Theoretical Aspects of the Quantum Neutrino

Stephen Parke Theoretical Physicist Chicago, USA

Theoretical Aspects of the Quantum Neutrino

Stephen Parke Theoretical Physicist Chicago, USA

Xu Zhan,Tsinghua

Michelangelo MANGANO, Stephen PARKE and Zhan XU ${ }^{1}$
 Fermi National Accelerator Laboratory², P.O. Box 500, Batavia, IL 60510, USA

Received 13 July 1987

For the six-gluon scattering process we give explicit and simple expressions for the amplitude and its square. To achieve this we use an analogy with string theories to identify a unique procedure for writing the multi-gluon scattering amplitudes in terms of a sum of gauge invariant dual sub-amplitudes multiplied by an appropriate color (Chan-Paton) factor. The sub-amplitudes defined in this way are invariant under cyclic permutations, satisfy powerful identities which relate different non-cyclic permutations and factorize in the soft gluon limit, the two-gluon collinear limit and on multi-gluon poles. Also, to leading order in the number of colors these sub-amplitudes sum incoherently in the square of the full matrix element. The results contained here are important for Monte Carlo studies of multi-jet processes at hadron colliders as well as for understanding the general structure of QCD.

Permanent address; Dept. of Physics, Tsinghua University, Beijing, The People’s Republic of China.

Xu Zhan,Tsinghua

Michelangelo MANGANO, Stephen PARKE and Zhan XU ${ }^{1}$ Fermi National Accelerator Laboratory², P.O. Box 500, Batavia, IL 60510, USA

Received 13 July 1987

For the six-gluon scattering process we give explicit and simple expressions for the amplitude and its square. To achieve this we use an analogy with string theories to identify a uniaue

AMPLITUHEDRON

1. Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories

Zhan Xu, Da-Hua Zhang, Lee Chang (Tsinghua U., Beijing). Jul 1986. 37 pp.
Published in Nucl.Phys. B291 (1987) 392-428
TUTP-86/9a
DOI: 10.1016/0550-3213(87)90479-2
References I BibTeX I LaTeX(US) I LaTeX(EU) I Harvmac I EndNote
Detailed record - Cited by 445 records $250+$
2. Helicity Amplitudes For Multiple Bremsstrahlung In Massless Nonabelian Gauge Theory. 2. Decompositic Invariant Subsets
Zhan Xu, Da-Hua Zhang, Lee Chang (Tsinghua U., Beijing). Mar 1985. 32 pp.
TUTP 84/4
References I BibTeX I LaTeX(US) I LaTeX(EU) I Harvmac I EndNote
Detailed record
3. Helicity Amplitudes For Multiple Bremsstrahlung In Massless Nonabelian Gauge Theory. 3. Amplitudes \mathbf{C} Processes Involving Gluon Selfcoupling Vertices
Da-hua Zhang, Zhan Xu, Lee Chang (Tsinghua U., Beijing). Jan 1985. 29 pp. TUTP-84/5a

References I BibTeX I LaTeX(US) I LaTeX(EU) I Harvmac I EndNote
Detailed record
4. Helicity Amplitudes For Multiple Bremsstrahlung In Massless Nonabelian Gauge Theory. 1. New Definitio Formulation Of Amplitudes In Grassmann Algebra
Zhan Xu, Da-Hua Zhang, Lee Chang (Tsinghua U., Beijing). Dec 1984. 20 pp. TUTP-84/3-TSINGHUA

References I BibTeX I LaTeX(US) I LaTeX(EU) I Harvmac I EndNote
Detailed record - Cited by 4 records

Stephen Parke
Lepton-Photon 2017, Guangzhou
8/10/2017

NOBEL 2015

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

NOBEL 2015

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

~ vacuum oscillations

NOBEL 2015

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

~ vacuum
oscillations
See Smirnov arXiv:1609.02386

NOBEL 2015

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

"for the discovery of neutrino flavor transformations, which shows that neutrinos have mass"
~ vacuum
oscillations
See Smirnov arXiv:1609.02386

Wolfenstein matter effects dominant flavor transformations

Credit: NASA/DOE/Fermi LAT Collaboration

Neutrinos are Everywhere!

PKS 1502+106
\odot

PSR J1836+5925 -
\bigcirc

Sun
August 4, 2008

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3 2 or mere $\mathrm{v} / \mathrm{c} \ll 1$

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3
2 or mere $\mathrm{v} / \mathrm{c} \ll 1$
SuperNovae $>10^{\wedge} 58$

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3

2 or mere $\mathrm{v} / \mathrm{c} \ll 1$

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3

2 or mere $\mathrm{v} / \mathrm{c} \ll 1$

Neutrinos are Everywhere

from Big Bang 300 nus / cm^3

2 or mere $\mathrm{v} / \mathrm{c} \ll 1$

SuperNovae $>10^{\wedge} 58$

Sun
October 30
October 30, 2008

Sun's
$\sim 10^{\wedge} 38$ nu/sec

Daya Bay
Neâtrinos are Forever !!!
(except for the highest energy neutrino's)

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3

 2 or mere $\mathrm{v} / \mathrm{c} \ll 1$
SuperNovae $>10^{\wedge} 58$

Daya Bay

$3 \times 10^{\wedge} 21 \mathrm{nu} / \mathrm{sec}$

Neâtrinos are Forever !!!
f
(except for the highest energy neutrino's)
therefore in the Universe:

$$
\frac{\partial N_{\nu}}{\partial t}>0
$$

Neutrino Flavor or Interaction States:

$$
W^{+} \rightarrow e^{+} \nu_{e}
$$

$$
W^{+} \rightarrow \mu^{+} \nu_{\mu}
$$

$$
W^{+} \rightarrow \tau^{+} \nu_{\tau}
$$

ν_{e}

Neutrino Flavor or Interaction States:

$$
W^{+} \rightarrow e^{+} \nu_{e} \quad W^{+} \rightarrow \mu^{+} \nu_{\mu} \quad W^{+} \rightarrow \tau^{+} \nu_{\tau}
$$

provided $\boldsymbol{L} / \boldsymbol{E} \ll \mathbf{0 . 5} \mathrm{km} / \mathrm{MeV}=\mathbf{5 0 0} \mathrm{km} / \mathrm{GeV}$!!!
~ 1 picosecond in Neutrino rest frame !!!

