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CEPC vertex detector concept

Baseline design for the pre-CDR: ILD-like but different forward region
design
» 3 layers of double-sided pixels
> agp = 2.8 ym, inner most layer

» readout time < 20 us

CEPC VXD Geometry

R (mm) |z| (mm) | cos f| agp (pm)  Readout time (us)
Layer 1 16 62.5 0.97 2.8 20
Layer 2 18 62.5 0.96 2.8 20
Layer 3 37 125.0 0.96 4 20
Layer 4 39 125.0 0.95 4 20
Layer 3 58 125.0 0.91 4 20
Layer 6 60 125.0 0.90 4 20
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CEPC vertex detector requirements

Excellent impact parameter resolution required for the identification of
heavy quarks and tz-leptons (essential for CEPC physics)
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Stringent requirements on the vertex detector:

» Spatial resolution near the interaction point o5, <3 pm = high granularity (small
pixel size)

> Material budget < 0.15% X,/layer = monolithic pixel sensors

(sensor + embedded electronics, thinned down to e.g. 50 ym) + air cooling (power
dissipation < 50 m\W/cm?)

» Low detector occupancy below 1% -> fast readout (~ 20 us) + high granularity
» Radiation tolerance (pre.): Total lonizing dose ~1 MRad/yr

Non-ionization energy loss ~10*2 n,,/cm?/yr
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Unprecedented challenges in CEPC vertex (1)
Single point resolution o, <3 pm =» pixel size ?

spatial resolution vs. pixel pitch
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Y. Voutsinsa, et al., Vertex Detectors 2012
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Unprecedented challenges in CEPC vertex (2)

Low power consumption

Power pulsing will NOT work at the CEPC
» Instantaneous power ~600 W @ ILC
» Average power ~20 W @ ILC by applying power cycling

bunch
Bunch train
Zoom in /
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ILC beam timing structure

The maximum heat load of 150 W imposed by air cooling

=» CEPC has to cut down the power by a factor of 4
Ref.: Y. Lu, CEPC-SppC study group meeting, 2016 April
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Unprecedented challenges in CEPC vertex (3)

Fast readout speed

Readout intervals of ~ 1 yus will be required if the Local Double-ring
Scheme is used to increase the hit density

» One magnitude lower than the-state-of-art design

» Background estimates are still in early stage

P1

P

.............................
X

I
P5

* baseline design in pre-CDR
» colliding every 3.6 us, continuously
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P5: with experiment

X

* to reduce beam and AC power

* to increase the flexibility and luminosity
* 196 ns bunch spacing

* Duty cycle: 9.4 pus/181 us

Ref.: Y. Lu, CEPC-SppC study group meeting, 2016 April
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Technology options

Many technologies from ILC/CLIC could be options.
But, unlike the ILD/CLIC, power pulsing will NOT work at the CEPC
CMOQOS pixel sensors (CPS)

> relatively mature technology
> <50 mW/cm? expected
> capable of readout time ~4 ps/frame
SOl sensor
> Fully depleted HR substrate, potential of 15 pm pixel size design
> Full CMOS circuits

DEPFET

» Possible application for the inner most vertex layer

» Small material budget, low power consumption in sensitive area

Others: 3D-integration

This talk will concentrate on CMOS pixel sensors
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CMOS Pixel Sensor

Diode CMOS Circuit
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Integrated sensor and readout
electronics on the same silicon bulk
with “standard” CMOS process - low
material budget, low power
consumption, low cost ...

Ultimate (Mimosa 28) installed for STAR
PXL, technology for ALICE ITS Upgrade

= Selected TowerJazz 0.18 um CIS technology for CEPC R&D, featuring:

» Quadruple well process: deep PWELL shields NWELL of PMOS transistors,
allowing for full CMOS circuitry within active area

» Feature size of 0.18 ym and 6 metal layers: good for high-density and low power

> Thick (18-40 um) and high resistivity (=1 kQecm) epitaxial layer: larger depletion

» Thin gate oxide (< 4 nm): robust to total ionizing dose
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Charge collection simulation

Y. ZHANG, M. FU, H.ZHU

= Motivation:
» Guide the diode geometry optimization and study radiation damage with different

types of epitaxial layer

= Simulated structure
» Building the 3-D device structure with Sentaurus-TACD tool

» Setting boundary: extending the auxiliary silicon surrounding the device volume
to hundreds of micro-meters, which approximates the real device condition,
replacing:

» Reflective boundary condition (default) > overestimated signals.

» Introducing four SiO, belts surrounding the detector volume and artificially high
recombination velocity at the interface - unreliable result.

Simulated structure in this work

67 v i S A 40 F

Simulated structure using SiO, belts

e
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Charge collection simulation

= Simulation with different parameters
> Hit position
» Diode geometry
» Thickness and resistivity of the epitaxial layer
» Radiation damage

Top-view of the simulated 5 X 5 cluster

Y. ZHANG, M. FU, H.ZHU

Shooting MIP particle vertically
at the central pixel and
calculate the collected charge
in neighboring pixels

pixel size: 16 ym X 16 ym
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Charge collection vs. diode geometry

Y. ZHANG, M. FU, H.ZHU

= sensing diode area

» should be small for the sake of low C, low noise, high gain

sig = QcoII/C; N oc C

> BUT not too small to preserve charge collection efficiency (important against
NI irradiation)

because V

» spacing (free of p- and n-wells) between the diode n-well and the surrounding

p-well affects CCE 3000
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P+ L
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Structure  N-well (4m?)  Footprint (4m?)  C;y (fF) Q/Cyeeq (MV) T Numbsrofpixels
SF1 3 20 45 40
SF2 4 20 51 39
SF3 8 20 6.8 32

