SOI pixel detector for the ILC experiment

Mini workshop on SOIPIX at IHEP 2016/7/14

Osaka University Manabu Togawa

ILC experiment

- e+ e- collider of $\sqrt{s} = 250 500 \text{ GeV}$
 - Precise measurement of Higgs particle
 - Discovery of new particles
 - SUSY, dark matter...

ILC vertex detector

• Si pixel sensor locates around the IP point to measure the tracking of charged particles precisely.

Requirements for ILC physics and operation

- 1) Vertex resolution
 - Position resolution : $< 3 \ \mu m$
 - Low material $: < 0.1\% X_0 (< 100 \mu m$ thickness for silicon)
- 2) Integration during beam train

 $\sigma(1/pT) = 5 \times 10^{-5}/\text{GeV}$

• Detector occupancy : < 2 %

Requirement of readout : Occupancy < 2% ILC requirement

Occupancy estimation on 1 train at 500 GeV for FPCCD (5x5 µm²)

Layer

2

3

Occupancy (%)

1.24

0.78

0.12

0.10

Scafe to std pixel (20,2,20 (4412)) $p \sin^{3/2} \theta$

~20 % (x16)

Need to have multiple readout during train or bunch identification

SOFIST

SOFIST

(SOI sensor for FIne measurements of Space and Time)

Circuit on 1 pixel (in design)

The number of buffers should be decided in terms of the occupancy

Position resolution (estimation)

Position is calculated by centroid-method.

a : pixel pitch = 20 um
d : thickness = 50 um
S : Total charge
N : Noise in 1 pixel
M : Hit multiplicity of pixels

In case of 2 hits : δx = N * a / S
S/N = 17 is assuming.

Timestamp

• 2 ways

Keep digitize information on pixel circuit. Keep charge from ramp generator.

1312 bunches / 256 (= 8 bits) bunch resolution in principle.

Summary of design

Description	Spec.	Unit	Comment
Pixel size	20 x 20	μ	
Active area size	62.5(H) x 10 (V)	mm	
N of pixels	3125(H) x 500(V)	-	
Thickness	50	μm	1 MIP ~ 3700 e
Noise level	< 200	e	S/N < 17
Readout	ADC 8 bits	-	
Timestamp for bunch	8 bits		Using analog buffer

* Zero-suppression is definitely needed.

** Readout speed and Power consumption need to be considered.

Development plan

- v. 1 : Test for analog circuit
 - Pre-amp

SOFIST

- x2 analog buffers
- v. 2 : Test for digital circuit
 - Time stamp circuit (x2 analog buffers)
 - Zero-suppression

Production was done. Now evaluating performance.

> Design was done. Submitted to production.

• v. 3 : Implementation both analog and digital circuits

- * Grown sensor size needs to be considered.
- ** Pixel size is too small to have buffers...

SOFIST v.1

Details in S. Ono and M. Yamada talks in tomorrow

FPCCD (Fine Pixel CCD)

- Pixel size : $5 \times 5 \mu m^2$
- Active area : $\sim 15 \mu m$ thick epitaxial layer.
- Wafer thickness : $50 \ \mu m$
- Total # of pixels : 10^{10} : needs 10 Mpix/s readout

Y. Sugimoto (FPCCD) ILC kick-off meeting at 2016/6/18

FPCCD readout

- Amplifier and ADC need to be prepared.
- Readout : 10 Mpix/s (currently achieved 2.5 Mpix/s)

Y. Sugimoto (FPCCD) ILC kick-off meeting at 2016/6/18

DEPFET (DEpleted P-channel FET)

- Pixel size : $20 \times 20 \ \mu m^2$
- Fully depleted : $\sim 50 \ \mu m$.
- The charge stored in the internal gate.

• Will be installed at the Bell2 experiment

DEPFET spec.

2 ASICS for digitizing and control

- Spatial resolution :
 - 2.3 3.5 µm
- Material budget :
 - 0.15 X₀ (including support frame)
- Frame rate :
 - $40 \,\mu\text{s}$ / frame w/ rolling shutter readout.
 - 25 times readout / train
 - Micro-channel cooling

PLUME (Pixelated Ladder with Ultra-low Material Enbeded)

- Pixel size : $18.4 \times 18.4 \ \mu m^2$
- Active area is p-epitaxial layer < 20 um
- ASICS on chip
 - Based on MAPS (Monolithic Active Pixel Sensor)

- MAPS was installed and is operating at RHIC STAR experiment (2014)
 - https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0CEIQFjAF&url=https%3A%2F%2Findico.ific.uv.es%2Findico%2FmaterialDisplay.py %3FcontribId%3D666%26sessionId%3D29%26materialId%3Dslides%26confId%3D2025&ei=iOjiU7fRNIzl8AXm7oH4Dw&usg=AFQjCNENtD1w2gpNY5N9zTP1QSo-LyYiA&sig2=XGv_eUsBycWJM-D-PgXHTA&bvm=bv.72676100,d.dGc
- Target to ALICE and ILC

PLUME Most of all functions are on sensor

Ingrid-Maria Gregor (PLUME)

LC Forum 2013 at DESY

• Frame rate : 100 µs / frame w/ rolling shutter readout.

Double sensor in 1 layer

• Special resolution is achieved ~ 3.5 µm using 2 sensors even if binary readout.

