

Victoria Martin, University of Edinburgh

on behalf of the CLIC and CLICdp collaborations

Lepton Photon 2017, Sun Yat-sen University, Guangzhou, China 中国广州中山大学

Overview What is CLIC? The CLIC run plan	The CLIC detector
CLIC accelerator: status & developments	The CLIC physics program: Higgs top BSM

CLIC - V.Martin LP2017

Compact Linear Collider: CLIC

e^+e^- collider with up to 3 TeV collisions

- 100 MV/m accelerating gradient is required for compact (~50 km) machine.
- Based on normal-conducting accelerating structures and a twobeam acceleration scheme.

CLIC foreseen as a staged machine:

- Stage 1: $\sqrt{s} = 380 \text{ GeV}$
 - precision SM physics: top & Higgs
- Stage 2 & 3 baseline: 1.5 TeV, 3 TeV

drive beam

CLIC Collaborations

- CLIC/CTF3 collaboration:
 - 62 institutes from 28 countries
 - http://clic-study.web.cern.ch/
 - Design & development of CLIC
 - Construction & operation of CTF3

- CLIC detector & physics (CLICdp):
 - 29 institutes from 18 countries
 - http://clicdp.web.cern.ch/
 - CLIC-specific studies of physics prospects
 - ➡ Detector development & optimisation

CDRs for Machine & Detector (2012)

CERN-2012-007

SLAC-R-985 KEK Report 2012-1 PSI-12-01 JAI-2012-001 CERN-2012-007 12 October 2012

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

A MULTI-TEV LINEAR COLLIDER BASED ON CLIC TECHNOLOGY CLIC CONCEPTUAL DESIGN REPORT

> GENEVA 2012

CERN-2012-003

AND MEY ME LEAR CORP. (312-408 DOD'S 12-408 NOR Major 2012 IP February 2012

CERN EUROPEINNE POUR LA RECHERCHE NUCLÉARE CERN EUROPEAN ORGANIZATION FOR NUCLÉAR RESEARCH

PHYSICS AND DETECTORS AT CLIC

CLIC CONSISTER, Desservicement

381

arxiv:1202.5940

Updated CLIC Baseline Plan (2016)

Three stages: 380 GeV, 1.5 GeV, 3 TeV

Stage	\sqrt{s} (GeV)	$\mathscr{L}_{int}(fb^{-1})$
1	380	500
1	350	100
2	1500	1500
3	3000	3000

ORGANISATION FUROPÉENNE POUR LA RECHERCHE NUCLÉARE ELSEARCH

UPDATED BASELINE FOR A STAGED COMPACT LINEAR COLLIDER

arXiv:1608.07537

CLIC accelerator parameters

Parameter	380 GeV	1.5 TeV	3 TeV	
Luminosity \mathcal{L} (10 ³⁴ cm ⁻² sec ⁻¹)	1.5	3.7	5.9	
$\mathcal L$ above 99% of \sqrt{s} (10 ³⁴ cm ⁻² sec ⁻¹)	0.9	1.4	2.0	
Accelerator gradient (MV/m)	72	72/100	72/100	
Site length (km)	11.4	29	50	
Repetition frequency (Hz)	50	50	50	Drives required
Bunch separation (ns)	0.5	0.5	0.5 <	detector timing
Number of bunches per train	352	312	312 🖌	resolution
Beam size at IP σ_x / σ_y (nm)	150/2.9	~60/1.5	~40/1 <	
Beam size at IP σ_z (µm)	70	44	44 🛩	Very small beam
Estimated power consumption [*] (MW)	252	364	589	
*scaled from CDR, actively being improved!				20 ms
beam structure (not to scale!)		-(-)) 	
				2 hunches of 0.5 ns
Polarised electron beam, $P_{e^-} = \pm 80\%$				
Positron polarisation is	an upgra	de optio	n	

CLIC - V.Mart

Legend

CERN existing LHC
 Potential underground siting:
 CLIC 380 GeV
 CLIC 1.5 TeV
 CLIC 3 TeV

Jura Mountains

Lake Geneva

Geneva

P

CLIC Layout at 3 TeV

CLIC Layout at 380 GeV

CTF3 (CLIC Test Facility 3)