Neutrino Flavor or Interaction States:

$$
W^{+} \rightarrow e^{+} \nu_{e} \quad W^{+} \rightarrow \mu^{+} \nu_{\mu} \quad W^{+} \rightarrow \tau^{+} \nu_{\tau}
$$

$$
\text { provided } \boldsymbol{L} / \boldsymbol{E} \ll \mathbf{0 . 5} \mathrm{km} / \mathrm{MeV}=500 \mathrm{~km} / \mathrm{GeV} \text { !!! }
$$

~ 1 picosecond in Neutrino rest frame !!!

$$
\approx \text { Age of Universe } / \mathbf{1 0}^{26}
$$

Neutrino Mass EigenStates or Propagation States:

Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

Neutrino Mass EigenStates or Propagation States:

Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

Neutrino Mass EigenStates or Propagation States:

Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

Neutrino Mass EigenStates or Propagation States:

Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$
$\boldsymbol{\nu}_{1}$
most ν_{e}

Solar Exp, SNO
KamiLAND
Daya Bay, RENO, ...
ν_{2}
ν_{3}

$$
\nu_{\mu}=
$$

SuperK, K2K,T2K
MINOS, NOvA
ICECUBE

$$
\nu_{\tau}=
$$

Unitarity SK, Opera ICECUBE ?

Neutrino Mass EigenStates or Propagation States:

Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

Interactions:

simple

complicated

Interactions:

simple

complicated

complicated
simple

Propagation:

Interactions:

simple

complicated

complicated
simple

Propagation:

Interactions:

simple

complicated

Rates: $\left|U_{\mu 1}\right|^{2} \&\left|V_{t d}\right|^{2}$
unitary matrix

$$
\begin{array}{r}
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{U}_{e 1} & \boldsymbol{U}_{e 2} & \boldsymbol{U}_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\boldsymbol{\nu}_{3}
\end{array}\right) \\
\text { by defn }\left|\boldsymbol{U}_{e 1}\right|^{2}>\left|\boldsymbol{U}_{e 2}\right|^{2}>\left|\boldsymbol{U}_{e 3}\right|^{2}
\end{array}
$$

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

by defn $\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{2}$

$$
\begin{aligned}
& U_{P M N S}=U_{23}\left(\theta_{23}, 0\right) U_{13}\left(\theta_{13}, \delta\right) U_{12}\left(\theta_{12}, 0\right) \\
& \text { Why this order ??? } \\
& =\left(\begin{array}{ccc}
1 & & \\
& c_{23} & s_{23} \\
& -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \delta} \\
-s_{13} e^{+i \delta} & & 1 \\
c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & \\
-s_{12} & c_{12} & \\
& & 1
\end{array}\right) \\
& s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j} \\
& \times \operatorname{diag}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}}{2}}\right)
\end{aligned}
$$

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

by defn $\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{2}$
$U_{P M N S}=U_{23}\left(\theta_{23}, 0\right) U_{13}\left(\theta_{13}, \delta\right) U_{12}\left(\theta_{12}, 0\right)$
Why this order ???

$$
\begin{gathered}
=\left(\begin{array}{ccc}
\mathbf{1} & & \\
& c_{23} & s_{23} \\
& -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \boldsymbol{\delta}} \\
-s_{13} e^{+i \boldsymbol{\delta}} & 1 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
\boldsymbol{c}_{\mathbf{1 2}} & s_{12} & \\
-s_{12} & c_{12} & \\
& & \mathbf{1}
\end{array}\right) \\
s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}
\end{gathered} \begin{gathered}
c_{13} c_{12} \\
\left(\begin{array}{ccc}
c_{13} s_{12} & \left.e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}}{2}}\right) \\
-c_{23} s_{12}-s_{13} s_{23} c_{12} e^{i \delta} & c_{23} c_{12}-s_{13} s_{23} s_{12} e^{i \delta} & s_{13} e^{-i \delta} \\
s_{23} s_{12}-s_{13} c_{23} c_{12} e^{i \delta} & -s_{23} c_{12}-s_{13} c_{23} s_{12} e^{i \delta} & c_{13} c_{23}
\end{array}\right)
\end{gathered}
$$

$\nu_{1}, \quad \nu_{2}$ Mass Ordering:
 -solar mass ordering

mass

$$
\nu_{e}=
$$

$\nu_{1}, \quad \nu_{2}$ Mass Ordering:

-solar mass ordering

mass

$\left|\boldsymbol{\Delta} \boldsymbol{m}_{\mathbf{2}}^{\mathbf{2}}\right|=\left|\boldsymbol{m}_{\mathbf{2}}^{\mathbf{2}}-\boldsymbol{m}_{\mathbf{1}}^{\mathbf{2}}\right|=\mathbf{7 . 5} \times \mathbf{1 0}^{-\mathbf{5}} \mathrm{eV}^{2} \quad \boldsymbol{L} / \boldsymbol{E}=\mathbf{1 5} \mathrm{km} / \mathrm{MeV}=\mathbf{1 5}, \mathbf{0} 00 \mathrm{~km} / \mathrm{GeV}$

$\nu_{1}, \quad \nu_{2}$ Mass Ordering:

-solar mass ordering

mass

$\left|\boldsymbol{\Delta} \boldsymbol{m}_{\mathbf{2}}^{2}\right|=\left|\boldsymbol{m}_{\mathbf{2}}^{\mathbf{2}}-\boldsymbol{m}_{\mathbf{1}}^{2}\right|=\mathbf{7 . 5} \times \mathbf{1 0}^{-\mathbf{5}} \mathrm{eV}^{2} \quad \boldsymbol{L} / \boldsymbol{E}=15 \mathrm{~km} / \mathrm{MeV}=\mathbf{1 5}, \mathbf{0} 00 \mathrm{~km} / \mathrm{GeV}$
Q