Ingrid-Maria Gregor (PLUME) LC Forum 2013 at DESY

Summary

	SOFIST	FPCCD	DEPFET	PLUME
Pixel size (20 x 20	5 x 5	20 x 20	18.4 x 18.4
positon resolution (µm)	(<3)	<1.4	2.3-3.5	3.5
Thickness (µm) [Active area]	50 [Full]	50 [~15]	50 [Full]	50 [~20]
Material budget (%X (Not final value)	0.05 + **	0.25	0.15	0.35
ASIC on chip	Yes	No	No	Yes
Row read rate [Goal]	2.5 MHz [10 MHz]	2.5 MHz [10 MHz]	10 MHz [40 MHz]	?
Frame rate [µs]	Readout btw train w/ timestamp	Readout btw train	40 us (25 / train)	~100 us (10 / train)
Frame rate [µs]	ADC on chip	ADC	ADC	Binary

Advantages of SOFIST (SOI)

- Full depleted on 50 µm thickness
 - vs. PLUME (15 μm)
- Most of functions are on chip
 - vs. DEPFET
- Best bunch identification w/ on-chip buffers
 - SOFIST : 1312/256 (using 256 bits ADC readout)
 - DEPFET : 1312/25, PLUME : 1312/10

Backup

Consideration

- Pay load is almost full at v.2
 - Actually full w/ $25\mu m^2$ pixel.
- More buffers may need for the low occupancy operation.

Mori-san's master thesis

http://epx.phys.tohoku.ac.jp/eeweb/paper/2014_Mthesis_mori.pdf

Occupancy study by Mori-san for FPCCD

表 5.1: 各レイヤーの占有率 (250 GeV)

	6.7	6.1	0.6
レイヤー	占有率 (%)	直接ペアの占有率 (%)	反跳ペアの占有率 (%)
0	0.561	0.506	0.055
1	0.353	0.319	0.034
2	0.056	0.053	0.003
3	0.045	0.043	0.002
4	0.010	0.010	0.001
5	0.009	0.008	0.001

表 5.3: 各レイヤーの占有率 (500 GeV)

	14.9	12.6	2.3
レイヤー	占有率 (%)	直接ペアの占有率 (%)	反跳ペアの占有率 (%)
0	1.244	1.053	0.191
1	0.779	0.661	0.118
2	0.122	0.113	0.009
3	0.100	0.092	0.008
4	0.023	0.021	0.002
5	0.020	0.018	0.002

表 5.2: 各レイヤーの占有率 (350 GeV)

表 5.4: 各レイヤーの占有率 (1 TeV)

	8.4	7.5	0.9		100	40.5	100
レイヤー	占有率(%)	直接ペアの占有率(%)	反跳ペアの占有率 (%)	レイヤー	占有率 (%)	直接ペアの占有率 (%)	反跳ペアの占有率 (%)
0	0.702	0.622	0.080	0	12.752	3.386	9.367
1	0.443	0.392	0.052	1	7.010	2.099	4.911
2	0.067	0.063	0.004	2	0.458	0.345	0.113
3	0.055	0.052	0.004	3	0.379	0.281	0.098
4	0.013	0.012	0.001	4	0.099	0.065	0.034
5	0.011	0.010	0.001	5	0.089	0.057	0.032

Ratio of cross size of pixel : x16 Ratio of multiple hits : x0.75 -> FPCCD x12 is occupancy of SOFIST.

2 bunches -> $0.149^2 \sim 0.02$

Consideration

- Pay load is almost full at v.2
 - Actually full w/ $25\mu m^2$ pixel.
- More buffers may need for the low occupancy operation.
- Needs more circuit spacing...
 - 3D technology (CMOS layers)
 - Technology has been developing by SOI group.

Standard Sample ILC Running Scenario

- Adopted by the LCB (Linear Collider Board)
- ILC 500 GeV (1 TeV is optonal and not included here)

27

ILC kick-off meeting at 2016/6/18

Resolution w/ ADC effect Resilution (μm) 3.6 3.7 3.7 4 bits 3 2.8 6 bits 2.6 2.4 7 bits 8 bits 2.2 2 1.8 .6⊑ 0.5 **0** 1.5 2.5 3.5 2 3 1 4 type

No ADC conversion

8 bits looks suitable

Hit multiplicity of FPCCD

(1) クラスター内のピクセル数

Mori-san's master thesis

http://epx.phys.tohoku.ac.jp/eeweb/paper/2014_Mthesis_mori.pdf

図 5.3: クラスターの と方向の長さ分布

For SOI detector

- FPCCD : 5 um pitch, 15 um full depletion
- SOI : 20 um pitch, 50 um full depletion
 - -> Multiplicity will be times (5/20)*(50/15) = 0.75
- The multiplicity in case of $tt \rightarrow 6jets$ looks up to M=10.

Ideal case for TOT

- 低いエネルギー側でnon-linearity
- ・ 低いエネルギーをカバーする為にはThreshold低めが必要
- ・ エネルギー情報は必要なので普通のADCの方が良い

低いュエネルギー側で分解能が良い

低いエネルギーを見る為に低いthreshgold

- 1/20 MIPをpol7 fitして関数化して、位置分解能に対する影響 を見る。
- 横軸は4 bits (=16) に収まる様に調整

ADCのbit conversionの代わりに1/20 thre.のTOT conversionを入れてみた。

(pos. w/o noise) - (pos. w/ noise and/or bit conversion)

5 Gbps (1.25 Gbps link per DHP)

6

Slide from "A DEPFET vertex detector for a future linear e+e- collider" on <u>DEPFET_https://indico.mpp.mpg.de/conferenceOtherViews.py?confld=2809&view=standard</u>

Readout speed