CTF3 test facility at CERN has demonstrated drive beam generation, RF power extraction and two-beam acceleration scheme up to $145 \ MV/m$

Accelerator Components

CLIC - V.Martin LP2017

Detector

Detector Motivations

Background Suppression

Beam-induced background from $\gamma\gamma \rightarrow hadrons$ can be efficiently suppressed by applying p_T cuts and timing cuts on individually reconstructed particles (particle flow objects)

e.g. $e^+e^- \rightarrow H^+H^- \rightarrow t\bar{b}b\bar{t} \rightarrow 8 jets$

85 GeV background after tight cuts

1.2 TeV background in reconstruction window
(10 ns) around main physics event $\overline{bbt} \rightarrow 8 j$ 100 GeV background
after tight cuts

Timing resolution 1 ns in calorimeter 10 ns in vertex & tracker

CLICDet

$e^+e^- \rightarrow Hvv \rightarrow b\overline{b}v\overline{v}$ CLIC 1.4 TeV

New Paper on Higgs physics at CLIC

Eur. Phys. J. C (2017) 77:475 DOI 10.1140/epjc/s10052-017-4968-5 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

Higgs physics at the CLIC electron-positron linear collider

H. Abramowicz¹, A. Abusleme², K. Afanaciev³, N. Alipour Tehrani⁴, C. Balázs⁵, Y. Benhammou¹, M. Benoit⁶, B. Bilki⁷, J.-J. Blaising⁸, M. J. Boland⁹, M. Boronat¹⁰, O. Borysov¹, I. Božović-Jelisavčić¹¹, M. Buckland¹², S. Bugiel¹³, P. N. Burrows¹⁴, T. K. Charles⁵, W. Daniluk¹⁵, D. Dannheim⁴, R. Dasgupta¹³, M. Demarteau⁷, M. A. Díaz Gutierrez², G. Eigen¹⁶, K. Elsener⁴, U. Felzmann⁹, M. Firlej¹³, E. Firu¹⁷, T. Fiutowski¹³, J. Fuster¹⁰, M. Gabriel¹⁸, F. Gaede^{4,19}, I. García¹⁰, V. Ghenescu¹⁷, J. Goldstein²⁰, S. Green²¹, C. Grefe^{4,b,d}, M. Hauschild⁴, C. Hawkes²³, D. Hynds⁴, M. Idzik¹³, G. Kačarević¹¹, J. Kalinowski²⁴, S. Kananov¹, W. Klempt⁴, M. Kopec¹³, M. Krawczyk²⁴, B. Krupa¹⁵, M. Kucharczyk¹⁵, S. Kulis⁴, T. Laštovička²⁵, T. Lesiak¹⁵, A. Levy¹, I. Levy¹, L. Linssen⁴, S. Lukić^{11,b}, A. A. Maier⁴, V. Makarenko³, J. S. Marshall²¹, V. J. Martin²², K. Mei²¹, G. Milutinović-Dumbelović¹¹, J. Moroń¹³, A. Moszczyński¹⁵, D. Moya²⁶, R. M. Münker^{4,e}, A. Münnich^{4,f}, A. T. Neagu¹⁷, N. Nikiforou⁴, K. Nikolopoulos²³, A. Nürnberg⁴, M. Pandurović¹¹, B. Pawlik¹⁵, E. Perez Codina⁴, I. Peric²⁷, M. Petric⁴, F. Pitters^{4,g}, S. G. Poss⁴, T. Preda¹⁷, D. Protopopescu²⁸, R. Rassool⁹, S. Redford^{4,b,h}, J. Repond⁷, A. Robson²⁸, P. Roloff^{4,a,b}, E. Ros¹⁰, O. Rosenblat¹, A. Ruiz-Jimeno²⁶, A. Sailer⁴, D. Schlatter⁴, D. Schulte⁴, N. Shumeiko^{3,c}, E. Sicking⁴, F. Simon^{18,b}, R. Simoniello⁴, P. Sopicki¹⁵, S. Stapnes⁴, R. Ström⁴, J. Strube^{4,i}, K. P. Świentek¹³, M. Szalay¹⁸, M. Tesař¹⁸, M. A. Thomson^{21,b}, J. Trenado²⁹, U. I. Uggerhøj³⁰, N. van der Kolk¹⁸, E. van der Kraaij¹⁶, M. Vicente Barreto Pinto⁶, I. Vila²⁶, M. Vogel Gonzalez^{2,j}, M. Vos¹⁰, J. Vossebeld¹², M. Watson²³, N. Watson²³, M. A. Weber⁴, H. Weerts⁷, J. D. Wells³¹, L. Weuste¹⁸, A. Winter²³, T. Wojtoń¹⁵, L. Xia⁷, B. Xu²¹, A. F. Żarnecki²⁴, L. Zawiejski¹⁵, I.-S. Zgura¹⁷