$\nu_{1}, \quad \nu_{2}$ Mass Ordering:

-solar mass ordering

mass

$\left|\Delta \boldsymbol{m}_{\mathbf{2 1}}^{2}\right|=\left|\boldsymbol{m}_{\mathbf{2}}^{\mathbf{2}}-\boldsymbol{m}_{1}^{2}\right|=\mathbf{7 . 5} \times \mathbf{1 0}^{-\mathbf{5}} \mathrm{eV}^{2} \quad L / \boldsymbol{E}=15 \mathrm{~km} / \mathrm{MeV}=15,000 \mathrm{~km} / \mathrm{GeV}$
(

$\nu_{3}, \quad \nu_{1} / \nu_{2}$ Mass Ordering:

-atmospheric mass ordering

$\left|\boldsymbol{\Delta} \boldsymbol{m}_{\mathbf{3}}^{\mathbf{2}}\right|=\left|\boldsymbol{m}_{\mathbf{3}}^{\mathbf{2}}-\boldsymbol{m}_{\mathbf{1}}^{\mathbf{2}}\right|=\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{- 3}} \mathrm{eV}^{2} \quad \boldsymbol{L} / \boldsymbol{E}=\mathbf{0} .5 \mathrm{~km} / \mathrm{MeV}=500 \mathrm{~km} / \mathrm{GeV}$

$\nu_{3}, \quad \nu_{1} / \nu_{2}$ Mass Ordering:

-atmospheric mass ordering

$\left|\boldsymbol{\Delta} \boldsymbol{m}_{\mathbf{3}}^{\mathbf{2}}\right|=\left|\boldsymbol{m}_{\mathbf{3}}^{\mathbf{2}}-\boldsymbol{m}_{\mathbf{1}}^{\mathbf{2}}\right|=\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{- 3}} \mathrm{eV}^{2} \quad \boldsymbol{L} / \boldsymbol{E}=\mathbf{0} . \boldsymbol{5} \mathrm{km} / \mathrm{MeV}=\mathbf{5 0 0} \mathrm{km} / \mathrm{GeV}$
Unknown: NO ν A, JUNO, ICECUBE, DUNE, T2HKK....

$$
\nu_{e}=0 \quad \nu_{\mu}=\bigcirc \quad \nu_{\tau}=0
$$

Summary:
Octant of θ_{23}

$\sin ^{2} \theta_{23}$	0.40	0.50	0.60

ν_{3}

0

$\oint \pm \pi / 2$

$$
\begin{aligned}
& \nu_{e}= \\
& \nu_{\mu}=\square \boldsymbol{\pi} \\
& \nu_{\tau}=
\end{aligned}
$$

Summary:
Octant of θ_{23}

$\sin ^{2} \theta_{23}$	0.40	0.50	0.60

ν_{3}

Summary:
Octant of θ_{23}

$$
\begin{array}{llll}
\sin ^{2} \theta_{23} & 0.40 & 0.50 & 0.60
\end{array}
$$

$\nu_{e}=$	
$\nu_{\mu}=$	
$\nu_{\tau}=$	$\boldsymbol{\tau}$
ν_{2}	

Summary:
Octant of θ_{23}
$\begin{array}{llll}\sin ^{2} \theta_{23} & 0.40 & 0.50 & 0.60\end{array}$

Summary:
Octant of θ_{23}

$$
\begin{array}{llll}
\sin ^{2} \theta_{23} & 0.40 & 0.50 & 0.60
\end{array}
$$

Leptons:

$$
\begin{aligned}
& 0.08<\left|U_{\mu 1}\right|^{2}<0.24 \\
& \text { variation in } \delta \text { only! }
\end{aligned}
$$

Leptons:

$\xrightarrow[\nu_{1}]{U_{\mu 1}}$

$0.08<\left|U_{\mu 1}\right|^{2}<0.24$
 variation in δ only !

factor of 3 diff.

$$
\begin{aligned}
\left|U_{\mu 3}\right|^{2} & =0.4-0.6 \\
\left|U_{\mu 2}\right|^{2} & =0.26-0.41 \\
\left|U_{\mu 1}\right|^{2} & =0.08-0.24
\end{aligned}
$$

Leptons:

$\left|V_{i j}\right|^{2}$ essentially independent of δ_{q} !

factor of 3 diff.

$$
\begin{aligned}
\left|U_{\mu 3}\right|^{2} & =0.4-0.6 \\
\left|U_{\mu 2}\right|^{2} & =0.26-0.41 \\
\left|U_{\mu 1}\right|^{2} & =0.08-0.24
\end{aligned}
$$

Leptons:

$\left|V_{i j}\right|^{2}$ essentially independent of δ_{q} !

$$
\begin{gathered}
V_{t d} \approx A \lambda^{3}\left(1-0.37 e^{i \delta_{q}}\right) \\
\left|V_{t d}\right|^{2} \approx 10^{-4}
\end{gathered}
$$

factor of 3 diff.

$$
\begin{aligned}
\left|U_{\mu 3}\right|^{2} & =0.4-0.6 \\
\left|U_{\mu 2}\right|^{2} & =0.26-0.41 \\
\left|U_{\mu 1}\right|^{2} & =0.08-0.24
\end{aligned}
$$

Leptons:

Quarks:

 $\left|V_{i j}\right|^{2}$ essentially independent of δ_{q} !
$0.08<\left|U_{\mu 1}\right|^{2}<0.24$
variation in δ only !

$$
\begin{gathered}
V_{t d} \approx A \lambda^{3}\left(1-0.37 e^{i \delta_{q}}\right) \\
\left|V_{t d}\right|^{2} \approx 10^{-4}
\end{gathered}
$$

factor of 3 diff.

$$
\begin{aligned}
\left|U_{\mu 3}\right|^{2} & =0.4-0.6 \\
\left|U_{\mu 2}\right|^{2} & =0.26-0.41 \\
\left|U_{\mu 1}\right|^{2} & =0.08-0.24
\end{aligned}
$$

$$
\begin{aligned}
\left|V_{t b}\right|^{2} & \approx 1 \\
\left|V_{t s}\right|^{2} & \sim \lambda^{4} \approx 2 \times 10^{-3} \\
\delta_{q}>\left|V_{t d}\right|^{2} & \sim \lambda^{6} \approx 8 \times 10^{-5}
\end{aligned}
$$

$\delta \& \theta_{23}$ uncertainty

$\delta \& \theta_{23}$ uncertainty

Bustamante, Beacom, Winter PRL 2015 [arXiv:1506.02645]
no θ_{23} uncertainty

WHY?

