mu}$ ,  $|y^{e\mu}|$ ,  $\Delta \phi^{e\mu}$ ,  $p_T^e + p_T^{\mu}$ ,  $E^e + E^{\mu}$
- Insensitive to detail of modelling the hadronic part of the decay
- $m_t = 173.2 \pm 0.9(stat.) \pm 0.8(exp.) \pm 1.2(theo.)$ 
  - dominated by  $\mu_R$ ,  $\mu_F$  uncertainties

## Summary and prospects in top mass measurements

# ATLAS direct (dilepton) $172.99 \pm 0.85$ CMS direct (l+jets) $172.35 \pm 0.51$ CMS J/ $\psi$ $173.5 \pm 3.0 \pm 0.9$ ATLAS dilepton $\sigma$ shape $173.2 \pm 1.6$ CMS $\sigma(t\bar{t})$ $173.8^{+1.7}_{-1.8}$

Plot by hand

#### Direct mass has been cross-checked by alternative methods

 Consistent within large errors

Ways to improve further

#### • direct mass: jet/b-jet energy measurement

- track mass: top kinematics modelling, b-fragmentation
- through cross sections: scale uncertainties  $\simeq$  higher order calculation

Understanding the top events is crucial for future mass measurements with <0.3 GeV precision

# **DIFFERENTIAL CROSS SECTIONS**

# Motivation for differential cross sections

- Better to link data and theoretical models
  - unfolded data: direct comparison to higher-order models
     i.e. to discriminate parton shower models,
     generator tuning and PDFs (parton density functions)
  - also for controlling systematics for other measurements
- Sensitivity **to BSM** by comparison with predictions
  - in particular **highly-boosted** high- $p_T$  production
- To understand top as a "standard candle"
  - as it appears as decay particle of new states as well background for BSM searches

# Recent 13 TeV measurements (1)



- All-hadronic channels (14.7  $fb^{-1}$ ), normalised cross sections
- Boosted topology: collimiated decay products into "fat" jet
- Internal 3-jet structure to tag top
- $p_T^{top} \sim 1 \text{ TeV}, m_{tt} > 2 \text{ TeV}$



(from JHEP09(2013)076: note that this analysis does somewhat differently to tag boosted top)

# 13 TeV result (2) closer look

#### CMS-PAS-TOP-16-014



- Cross section vs event variables, not top quark kinematics
  - avoiding theoretical uncertainties in correction / reconstructing top
- high sensitivity to models and their parameters
- Data tend to be softer than NLO calculations  $\rightarrow$

## That was not the only one ... other 13TeV data



- $p_T$  of the top quarks tend to be softer than NLO calculations
  - NNLO gives better description
  - wishing to have higher order event generators!

#### EPJC 77(2017)220

# $t\bar{t} + jets @ 13 TeV$



0.6

Powheg+Pythia6

2

3

Number of additional jets

- Very sensitive to the models, especially the parton shower models
  - Used for tuning parameters to reduce model dependence

We continue to measure differential cross sections for further improving models

>4

+ Data( $\mu^{-}$ ) W+bb

W+cc

# Top in very forward rapidity from LHCb

- Asymmetric configuration: small mass  $m_{partons} = \sqrt{sx_1x_2}$  is small when  $x_1$  or  $x_2$  is small
  - Top production cross section at the LHCb rapidity range  $(2 < \eta \lesssim 4.5)$  is tiny
- Main BG:  $W + b\overline{b}$
- Fiducial  $\sigma \sim 0.045 \text{ pb}$ Observed:  $0.05^{+0.02}_{-0.01}(stat.)^{+0.02}_{-0.01}(syst.) \text{ pb}$  $4.9\sigma$  significance
- Higher statistics for constraining high/low-x gluons



Selection: 1 lepton with  $p_T > 20$  GeV and  $2.0 < \eta < 4.5(4.25)$  for  $\mu(e)$ 2 b-tagged jets with  $p_T > 12.5$  GeV and  $2.2 < \eta < 4.2$ 

#### PLB 767(2017)110

# TOP COUPLINGS AND SPIN

Enough QCD? Need EW?

# Extracting couplings and spin

- Cross section to  $t\overline{t} + W, Z, t\overline{t} + \gamma$ : **EW coupling**
- **Decay to unknowns**? → Top width
- Angular distributions of the leptons from top
  - spin correlation of top quarks
  - Wtb vertex (V-A structure etc.)
  - → now also from **single-top** production (slides later)

#### <u>CMS-PAS-TOP-17-005</u>



• Interpreted in terms of effective field theory  $\mathcal{L} += \frac{1}{\Lambda^2} \sum_j c_j O_j$ 

26

# $t\bar{t}\gamma$ cross sections

#### arXiv: 1706.03046





- SM prediction: 1.322 GeV (for 172.5 GeV top)
- Tiny deviation in mass shape in  $m_{lb}$  for leptonic decay, still sensitive
  - CMS:  $0.6 < \Gamma < 2.5$  GeV (95% CL)
  - ATLAS:  $\Gamma = 1.76 \pm 0.33$ (stat.) $^{+0.79}_{-0.68}$ (syst.)