arXiv:1608.07538 (Eur. Phys. J. C 77, 475 (2017))

A Higgs Factory

GeV]

liggs at CLIC380

ower ZH production cross section at 380 GeV cf 250 GeV compensated by icreased luminosity oost enables discrimination between $H \rightarrow jj$ and $Z \rightarrow jj$ production

ccess to $Hv_e\overline{v}_e$ production \Rightarrow increases precision on coupling measurements

Model-independent Higgs Couplings

Model-independent Higgs Couplings

Higgs Hadronic BRs

- Aim: resolve $H \rightarrow 2$ jets signal into $H \rightarrow b\overline{b}$, $H \rightarrow c\overline{c}$ and $H \rightarrow gg$
- Fit to multivariate-derived templates using flavour tagging info

Higher Energy: tH and HH arXiv:1608.07538

CLIC - V.Martin LP2017

Higgs Couplings Precision

ullet Model-independent fit using recoil mass to measure Γ_H

Parameter	Relative precision			
	$350{ m GeV}\ 500{ m fb}^{-1}$	+ 1.4TeV + 1.5ab^{-1}	+ 3 TeV $+ 2 \text{ ab}^{-1}$	
gHzz gHww gHbb gHcc gHtt gHµµ gHtt	0.8 % 1.4 % 3.0 % 6.2 % 4.3 % -	$\begin{array}{c} 0.8 \ \% \\ 0.9 \ \% \\ 1.0 \ \% \\ 2.3 \ \% \\ 1.7 \ \% \\ 14.1 \ \% \\ 4.2 \ \% \end{array}$	0.8% 0.9% 0.9% 1.9% 1.4% 7.8% 4.2%	
$egin{aligned} g^{\dagger}_{ m Hgg} \ g^{\dagger}_{ m H\gamma\gamma} \ g^{\dagger}_{ m HZ\gamma} \ \end{array}$	3.7 % - - 6.7 %	1.8 % 5.7 % 15.6 % 3.7 %	1.4 % 3.2 % 9.1 % 3.5 %	

Higgs Couplings Precision

arXiv:1608.07538

Higgs Couplings Precision

coupling relative to SM

• Model-dependent à la LHC

• No theoretical or systematic uncertainties

Parameter	Relative precision				
	$\begin{array}{c} 350{\rm GeV}\\ 500{\rm fb}^{-1} \end{array}$	+ 1.4 TeV + 1.5 ab^{-1}	+ 3 TeV + 2 ab^{-1}		
8HZZ 8HWW 8Hbb 8Hcc 8Htt 8Hµµ 8Htt	0.8 % 1.4 % 3.0 % 6.2 % 4.3 % -	$\begin{array}{c} 0.8 \ \% \\ 0.9 \ \% \\ 1.0 \ \% \\ 2.3 \ \% \\ 1.7 \ \% \\ 14.1 \ \% \\ 4.2 \ \% \end{array}$	$\begin{array}{c} 0.8 \ \% \\ 0.9 \ \% \\ 0.9 \ \% \\ 1.9 \ \% \\ 1.4 \ \% \\ 7.8 \ \% \\ 4.2 \ \% \end{array}$		
$g^{\dagger}_{ m Hgg} \ g^{\dagger}_{ m H\gamma\gamma} \ g^{\dagger}_{ m HZ\gamma}$	3.7 %	1.8 % 5.7 % 15.6 %	1.4 % 3.2 % 9.1 %		
$\Gamma_{ m H}$	6.7 %	3.7 %	3.5 %		

arXiv:1608.07538

Precision significantly better than HL-LHC
 Precision comparable to HL-LHC

Top Production Threshold Scan

- CLIC380 will make a dedicated scan at $E\sim 350\ GeV$ to measure top pair production
- Cross section *turn on* very sensitive to the top quark **pole mass**.