Precision
 Neutrino Measurements:

WHY?

Precision
 Neutrino Measurements:

To discover neutrino BSM, one needs precision predictions for nuSM

Determine flavor fractions of neutrino

WHY?

 mass states
Precision

Neutrino Measurements:

To discover neutrino BSM,
 one needs precision predictions for nuSM

Determine flavor fractions of neutrino mass states

Precision

Predictions for flavor ratios at ICECUBE.

Determine flavor fractions of neutrino mass states

WHY?

Stress Test
Neutrino paradigm search for new physics

Precision
 Neutrino
 Measurements:

Stress Test
Neutrino paradigm search for new physics

Stress Test Neutrino paradigm search for new physics

Stress Test Neutrino paradigm search for new physics

Stress Test
Neutrino paradigm search for new physics

Stress Test
Neutrino paradigm search for new physics

Determine flavor fractions of neutrino mass states

WHY?

Precision

Neutrino
Measurements:

Connection to

Leptogenesis
Understanding Universe

> Connection to Leptogenesis

Understanding Universe

Test Theoretical Neutrino Models

Girardi, Petcov, Titov, arXiv:|4I0.8056
Nucl. Phys. B, Vol. 894, 733-768 (2015)

Predictions of flavor symmetry forms with projected measurement precision

Girardi, Petcov, Titov, arXiv:I4I0.8056
Nucl. Phys. B, Vol. 894, 733-768 (2015)

Predictions of flavor symmetry forms with projected measurement precision

Recent highlights from neutrino theory

Pedro A. N. Machado

Fermilab soon to be at $\mathfrak{L A N} \mathcal{L}$ as junior staff member

Neutrinos as a portal to new Physics

ultra-light
warm
WIMP \longrightarrow Dark matter? \longrightarrow

- Natural seesaw -1

Flavor puzzle
Leptogenesis

Many many many other fronts!

Neutrinos in cosmology
Early universe - BBN
Abazajian, Barbieri, Cirelli, Chizov, Di Bari, Dodelson, Dolgov, Foot, Holanda, locco, Kirilova, Kusenko, Mangano, Lesgourges, Pastor, Smirnov, Steigman, Volkas

Secret neutrino interactions

Dasgupta Kopp 2013, Chu Dasgupta Kopp 2015, Lundkvist Archidiacono Hannestad Tram 2016, Ghalsasi McKeen Nelson 2016, Archidiacono Gariazzo Giunti Hannestad Hansen Laveder Tram 2016, Forastieri Lattanzi Mangano Mirizzi Natoli Saviano 2017

Sterile neutrino in long baseline oscillation experiments
Agarwalla, Bhattacharya, Chaterjee, Dasgupta, Dighe, Donini, Fuki, Klop, Lopez-Pavon, Meloni, Migliozzi, Palazzo, Ray, Tang, Terranova, Thalapillil, Wagner, Yasuda, Winter,...
Dark matter in neutrino detectors: light DM and light mediators
Ballett, Batell, Chen, Coloma, deNiverville, Dobrescu, Frugiuele, Harnik, McKeen, Pascoli, Pospelov, Ritz, Ross-Lonergan

Neutrino magnetic moment

see e.g. Salam 1957, Barbieri Fiorentini 1988, Barbieri Mohapatra I989, Babu Chang Keung Phillips 1992, Tarazona Diaz Morales Castillo 2015 Cañas Miranda Parada Tortola Valle 20I5, Barranco Delepine Napsuciale Yebra 2017 Coloma Machado Martinez-Soler Shoemaker 2017

Discrete symmetries with

non-zero θ_{13}

Feruglio Hagedorn Toroop 2011, Lam 2012, Lam 2013, Holthausen Lim Lindner2012, Neder King Stuart 2013, Hagedorn Meroni Vitale 2013 King Neder 2014, Ishimori King Okada Tanimoto 2014, Yao Ding 2015, .
Effective operator approach to neutrino masses and collider/low scale pheno
de Gouvea Jenkins 2007, Boucenna Morisi Valle 2014, Nath Syed 2015, Geng Tsai Wang 2015, Chiang Huo 2015, Bhattacharya Wudka 2015, Geng Huang 2016, Quintero 2016, Mohapatra 2016, Kobach 2016

Raffeelt 2016, Capozzi Basudeb Dasgupta 2016, Izaguirre Raffelt Tamborra 2016, Capozzi Dasgupta Lisi Marrone Mirizzi 2017 Chen Ratz Trautner 2015
Cosmic neutrino background: ideas to measure it? Non-thermal component?

Type II, type III and radiative seesaw
Akhmedov, Bonnet, Babu, Barbieri, Barger, Berezhiani, Ellis, Gaillard, Glashow, Hirsch, Keung, Ma, Mohapatra, Ota, Pakvasa, Schechter, Senjanovic, Valle, Yanagida, Winter, Wolfenstein, Zee, and many others

Flat extra dimensions: light sterile neutrinos
Antoniadis, Arkani-Hamed, Barbieri, Berryman, Davoudiasl, Dimopoulos, Dvali, de Gouvea, Langacker, Machado, Mohapatra, Nandi, Nunokawa, Perelstein, Peres, Perez-Lorenzana, Smirnov, Strumia, Tabrizi, Zukanovich-Funchal,

Leptogenesis

collectiv non-lilear effects from

Friedland 2010, Cherry Carlson Friedland Fuller Vlaesnko 2012, Chakraborty Hansen Izaguirre New physics in neutrinoless double beta decay, lepton number violation at the LHC, left-right models, RS models and neutrino masses, neutrinos as dark matter, and much more!