The collected charge of seed pixel increase with N-well area, but Q/C decrease
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Charge collection with competitive N-well

Y. ZHANG, M. FU, H.ZHU
= PMOS within the pixel introduces a competitive N-well'to the charge collection

N-well; using the deep P-well is expected to shield the competition

Sector Diode area Footprint Structure charge collection N-well
area
SFB3 8 m? 20 pm? 2T _nmos
SFB13 8 m? 20 pm? 2T _pmos
3000
2500 B —O
B 2000 S
s SF3 no PMOS
2 : Nwell for PMOS
L0l SF13 with PMOS
§ i
1000yp/ - - —E— SF13@leftdown ~
q S iSmeener—
—E— SF3@center
500

é 1IO 15 20 2‘5

Number of pixels
With the shielding of deep P-well, the competition of PMOS on charge
collection is almost negligible = allow full CMOS within the pixel hit position on the central pixel
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Charge collection with different epitaxial layers

Pixel cluster with four different epitaxial layers Y. ZHANG, M. FU, H.ZHU

»  With the same pixel structure (SFB3)
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Total charge increases with the thickness and resistivity of the epi-layer, so the
charge sharing - figure out an optimal configuration
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Charge collection with non-ionizing damage
Y. ZHANG, M. FU, H.ZHU
= Charge collection efficiency decreased with radiation fluence

Seed pixel 5 X 5 cluster
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» Charge collection remain ~ 80% and ~60% for seed and total pixels at CEPC annual fluence
> Seed pixel: higher resistivity = better radiation
> Pixel cluster:
« 25 um thick epi-layer worse than 20 um (same resistivity)=> charge sharing and
radiation-caused-traps in a thicker epi-layer may degrade the performance
« 30 um 8 kQ similar to 20 um 2 kQ -> advantage of high resistivity can be partly
neutralized by thicker epi-layer
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First prototype design

Goal: sensing diode optimization and in-pixel pre-amplifier study
=>» improves SNR = enhances detection efficiency
Chip floor plan

» Contains two matrices, Matrix-1 with 33 x 33 ym? pixels (except SFA20), Matrix-2
with 16x16 um? pixels. Each matrix includes 16 SF (source follower) blocks for
sensor optimization

> Matrix-1 includes 3 blocks with in-pixel pre-amplifier
> SFAZ20 in Matrix-1 contains pixel with AC-coupled pixels
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First prototype design —— pixel structures

DC-coupled SF pixels: 2T/3T structure Y. ZHANG, Y. ZHOU

» different diode geometries vdiode  yqda Vdiode g4,

..............................

=> to verify the TCAD simulation results R‘—i
» two biasing modes (2T/3T)
» two transistor types (nmos/pmos SF)

Pixel Array

Fen_ph?ry_ o gty
AC-coupled structure
AC-coupled pixel vdiode VeRme  vhga
> sensing node AC-coupled with circuit Reset_”: Cam'%r | 5
> diode bias voltage could be higher than ] il—: 3
power supply, i.e. upto 10 V X
Row_Sel
= larger depletion region & lower Cd - _ll'_*—‘ -
sub - ixel array
=> higher SNR [ -

@ FPheriphery
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First prototype design —— pixel structures

Y. ZHANG

In-pixel pre-amplifier

» Common source amplifier with AC feedback, CDS in pixel
> Only active when the row is selected to be read - power saving

» Using a twin-well process only NMOS can be used, while both types of
transistors are used in our prototype

-
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‘ cip &
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% PWR_On D_H:I Pix_Out
Gnd!$
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First prototype design —— readout

= Pixel array steering:
> selecting one row, 16 columns read out in parallel

» each row needs one clock cycle, readout time of a frame is 24 uys @ 2MHz

Sync Reset, Vdiode

Clock
In RowReset I I
<i>
RowsSelect < Frame <i '

S

Rofsel]
— clock S TN oy Y oy I oy B M
L Individual Pixel Array . T T otmmmeeees !

16 columns x 48 Rows SynC _i_| .
] read<47> . '________} ------ T
— SR_Bot_out I —
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L T

Out

48 bits Shift Register: Analog._out bus (x 16) Chlp test in preparation

One “hot code™
eIchip layout |
Chip photo ‘ %
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Next prototype design

Goal: small digital pixel design and characterization

» Signal digitized in pixel =» reduce power consumption

» Minimize pixel size in the current process (0.18 pm), i.e. ~20 ym pitch

A preliminary proposal for the pixel design
> Based on the ASTRAL pixel configuration

» Keep in-pixel discrimination & rolling shutter readout mode, depleting the
sensor, simplify the in-pixel circuitry design to shrink the pixel size
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simplify the in-pixel discriminator - to reduce the transistor num.
3 capacitance overlap on top of transistors - save layout space
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Summary and outlook

To address the challenges from the CEPC vertex detector, R&D of the
CMOS pixel sensors is proceeding

Performed preliminary TCAD simulation to understand the impacts on
charge collection, including:

» collection diode geometry

> epitaxial layer

> non-ionizing radiation damage

First prototype designed and fabricated in the TowerJazz 0.18 ym CIS
technology

» Sensor characterization expected this year and TCAD simulation results to be
verified with measurement

Second submission expected this November, targeting on the design
of small size digital pixels
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Charge collection vs. hit position

= The symmetrical pixel model makes the charge collection distribution symmetrical

» Two different hit positions selected in the following sin
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