 e^{-t} $x = Z, \gamma$ \overline{t}

- 10 energies with 10/fb
- ≤1 year of data-taking in total
- Resulting uncertainty $\Delta m_t \sim 50 \ MeV$

Precision Top Physics

- Clean environment at CLIC facilitates precision measurements & search for rare phenomena.
- e.g. New physics in $t\overline{t}V$ and $t\overline{t}\gamma$ vertices, measurements with polarised beam can disentangle γ and Z form factors

$$\Gamma^{t\bar{t}X}(k^2,q,\bar{q}) = ie \left\{ \gamma_{\mu} \left(F_{1V}^X(k^2) + \gamma_5 F_{1A}^X(k^2) \right) - \frac{\sigma_{\mu\nu}}{2m_t} (q+\bar{q})^{\nu} \left(iF_{2V}^X(k^2) + \gamma_5 F_{2A}^X(k^2) \right) \right\}$$

$$\begin{array}{c} \text{vector} \quad \text{axial} \quad \text{tensor} \quad \text{CPV} \end{array} \right\}$$

• e.g.
$$A_{fb}(e^+e^- \rightarrow t\overline{t})$$

$$A_{FB}^{t} = \frac{N(0 < \theta_{top} \le \pi/2) - N(\pi/2 < \theta_{top} \le \pi)}{N(0 < \theta_{top} \le \pi/2) + N(\pi/2 < \theta_{top} \le \pi)}$$

• Preliminary results at 1.4 TeV: stat. precision 2-3% for $P(e^-) = \pm 80\%$

top quark couplings to Z and γ

Expected coupling precision at LHC, ILC (500 GeV) and CLIC (380 GeV)

CP-conserving couplings

CP-violating couplings

CLIC - V.Martin LP2017

Direct BSM Sensitivity

arxiv:1202.5940

In general, O(1%) precision on masses

and production cross sections found

- SM tī
- $\widetilde{\nu}_{\tau}, \widetilde{\nu}_{\mu}, \widetilde{\nu}_{e}$
- neutralinos

e.g. Di-jet masses: gauginos at 3 TeV

SUSY benchmarking

Table 8: Summary table of the CLIC SUSY benchmark analyses results obtained with full-detector simulations with background overlaid. All studies are performed at a center-of-mass energy of 3 TeV (1.4 TeV) and for an integrated luminosity of 2 ab^{-1} (1.5 ab^{-1}) [21, 22, 23, 24, 25, 26, 27].