Towards a better understanding of Osc. Prob.

Towards a better understanding of Osc. Prob.

Globes, while a very useful tool, is not enough !

$\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$

- $P_{e e} \approx 1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}-\sin ^{2} 2 \theta_{13} \sin ^{2} \Delta_{e e} \quad \Delta \equiv \Delta m^{2} L / 4 E$

$$
\begin{array}{ll}
+\mathcal{O}(0) & \Delta m_{Y Y}^{2} \equiv\left(\frac{4 E}{L}\right) \arcsin \left[\sqrt{\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)}\right] \\
+\mathcal{O}\left(10^{-4}\right) & \Delta \boldsymbol{m}_{e e}^{2} \equiv \cos ^{2} \theta_{\mathbf{1 2}} \Delta \boldsymbol{m}_{\mathbf{3 1}}^{2}+\sin ^{2} \theta_{\mathbf{1 2}} \Delta \boldsymbol{m}_{\mathbf{3 2}}^{2}
\end{array}
$$

עe average!

$\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$

- $P_{e e} \approx 1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}-\sin ^{2} 2 \theta_{13} \sin ^{2} \Delta_{e e}$
$\Delta \equiv \Delta m^{2} L / 4 E$

$$
+\mathcal{O}(0) \quad \Delta m_{Y Y}^{2} \equiv\left(\frac{4 E}{L}\right) \arcsin \left[\sqrt{\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)}\right]
$$

OR

$$
+\mathcal{O}\left(10^{-4}\right) \quad \Delta m_{e e}^{2} \equiv \cos ^{2} \theta_{12} \Delta m_{31}^{2}+\sin ^{2} \theta_{12} \Delta m_{32}^{2}
$$

H. Nunokawa, S. J. Parke and R. Zukanovich Funchal,
"Another possible way to determine the neutrino mass hierarchy," Phys. Rev. D 72, 013009 (2005), hep-ph/0503283

SP arXiv:I60I. 07464

$\boldsymbol{\nu} \boldsymbol{\mu} \rightarrow \boldsymbol{\nu} \boldsymbol{\mu}$

$$
1-P(\nu \mu \rightarrow \nu \mu) \approx 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right) \sin ^{2} \Delta_{\mu \mu}
$$

Amplitude of Oscillation:

$$
\begin{aligned}
c_{13}^{4} \sin ^{2} 2 \theta_{23} & +s_{23}^{2} \sin ^{2} 2 \theta_{13} \\
& =4 c_{13}^{2} s_{23}^{2}\left(1-c_{13}^{2} s_{23}^{2}\right)
\end{aligned}
$$

$\boldsymbol{\nu} \boldsymbol{\mu} \rightarrow \boldsymbol{\nu} \boldsymbol{\mu}$

$$
1-P(\nu \mu \rightarrow \nu \mu) \approx 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right) \sin ^{2} \Delta_{\mu \mu}
$$

Amplitude of Oscillation:

$$
\begin{aligned}
c_{13}^{4} \sin ^{2} 2 \theta_{23} & +s_{23}^{2} \sin ^{2} 2 \theta_{13} \\
& =4 c_{13}^{2} s_{23}^{2}\left(1-c_{13}^{2} s_{23}^{2}\right)
\end{aligned}
$$

for every $\left(s_{\mathbf{2 3}}^{\mathbf{2}}\right)_{1}$ point,

$$
\left(s_{23}^{2}\right)_{2}=1 / c_{13}^{2}-\left(s_{23}^{2}\right)_{1} \approx\left(1+s_{13}^{2}\right)-\left(s_{23}^{2}\right)_{1}
$$

has approx. same χ^{2}
and $\left(s_{23}^{2}\right)_{1}+\left(s_{23}^{2}\right)_{2} \approx\left(1+s_{13}^{2}\right)$
Symmetry about $s_{23}^{2} \approx \frac{1}{2}\left(1+s_{13}^{2}\right) \approx 0.51$
$\boldsymbol{\nu} \boldsymbol{\mu} \rightarrow \boldsymbol{\nu} \boldsymbol{\mu}$

$$
1-P(\nu \mu \rightarrow \nu \mu) \approx 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right) \sin ^{2} \Delta_{\mu \mu}
$$

Amplitude of Oscillation:
$\nu \mu$ average!
$c_{13}^{4} \sin ^{2} 2 \theta_{23}+s_{23}^{2} \sin ^{2} 2 \theta_{13}$
$=4 c_{13}^{2} s_{23}^{2}\left(1-c_{13}^{2} s_{23}^{2}\right)$
for every $\left(s_{23}^{2}\right)_{1}$ point,

$$
\left(s_{23}^{2}\right)_{2}=1 / c_{13}^{2}-\left(s_{23}^{2}\right)_{1} \approx\left(1+s_{13}^{2}\right)-\left(s_{23}^{2}\right)_{1}
$$

has approx. same χ^{2}

$$
\text { and }\left(s_{23}^{2}\right)_{1}+\left(s_{23}^{2}\right)_{2} \approx\left(1+s_{13}^{2}\right)
$$

Symmetry about $s_{23}^{2} \approx \frac{1}{2}\left(1+s_{13}^{2}\right) \approx 0.51$

Neutrino Oscillation Amplitudes

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left|\mathcal{A}_{\alpha \beta}\right|^{2}
$$

$$
\Delta \equiv \Delta m^{2} L / 4 E
$$

Neutrino Oscillation Amplitudes

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left|\mathcal{A}_{\alpha \beta}\right|^{2}
$$

