

Vertex Detector for the Super KEK B factory

14 July 2016 T. Tsuboyama (KEK)

Status of Super KEKB

- Super KEKB aims to explore the beyond-standard-model physics.
- KEKB & Babar established the standard model by observing the CP violation decays of B⁰ meson.
 - Luminosity ~ $2x10^{34}$ /cm2/sec
 - Integrated luminosity ~2 ab⁻¹ or 2billion B-B events
- Super KEKB extends the physics reach to Beyondstandard-model physics
 - Luminosity ~ 80x10³⁴/cm2/sec
 - Integrated luminosity >50 ab⁻¹.

KEKB Experiment

• KEKB Accelerator • Belle

Super KEKB

Comparison of accelerator

	KEKB (achived)	Super KEKB (goal)
Accelerator	3km tunnel circumfare	ence, 508 MHz RF system
Beam Energy	8 GeV e⁻ 3.5 GeV e⁺	7 GeV e⁻ 4 GeV e⁺ (*)
Beam Current	1.2 A e⁻ 1.6 A e⁺	2.6 A e ⁻ 3.6A e ⁺
Luminosity	2x10 ³⁴ /cm ² /s (20/nb/sec)	8x10 ³⁵ /cm ² /s (0.8/fb/sec)
Beam size	1 μm x 150 μm	0.1 μm x 10 μm
Injection	Top up (trickle)	To up (trickle)
Collision rate	6 nsec (max)	4 nsec (max)

(*) CM Energy can be adjusted up to Y(6S)

Improvement of detector

- The physics target is same, the requirements to the detector do not change.
 - Detector size: Can not be larger/smaller
 - Full reconstruction capability
 - Thin material and large acceptance
 - Efficient high-resolution tracker and calorimeter
 - Particle Identification: Identify K+/K- from pions
 - Measurement of time evolution of B mesons
 - Precise and efficient Vertex mesaurement
- Requirements from to higher luminosity & backgrounds
 - Data acquisition rate 100 Hz \rightarrow 5 kHz
 - Immunity to radiation effects
 - A higher detector segmentation
 - A better time resolution.

Comparison of detectors

	KEKB (achived)	Super KEKB (goal)
Beam pipe	R=1.5cm	R=1.0 cm
Vertex detector	4layer silicon strip 2.5-10 cm	2layer pixel 1.8-2.3 cm 4layer Silicon strip 4 cm-16 cm
Central tracker	Small cell drift chamber 0.12-1 m	Small cell drift chamber 0.2-1.2 m
Particle ID Barrel	Aerogel Cerenkov counter (threshold)	TOP (ring image cerenkov counter projected to time infortmation)
Endcap		Aerogel Rich counter
Calorimeter	CsI (TI) charge integration	Csi(Tl) digital filtering
K-long/Muon	RPC in Iron yoke	Scintillator & RPC in Iron yoke
Magnetic Field	1.5 T (Super conducting Solenoidal magnet)	
DAQ	Max trigger rate 150 Hz	Trigger rate 5kHz
Computing	Managable in KEK	Worldwide with Grid and Cloud

Vertex detector

KEKB SVD (achieved)	Super KEKB (goal)		
4-layer silicon strip 2.5-10 cm	4-layer Silicon strip 4 cm-16 cm		
79mmx28	125mmx60mm		
0.6 m ²	1.2 m ²		
VA1TA(Viking variant)	APV25 (developped for CMS)		
1-3 sensors are read by one chip (ghost hits exist)	1 chip read out 1 sensor (no ghost hits)		
800 nsec.	50 nsec		
No	192 stage		
0.4 % X _o /layer: silicon 300 μm	0.6 % X ₀ /layer: sensor+readout flex		
	2 layer DEPFET sensors R=1.4 2.2 cm		
	0.1 % X ₀ (silicon 75 μm)/layer 0.2 % X ₀ /layer including peripherals		
	Rolling shutter (with injection veto)		
	 4-layer silicon strip 2.5-10 cm 79mmx28 0.6 m² VA1TA(Viking variant) 1-3 sensors are read by one chip (ghost hits exist) 800 nsec. No 		

Expected performance

H.G. Moser, 10th "Hiroshima" Symposium, 25-29 September 2015, Xi'an, China

SVD (Silicon Strip detector)

- 2-5 sensors are glued together to form "ladders"
- Forward region is covered with a slant sensor in order to reduce length and cost.
- Readout with APV25 developped for CMS
- APV25 is mouted on DSSD
- Data in the bottom side is brought to top side using flex circuits.

Exploded view

DEPFET pixel detector

- DEPFET group joined to Belle group in 2009.
- The only available proved monolithic detector with fully depleted silicon sensors.
- Detector can be thinned to 50-75 μ m.
- Can be operated in room temperature.
- Max Planck institute fur Physik in Munich works with Siemens and they can only perform this special semiconductor process.

DEPFET pixel detector

- DEPFET group joined to Belle group in 2009.
- The only available proved monolithic detector with fully depleted silicon sensors.
- Detector can be thinned to 50-75 $\mu m.$
- MOSFET is produece at center of pixel.
- The charge induced in wafer is collected by the internal gate.
- The drain current is of MOSFET moduleted by the potential of the internal gate.
- Pixels can be read out with scanning the source current and readout gate.
- The chage in the internal gate can be cleared with another gate.
- Rolling shutter readout.
- 20 µsec frame rate for Super KEKB.

Readout chain of DEPFET

- The drain current from pixels are digitized with DCD chips and "base line subtraction and hit pixe selection" is done on DHP chips on the same DEPFET wafer.
- The pixel scanning (and resetting) is mediated by switcher chips also on the DEPFET wafer.
- The output from DHP is sent to offline data acquisition system through the kapton flex circuit.
- Huge number of flip-chip bonding is also a challenge.

SVD support mechanics

The CO₂ cooling plant

IbBelle

2-phase CO2 cooling

- CO2 can be liquefied at T < 30°C & P>20 MPa.
- Gas and liquid phases can co-exist conditions met.
- We chose 2MPa and -20°C for SVD/PXD cooling
- If 1 g, -20°C liquid CO2 evaporates to gas, it absorbs 300 Joule.
- By evapolating 3g/sec, we can remove 1kW heat.
- Stanless steel pipes 0.1 mm wall thick and 1.5 mm inner diameter can hold 20 MPa pressure, in theory.
- Belle SVD/PXD adopted CO2 cooling.
- The design of CO2 plant for Atlas IBL pixel detector cooling is modified and construction finished this summer and shipped to KEK soon.

Present status and Schedule

• 2016

- Super KEKB completed the initial operation.
- Beam current 1 A was stored to electron and positron rings (no collisions).
- We are producing ladders (SVD) final sensors (DEPFET)
- Mechanical discussions are near completion. Final mechanics production will be done.
- 2017:
 - SVD ladders will be mounted to the SVD support.
 - DEPFET detector will be prepared and tested in MPI Munich.
 - Super KEKB operation with Belle-2. Background and luminosity tuning starts.
- 2018
 - SVD and DEPFET will be combined and final commisioning is performed.
 - Super KEKB should achieve reasonable luminosity (> 2x10³⁴/cm²/s) and low beam background condition so VXD are not damaged.
 - Then, the vertex detector is installed and real physics operation will start.

DEPFET collaboration

• Germany, Czech, Spain...

SVD collaboration

• Japan, Australia, Austria, Czech, India, Italy, Korea, Poland

• I apologize if some country/institution is missing.