\sqrt{s}	Process	Decay mode	SUSY	Measured	Generator	Stat.	
(1ev)			model	quantity	value (Gev)	uncertainty	:
		$\widetilde{\mu}_{R}^{+} \widetilde{\mu}_{R}^{-} \rightarrow \mu^{+} \mu^{-} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0}$		$\tilde{\ell}$ mass	1010.8	0.6%	
				$\widetilde{\chi}_1^0$ mass	340.3	1.9%	
3.0	Sleptons	~+~	п	$\tilde{\ell}$ mass	1010.8	0.3%	
5.0	Steptons	$e_R e_R \rightarrow e^+ e^- \chi_1 \chi_1$	п	$\widetilde{\chi}_1^0$ mass	340.3	1.0%	
		$\tilde{x} \tilde{x} \sim \tilde{x}^0 \tilde{x}^0 a^+ a^- W^+ W^-$		$\tilde{\ell}$ mass	1097.2	0.4%	
		$v_e v_e \rightarrow \chi_1 \chi_1 e^+ e^- w^+ w$		$\widetilde{\chi}_1^{\pm}$ mass	643.2	0.6%	
3.0	Chargino	$\widetilde{\chi}_1^+\widetilde{\chi}_1^- ightarrow \widetilde{\chi}_1^0\widetilde{\chi}_1^0 W^+W^-$	п	$\widetilde{\chi}_1^{\pm}$ mass	643.2	1.1%	
5.0	Neutralino	$\widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	п	$\widetilde{\chi}_2^0$ mass	643.1	1.5%	
3.0	Squarks	$\widetilde{q}_{R}\widetilde{q}_{R} \rightarrow q\overline{q}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	Ι	\widetilde{q}_{R} mass	1123.7	0.52%	
2.0		$H^0A^0 \rightarrow b\overline{b}b\overline{b}$		H^0/A^0 mass	902.4/902.6	0.3%	
3.0	Heavy Higgs	${ m H^+H^-} ightarrow t \overline{b} b \overline{t}$	1	H^{\pm} mass	906.3	0.3%	
				~			
		<i>µ</i> ⁺ Large part of	the S	SUSY spe	ctrum me	easured	at <1% lev
14	Sleptons	$a^{+}a^{-}$ $a^{+}a^{-}a^{0}a^{0}a^{0}$	ш	$\tilde{\ell}$ mass	558.1	0.1%	
1.4		$e_{\rm R}e_{\rm R} \rightarrow e^+e^-\chi_1\chi_1$		$\widetilde{\chi}_1^0$ mass	357.1	0.1%	
		$\widetilde{\mathbf{w}} \widetilde{\mathbf{w}} = \widetilde{\mathbf{w}}^0 \widetilde{\mathbf{w}}^0 \mathbf{a}^+ \mathbf{a}^- \mathbf{W}^+ \mathbf{W}^-$	1-	$\tilde{\ell}$ mass	644.3	2.5%	
		$v_e v_e \rightarrow \chi_1 \chi_1 e^2 e^2 w^2 w$	$\widetilde{\chi}_1^{\pm}$ mass	487.6	2.7%		
1.4	Stau	$\widetilde{\tau}_1^+ \widetilde{\tau}_1^- \to \tau^+ \tau^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\tau}_1$ mass	517	2.0%	
1.4	Chargino	no $\widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$	ш	$\widetilde{\chi}_1^{\pm}$ mass	487	0.2%	
	Neutralino	$\widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	ш	$\widetilde{\chi}_2^0$ mass	487	0.1%	

Indirect BSM - some examples

Effective Field Theory Interpretations

arXiv:1701.04804v1

- Higgs and W^+W^- production used to constrain effective field theories.
- The full CLIC program has sensitivity beyond other proposed e^+e^- colliders due to its higher energy.
- Dimension-6 Operator Analysis of the CLIC Sensitivity to New Physics

When & how much?

Timeline

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

- Baseline scoping document gives a cost estimate for the 380 GeV collider
- A new, bottom-up, cost estimate, including cost optimisations, is being prepared

	Value [MCHF of December 2010]
Main beam production	1245
Drive beam production	974
Two-beam accelerators	2038
Interaction region	132
Civil engineering & services	2112
Accelerator control & operational infrastructure	216
Total	6690

Table 11: Value estimate of CLIC at 380 GeV centre-of-mass energy.

CLIC: Summary & Outlook

Design & development of the CLIC accelerator is in advanced state Acceleration principle demonstrated at near required values The detector concept is mature ⇒ CLIC is a realistic option for a post-LHC collider

CLIC baseline is for three stages: 380 GeV: precision Higgs measurements, top pole mass to 50 MeV 1.5 TeV 3.0 TeV HH, ttH, precision top couplings, BSM direct/indirect The physics is complementary to the LHC program CLIC offers a powerful tool to address the open questions in our field

The 380 GeV stage of CLIC is affordable with a guaranteed physics return

Can be upgraded later to high energies 1.5 and 3 TeV

Backup Slides

CLIC 2-beam Acceleration Scheme

- High centre-of-mass energy requires high-gradient acceleration
- High gradients feasible in normal conducting structures with high RF frequency (12 GHz)
- Initial transfer from wall plug to beam (klystron) is efficient at lower frequency ($\sim 1 \text{ GHz}$)
- To keep power low, apply RF power only at the time when the beam is there.