Two Flavors:

$$
\begin{gathered}
\mathcal{A}_{\boldsymbol{\alpha} \alpha}=1+(2 i) s_{\boldsymbol{\theta}}^{2} e^{+i \Delta} \sin \boldsymbol{\Delta} \\
\text { and } \mathcal{A}_{\boldsymbol{\alpha} \boldsymbol{\beta}}=(2 i) s_{\boldsymbol{\theta}} c_{\boldsymbol{\theta}} e^{-i \Delta} \sin \boldsymbol{\Delta}
\end{gathered}
$$

$$
\Delta \equiv \Delta m^{2} L / 4 E
$$

Neutrino Oscillation Amplitudes

 in vacuum:"the billion \$ process"

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left|\mathcal{A}_{\mu e}\right|^{2}
$$

Neutrino Oscillation Amplitudes

 in vacuum:$$
\begin{gathered}
\boldsymbol{P}\left(\boldsymbol{\nu}_{\mu} \rightarrow \nu_{e}\right)=\left|\mathcal{A}_{\mu \boldsymbol{e}}\right|^{2} \\
\begin{array}{c}
\mathcal{A}_{\boldsymbol{\mu} \boldsymbol{e}}=(2 i)\left[(s _ { 2 3 } s _ { 1 3 } c _ { 1 3 }) \left[c_{12}^{2} e^{-i \Delta_{32} \sin \Delta_{31}+s_{12}^{2} e^{\left.-i \Delta_{31} \sin \Delta_{32}\right]}}\right.\right. \\
\left.+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i \delta} \sin \Delta_{21}\right]
\end{array}
\end{gathered}
$$

Neutrino Oscillation Amplitudes

 in vacuum:$$
\begin{array}{r}
\boldsymbol{P}\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left|\mathcal{A}_{\mu}\right|^{2} \\
\mathcal{A}_{\mu e}=(2 i)\left[(s _ { 2 3 } s _ { 1 3 } c _ { 1 3 }) \left[c_{12}^{2} e^{\left.-i \Delta_{32} \sin \Delta_{31}+s_{12}^{2} e^{-i \Delta_{31}} \sin \Delta_{32}\right]}\right.\right. \\
\left.+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i \delta} \sin \Delta_{21}\right] \\
\text { maintain the symmetry: } m_{1}^{2} \leftrightarrow m_{2}^{2} \text { with } \theta_{12} \rightarrow \theta_{12} \pm \pi / 2 \\
\text { Denton, Minakata, SP arXiv:1604.08167 }
\end{array}
$$

Neutrino Oscillation Amplitudes

 in vacuum:$$
\begin{aligned}
& \boldsymbol{P}\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left|\mathcal{A}_{\boldsymbol{\mu} e}\right|^{2} \\
& \begin{array}{r}
\mathcal{A}_{\boldsymbol{\mu} \boldsymbol{e}}=(2 i)\left[(s _ { 2 3 } s _ { 1 3 } c _ { 1 3 }) \left[c_{12}^{2} e^{-i \Delta_{32} \sin \Delta_{31}+s_{12}^{2} e^{\left.-i \Delta_{31} \sin \Delta_{32}\right]}}\right.\right. \\
\left.+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i \delta} \sin \Delta_{21}\right]
\end{array} \\
& \text { maintain the symmetry: } m_{1}^{2} \leftrightarrow m_{2}^{2} \text { with } \theta_{12} \rightarrow \theta_{12} \pm \pi / 2 \\
& \\
& \text { Denton, Minakata, SP arXiv:1604.08167 }
\end{aligned}
$$

$\Delta P_{C P}=8\left(s_{23} s_{13} c_{13}\right)\left(c_{23} c_{13} s_{12} c_{12}\right) \sin \delta \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$

Neutrino Oscillation Amplitudes

 in vacuum:$$
\begin{aligned}
& \boldsymbol{P}\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left|\mathcal{A}_{\mu e}\right|^{2} \\
& \begin{array}{r}
\mathcal{A}_{\boldsymbol{\mu} \boldsymbol{e}}=(2 i)\left[(s _ { 2 3 } s _ { 1 3 } c _ { 1 3 }) \left[c_{12}^{2} e^{-i \Delta_{32} \sin \Delta_{31}+s_{12}^{2} e^{\left.-i \Delta_{31} \sin \Delta_{32}\right]}}\right.\right. \\
\left.+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i \delta} \sin \Delta_{21}\right]
\end{array} \\
& \text { maintain the symmetry: } m_{1}^{2} \leftrightarrow m_{2}^{2} \text { with } \theta_{12} \rightarrow \theta_{12} \pm \pi / 2 \\
& \text { Denton, Minakata, SP arXiv:1604.08167 }
\end{aligned}
$$

$\Delta P_{C P}=8 \underset{\downarrow}{\left(s_{23} s_{13} c_{13}\right)\left(c_{23} c_{13} s_{12} c_{12}\right) \sin \delta} \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$

Neutrino Oscillation Amplitudes

 in vacuum:$$
\begin{aligned}
& \boldsymbol{P}\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left|\mathcal{A}_{\mu}\right|^{2} \\
& \begin{array}{r}
\mathcal{A}_{\boldsymbol{\mu} \boldsymbol{e}}=(2 i)\left[(s _ { 2 3 } s _ { 1 3 } c _ { 1 3 }) \left[c_{12}^{2} e^{-i \Delta_{32} \sin \Delta_{31}+s_{12}^{2} e^{\left.-i \Delta_{31} \sin \Delta_{32}\right]}}\right.\right. \\
\left.+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i \delta} \sin \Delta_{21}\right] \\
\text { maintain the symmetry: } m_{1}^{2} \leftrightarrow m_{2}^{2} \text { with } \theta_{12} \rightarrow \theta_{12} \pm \pi / 2 \\
\text { Denton, Minakata, SP arXiv:1604.08167 }
\end{array}
\end{aligned}
$$