# **SINGLE-TOP PRODUCTION**

# Single-top: overview



- No longer statistically limited for inclusive  $\sigma$
- Can measure t-channel without multi-variate analysis (and soon Wt as well)<sup>30</sup>

# t-channel: differential XS and flavour scheme



4-flavour scheme

- t-channel needs b-quark in/around the initial state
  - Intrinsic b-quark in the proton (5-Flavour Scheme, 5FS)?
     Or all should be produced dynamically from gluons (4FS)?
     Need to factorise the two diagrams properly
- $p_T(t \text{ or } \overline{t})$  might imply some model improvement in the future



$$\mathcal{L} = \frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{m_W} (g_L P_L + g_R P_R) t W_{\mu}^{-} + h.c.$$
  
$$\mathcal{L} = \frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (f_L^V P_L + f_R^V P_R) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{m_W} (f_T^L P_L + f_T^R P_R) t W_{\mu}^{-} + h.c.$$





#### arXiv: 1610.03545



- Event selection: as simple as cut-based (ATLAS)
  - Full analysis with azimuthal angle

similar precision to  $t\bar{t}$ -based analyses

# Evidence for tZq production + FCNC search



- Sensitive to both *WWZ* and *tZ* vertices
  - EW physics via single top!
- First evidence with 36/fb for tZq (4.2 $\sigma$ )
  - 600 fb (obs.) 800 fb (expected)
- FCNC upper limit by *tZ* final state (no additional b-quark)
  - Br( $t \rightarrow Zu$ ) < 0.022%, Br( $t \rightarrow Zc$ ) < 0.049% @95% CL



# Summary

Top physics: towards very high precision in mass, properties through  $t\bar{t}$  and single-top production Need to control experimental and theoretical systematics

Interaction between experiments and theory through cross section measurements

Higher luminosity – extension to unexplored regime

- 3x more statistics by the end of 2018
- new processes (ttZ, tZq...) for EW and BSM couplings
- higher  $p_T$  for new physics

# BACKUP

# Why do we measure top? (2)

Top quark is a probe to new physics

through huge Yukawa coupling to Higgs  $y_t \sim 1$ 

 top is by far heavier than other quarks, beyond EW scale

If new physics contains unknown Higgs-like sector, top quarks should know about it, hopefully at a reachable energy

|   | <i>m<sub>f</sub></i> /(√2φ₀) |
|---|------------------------------|
| е | $2.0	imes10^{-6}$            |
| μ | $4.1	imes10^{-4}$            |
| τ | $7.0	imes10^{-3}$            |
| u | 2× 10 <sup>-5</sup>          |
| d | $3	imes 10^{-5}$             |
| S | $5 \times 10^{-4}$           |
| С | $5.2	imes10^{-3}$            |
| b | $1.7	imes10^{-2}$            |
| t | 0.7                          |

# \*Alternative kinematic reconstruction (1)

- Kinematic endpoint by " $M_{T2}$ " reconstruction (CMS <u>arXiv: 1704.06142</u>)
  - maximum mass of either t or  $\bar{t}$  is minimised to find optimum distribution of missing momentum to two neutrinos:  $M_{T2}^{bb} = \min_{p_{Tmiss}} (\max\{m_{T,b1}, m_{T,b2}\})$
- Best fit from "hybrid" method:  $172.22 \pm 0.18^{+0.89}_{-0.93}$  GeV
  - syst. from jet energy scale, b-fragmentation, scale uncertainties



# Single-top enriched mass

- Weak production: different influences from QCD effects i.e. ISR/FSR, colour reconnection
  - less partons involved in the interaction
- Reflected to the systematic errors
  - Jet energy scale: 0.6-0.7 GeV
  - Model dependence  $\lesssim$  0.4 GeV

 $m_t = 172.95 \pm 0.77(stat.)^{+0.97}_{-0.93}(syst.)$ 



# \*Recent 13 TeV measuremnts (2a)



- Comparison to different models
  - matrix elements calculation @ NLO
  - parton shower simulation
  - matching scheme between matrix element and parton shower
  - parton shower phenomenological parameters
- You see why it is important to understand the models!

# \*Event kinematics result @ 8 TeV from ATLAS

#### ATLAS-CONF-2017-044



- many of generators tend to predict harder  $p_T$  spectrum
- ISR/FSR, parton shower matching parameters would change behaviour



#### EPJC 77(2017)220

# \*Gap fraction @ 13 TeV



 Fraction of events without any jet with

 $p_T(jet) > Q_0$  in addition to the b-jet from the top decay

 Sensitive to hard radiation in I/FSR, parton shower due to colour connection



### \*Sensitivity to PDF(1): ratio to Z, lepton kinematics

# \*Cross sections sensitive to PDFs (2)



CMS Double-differential cross section

• More direct correspondence to q or  $g(x, Q^2)$  through

$$x \simeq \frac{E_{T1}e^{-\eta_1} + E_{T2}e^{-\eta_2}}{E_p}, \qquad Q^2 \simeq E_T^2$$

• Better constraining gluons by adding  $t\bar{t}$  data to HERA DIS data

EPJC 77(2017)459

# **Charge Asymmetry**

from arXiv: 1207:0331 by G. Rodorigo Moriond EW 2012 proceedings



 $A_C$  gives which of t and  $\overline{t}$  is produced in more forward direction

$$\Delta |y| = |y_t| - |y_{\bar{t}}|$$

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$



# \*W polarisation from $t\bar{t}$ decays



- *Wtb* vertex: V A type coupling  $(V_L)$ 
  - W polarisation:  $F_L$  (Left-polarised W) 31.1%,  $F_R \sim 0.1\%$ ,  $F_0$  68.7%
  - Deviation in polarisation may suggest additional term in coupling ( $V_R$  or  $g_L$ ,  $g_R$ : tensor couplings)
- Polarisation obtained from  $\ell^+$  ( $\ell^-$ ) or c-quark from  $W \to cs$  decay



# *t*-channel *t* and $\overline{t}$ ratio for singlet PDF



- Sensitive to the isospin of the valence quark PDFs (e.g. u/d)
- Further statistics should help

## **FCNC** limits



47