CLIC uses a 2-beam acceleration scheme at 12 GHz, gradient of 100 MV/m

CLEAR

- CTF3 programme ended at the end of 2016
- Electron beam maintained as new facility: *CLEAR*: CERN Linear Electron Accelerator for Research
 - Beam test capability for CLIC (instrumentation, high gradient studies, components)
 - Connected to 12 GHz RF for high-gradient studies

Power Consumption

Table 9: Parameters for the CLIC energy stages. The power consumptions for the 1.5 and 3 TeV stages are from the CDR; depending on the details of the upgrade they can change at the percent level.

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	N	10^{9}	5.2	3.7	3.7
Bunch length	σ_{z}	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	\sim 40/1
Normalised emittance (end of linac)	ϵ_x/ϵ_y	nm	920/20	660/20	660/20
Normalised emittance (at IP)	ϵ_x/ϵ_y	nm	950/30		
Estimated power consumption	P _{wall}	MW	252	364	589

Power Consumption: 1.5 TeV

Drive Beam Production

Delay loops create drive beam bunch-structure

Low energy high current drive beam \rightarrow high energy low current main beam

- A full bottom-up costing was done in 2011 for the CDR.
- A new costing will be made for the project plan in 2019.
- Several options are actively being researched that could reduce the cost:
 - Klystrons instead of drive beam for 380 GeV
 - Using permanent magnets wherever possible

Adjustable-field Permanent Magnet Prototyping

High Energy Quad

Low Energy Quad

Klystron Option for 380 GeV

Figure 26: Conceptual Design of an RF unit for a klystron-based CLIC main linac. Two klystrons produce RF pulses, which are combined into a single double-power pulse. The pulse passes the correction cavities chain, which modifies the pulse shape, and is then split into two pulses of half the power in order to feed two SLED pulse compressors. Each SLED shortens the pulse by increasing the power; two compressors are used to limit the final power in each of them. Finally, the pulses are split and distributed into five accelerating structures.

CLIC Accelerating Structures

Outside

11.994 GHz X-band 100 MV/m Input power ≈50 MW Pulse length ≈200 ns Repetition rate 50 Hz

HOM damping waveguide

Assembly: towards industrialisation

CLEAR

- CTF3 programme ended at the end of 2016
- Electron beam maintained as new facility: 'CLEAR': CERN Linear Electron Accelerator for Research
 - Beam test capability for CLIC (instrumentation, high gradient studies, components)
 - Connected to 12 GHz RF for high-gradient studies

etector Optimisation

Momentum resolution for different radii and B-fields

Optimizations of detector dimensions, spacings, granularities -> also informed by detector development, and full-scale cooling mockup and support structure development

Vertexing and Tracking R&D

- \bullet Very thin materials/sensors: $0.2\%~X_0$ material per layer
- ~2 billion pixels, each 25 μm square
- 10 ns time slices
- CLICpix sensors and readout under development

CLIC detector requirements (from physics)

momentum resolution:

e.g, $g_{H\mu\mu}$, Smuon endpoint

$$\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \, {\rm GeV^{-1}}$$

dN/dp

60

40

Valencia Jet Clustering Algorithm

- Combines the good features of lepton collider algorithms:
 - ➡ Durham-like distance criterion
 - \Rightarrow Background robustness of the long. inv. k_T algorithm

$$d_{ij} = min(E_i^{2\beta}, E_j^{2\beta})(1 - \cos\theta_{ij})/R^2$$

 $d_{iB} = E^{2\beta} sin^{2\gamma} \theta_{iB}$

- β: clustering order
- γ: evolution of jet area with polar angle

DOI:10.1016/ j.physletb.2015.08.055 Footprint of jets reconstructed with R = 0.5

lencia jet clustering algorithm (R=1.5, β =1, γ =1) + trimming HTopTQQPr" Referance to (m, Q14Q205) GeV, m, Q55, 95) SeV)

- o quark mass recovered for sufficiently large jet radius (efficiency drop for R < Oddisonepagy towards toack grounds processes with out to plose together
 - Reconstruct one large jet, and look for *subjets*.
- $e^+e^-e_-g_-using Valencia clustering algorithm developed for high-energy <math>e^+e^-tt \rightarrow dguyyu$ (y=d, s, b)

CLIC - V.Martin LP2017