$\Delta P_{C P}=8 \underset{J}{\left(s_{23} s_{13} c_{13}\right)\left(c_{23} c_{13} s_{12} c_{12}\right) \sin \delta} \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$
$\Delta_{32} \approx \Delta_{31}$
$\mathcal{A}_{\mu e} \approx(2 i)\left[\left(s_{23} s_{13} c_{13}\right) \sin \Delta_{31}+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i\left(\delta+\Delta_{31}\right)} \sin \Delta_{21}\right]$

$$
\begin{gathered}
\boldsymbol{\nu}_{\boldsymbol{\mu}} \longrightarrow \boldsymbol{\nu}_{\boldsymbol{e}} \\
A_{31}=2 s_{23} s_{13} c_{13} \sin \Delta_{31} \quad A_{21}=2 c_{13} c_{23} s_{12} c_{12} \sin \Delta_{21} \\
A_{\mu e}=A_{31}+e^{i\left(\delta+\Delta_{32}\right)} A_{21} \\
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=A_{\mu e} A_{\mu e}^{*}
\end{gathered}
$$

$$
\begin{array}{cc}
\boldsymbol{\nu}_{\boldsymbol{\mu}} \longrightarrow \boldsymbol{\nu}_{\boldsymbol{e}} \\
A_{31}=2 s_{23} s_{13} c_{13} \sin \Delta_{31} & \\
A_{21}=2 c_{13} c_{23} s_{12} c_{12} \sin \Delta_{21}
\end{array}
$$

$$
A_{\mu e}=A_{31}+e^{i\left(\delta+\Delta_{32}\right)} A_{21} \quad \Delta_{i j}=\Delta m_{i j}^{2} L / 4 E
$$

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=A_{\mu e} A_{\mu e}^{*} \quad A_{\mu e}
$$

$$
\begin{gathered}
\boldsymbol{\nu}_{\boldsymbol{\mu}} \longrightarrow \boldsymbol{\nu}_{\boldsymbol{e}} \\
A_{31}=2 s_{23} s_{13} c_{13} \sin \Delta_{31} \\
A_{\mu e}=A_{31}+A_{21}=2 c_{13} c_{23} s_{12} c_{12} \sin \Delta_{21} \\
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=A_{\mu e} A_{\mu e}^{*} \\
\left.\bar{A}_{\mu e}^{*}=\bar{\nu}_{e}\right)=\bar{A}_{\mu e}^{*} \bar{A}_{\mu e}+A_{21}
\end{gathered}
$$

$$
\begin{gathered}
\boldsymbol{\nu}_{\boldsymbol{\mu}} \longrightarrow \boldsymbol{\nu}_{\boldsymbol{e}} \\
A_{31}=2 s_{23} s_{13} c_{13} \sin \Delta_{31} \\
A_{\mu e}=A_{31}+A_{21}=2 c_{13} c_{23} s_{12} c_{12} \sin \Delta_{21} \\
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=A_{\mu e} A_{\mu e}^{*}
\end{gathered}
$$

$\nu_{\mu} \rightarrow \nu_{e}$

$$
A_{31}=2 s_{23} s_{13} c_{13} \sin \Delta_{31} \quad A_{21}=2 c_{13} c_{23} s_{12} c_{12} \sin \Delta_{21}
$$

$$
A_{\mu e}=A_{31}+e^{i\left(\delta+\Delta_{32}\right)} A_{21}
$$

$$
\Delta_{i j}=\Delta m_{i j}^{2} L / 4 E
$$

$$
\begin{aligned}
& \delta=0.0 \pi \\
& \Delta_{32}=0.40 \pi
\end{aligned}
$$

$$
\begin{aligned}
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=A_{\mu e} A_{\mu e}^{*} \\
& P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)=\bar{A}_{\mu e}^{*} \bar{A}_{\mu e}
\end{aligned}
$$

Denton \& Parke

$\nu_{\mu} \rightarrow \nu_{e}$

$$
A_{31}=2 s_{23} s_{13} c_{13} \sin \Delta_{31} \quad A_{21}=2 c_{13} c_{23} s_{12} c_{12} \sin \Delta_{21}
$$

$$
A_{\mu e}=A_{31}+e^{i\left(\delta+\Delta_{32}\right)} A_{21} \quad \Delta_{i j}=\Delta m_{i j}^{2} L / 4 E
$$

$$
\begin{aligned}
& \delta=0.0 \pi \\
& \Delta_{32}=0.40 \pi \\
& \begin{array}{|lll}
\hline \text { 二 } & A_{31} \\
\text { 二 } & A_{21} & A_{\mu e} \\
\text { - } & \bar{A}_{\mu e}
\end{array} \quad \begin{array}{c}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=A_{\mu e} A_{\mu e}^{*} \\
P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)=\bar{A}_{\mu e}^{*} \bar{A}_{\mu e}
\end{array}
\end{aligned}
$$

Matter Effects:

2 flavor mixing in matter

$a x^{2}+b x+c=0$

simple, intuitive, useful

2 flavor mixing in matter

$$
a x^{2}+b x+c=0
$$

simple, intuitive, useful

$$
\begin{aligned}
& 3 \text { flavor mixing in matter } \\
& a x^{3}+b x^{2}+c x+d=0
\end{aligned}
$$

complicated, counter intuitive, ...

Matter Effects:

$$
\begin{aligned}
& A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21} \\
& A_{31}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31} \\
& A_{21}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
& \quad a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
\end{aligned}
$$

Matter Effects:

$$
\begin{aligned}
& A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21} \\
& A_{31}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31} \\
& A_{21}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
& \quad a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1}
\end{aligned}
$$

Matter Effects:

$$
\begin{gathered}
A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21} \\
A_{31}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31} \\
A_{21}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
\quad a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
\end{gathered}
$$

Matter Effects:

$$
\begin{aligned}
& A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21} \\
& A_{31}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31} \mp a L\right)} \Delta_{31} \\
& A_{21}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
& \quad a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
\end{aligned}
$$

Denton \& Parke

Matter Effects:

$$
\begin{aligned}
& A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21} \\
& A_{31}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31} \mp a L\right)} \Delta_{31} \\
& A_{21}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
& \quad a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
\end{aligned}
$$

$\propto \rho L \sin ^{2} \theta_{23}$

Correlations between

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

Normal Ordering - Inverted Ordering

$$
\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}} \text { gives: } \quad \sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.96-1.00
$$

T2K/HK

Correlations between

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

Normal Ordering - Inverted Ordering

$$
\begin{gathered}
\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}} \text { gives: } \quad \sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.96-1.00 \\
\left|U_{\mu 3}\right|^{2} \leftrightarrow\left(1-\left|U_{\mu 3}\right|^{2}\right) \text { degeneracy ! }
\end{gathered}
$$

T2K/HK

NOvA

Correlations between

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

Normal Ordering - Inverted Ordering

$$
\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}} \text { gives: } \quad \sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.96-1.00
$$

Correlations between

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

Normal Ordering - Inverted Ordering

Correlations between

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

Normal Ordering - Inverted Ordering

2nd Osc Max: (vacuum)

Approximately same uncertainty on δ until systematic uncertainities dominate at 1st OM !

ESSnuSB, T2HKK

New Perturbation Theory for Osc. Probabilities
Denton, Minakata, SP arXiv:1604.08167

New Perturbation Theory for Osc. Probabilities
Denton, Minakata, SP arXiv:1604.08167

$$
\mathcal{A}_{\mu e}=(2 i)\left[(s _ { 2 3 } s _ { 1 3 } c _ { 1 3 }) \left[c_{12}^{2} e^{\left.-i \Delta_{32} \sin \Delta_{31}+s_{12}^{2} e^{-i \Delta_{31}} \sin \Delta_{32}\right]}\right.\right.
$$

$$
\left.+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i \delta} \sin \Delta_{21}\right]
$$

mixing angles in matter $\boldsymbol{\theta}_{13} \rightarrow \boldsymbol{\phi}$ and $\boldsymbol{\theta}_{\mathbf{1 2}} \rightarrow \boldsymbol{\psi} \quad$ mass eigenvalues in matter $\boldsymbol{m}_{\boldsymbol{i}}^{\mathbf{2}} \rightarrow \boldsymbol{\lambda}_{\boldsymbol{i}}$

New Perturbation Theory for Osc. Probabilities

Denton, Minakata, SP arXiv:1604.08167
$\mathcal{A}_{\mu e}=(2 i)\left[\left(s_{23} s_{13} c_{13}\right)\left[c_{12}^{2} e^{\left.-i \Delta_{32} \sin \Delta_{31}+s_{12}^{2} e^{-i \Delta_{31}} \sin \Delta_{32}\right]}\right.\right.$

$$
\left.+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i \delta} \sin \Delta_{21}\right]
$$

mixing angles in matter $\boldsymbol{\theta}_{13} \rightarrow \boldsymbol{\phi}$ and $\boldsymbol{\theta}_{\mathbf{1 2}} \rightarrow \boldsymbol{\psi} \quad$ mass eigenvalues in matter $\boldsymbol{m}_{\boldsymbol{i}}^{\mathbf{2}} \rightarrow \boldsymbol{\lambda}_{\boldsymbol{i}}$

New Perturbation Theory for Osc. Probabilities

Denton, Minakata, SP arXiv:1604.08167
$\mathcal{A}_{\mu e}=(2 i)\left[\left(s_{23} s_{13} c_{13}\right)\left[c_{12}^{2} e^{\left.-i \Delta_{32} \sin \Delta_{31}+s_{12}^{2} e^{-i \Delta_{31}} \sin \Delta_{32}\right]}\right.\right.$

$$
\left.+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i \delta} \sin \Delta_{21}\right]
$$

mixing angles in matter $\boldsymbol{\theta}_{\mathbf{1 3}} \rightarrow \boldsymbol{\phi}$ and $\boldsymbol{\theta}_{\mathbf{1 2}} \rightarrow \boldsymbol{\psi} \quad$ mass eigenvalues in matter $\boldsymbol{m}_{\boldsymbol{i}}^{\mathbf{2}} \rightarrow \boldsymbol{\lambda}_{\boldsymbol{i}}$

New Perturbation Theory for Osc. Probabilities

Denton, Minakata, SP arXiv:1604.08167
$\mathcal{A}_{\mu e}=(2 i)\left[\left(s_{23} s_{13} c_{13}\right)\left[c_{12}^{2} e^{\left.-i \Delta_{32} \sin \Delta_{31}+s_{12}^{2} e^{-i \Delta_{31}} \sin \Delta_{32}\right]}\right.\right.$

$$
\left.+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i \delta} \sin \Delta_{21}\right]
$$

mixing angles in matter $\boldsymbol{\theta}_{\mathbf{1 3}} \rightarrow \boldsymbol{\phi}$ and $\boldsymbol{\theta}_{\mathbf{1 2}} \rightarrow \boldsymbol{\psi} \quad$ mass eigenvalues in matter $\boldsymbol{m}_{\boldsymbol{i}}^{\mathbf{2}} \rightarrow \boldsymbol{\lambda}_{\boldsymbol{i}}$

Intuitive and Analytically simple!

New Perturbation Theory for Osc. Probabilities

T2K

T2K

All except appearance !

T2K

All except appearance!

T2K

All except appearance !

T2K \& NOvA

Number of Events proportional to Oscillation Probability

1 sigma:
NO

T2K \& NOvA

Number of Events proportional to Oscillation Probability

1 sigma:

IO

Appearance data

T2K \& NOvA

Number of Events proportional to Oscillation Probability

1 sigma:

T2K \& NOvA

Number of Events proportional to Oscillation Probability

1 sigma:

Summary:

- from Nu1998 to now, tremendous progress on Neutrino SM: more at Nu2O18
- LSND Sterile Nu's neither confirmed or ruled out at acceptable CL: - ultra short baseline reactor exp.
- Great Theoretical progress on understand many aspects of Quantum Neutrino Physics: - Oscillations, Decoherence, Osc. Probabilities in Matter, Leptogenesis,
- Still searching for convincing model of Neutrino masses and mixings, with testable and confirmed predictions !

