

A counting type SOI chip and synchrotron beam test results

IHEP: Yunpeng LU, Yang ZHOU, Zhigang Wu, Qun OUYANG KEK: Ryo Hashimoto, Ryutaro Nishimura, Shunji Kishimoto, Yasuo Arai

> China-Japan Mini Workshop on SOIPIX IHEP, July 14-15, 2016

Outline

- Introduction
 - Challenges in SOI pixel technology
- A description of the chip (CPIXTEG3b)
 - Shielding enhancement
 - Chip architecture
- Electrical characterization
 - Measurement of shielding
 - Threshold dispersion and noise
- Synchrotron beam test
 - X-ray response
 - Micro-beam scan
 - Threshold scan
- Summary and outlook

Mutual interference between sensor and electronics

- SOI offers outstanding benefits (my personal view):
 - Quick turnaround
 - Extremely high density connections
 - Further thinning down to tens of um.
- However, stronger interference between sensor and electronics
 - Back-gate effect
 - − Charge injection ← the focus of this talk

The concept of charge injection

- Signal charge collection and amplification
 - Inverse-biased diode, Cd
 - Pixel amplifier, providing voltage gain or V/Q conversion
- The capacitive feedback path from transistors to collection electrode
 - Cp determined by Area/Tbox
 - Vout node is critical, but the feedback path exists everywhere.

Yunpeng Lu, China-Japan mini workshop on SOIPIX, Beijing, July, 2016

Voltage amplifier case

Without Cp

$$Vout = \frac{Q}{Cd} \times A$$

Electrical model

With Cp

$$Vout = \frac{Q}{Cd + (1-A) \times Cp} \times A$$

- For a source follower, 0< A <1
 Lower gain
- For a composite amplifier with A >> 1
 - Vout = -Q/Cp
 - Cp dominates the gain
- Denominator = 0, Vout may be stuck at Vdd or oscillate

Charge-sensitive amplifier case

Without Cp

Vout =
$$\frac{Q}{Cf} \times A_2$$

With Cp

$$Vout = \frac{Q}{Cd + (1 + A_1)Cf + (1 - A_1A_2) \times Cp} \times A_1A_2$$
$$\cong \frac{Q}{Cf - A_2 \times Cp} \times A_2$$

 C-S amplifiers are widely used in counting-type pixel

• For Cf ~ $A_2 \times Cp$, Vout may oscillate.

Self-sustained oscillation of counting-type pixel

- Observed on a test structure that has no protection against charge injection at all.
 - Charge injection is a major issue for counting type SOI pixel!

Yunpeng Lu, China-Japan mini workshop on SOIPIX, Beijing, July, 2016

Countermeasure: Double-SOI process

- Double-SOI is a critical ingredient for the success of counting-type pixel.
 - A new conductive layer SOI2 serves as a shielding layer
 - High sheet resistance, ~33kΩ/ \Box (?
 - Increase Cd, 0.23 fF/um²
 - How to use it properly?

Critical design choices to enhance shielding

Based on the experience and knowledge from study of Nested-wells^{*}.

Simple guidelines in the CPIXTEG3b design (Double-SOI prototype)

- Kept the collection electrode clear of counter/discri., which leaded to
 - A small collection electrode of 16 um
 - A small counter of 6-bit
- Improved the shield grounding \geq
 - Placed SOI2 contacts as many as possible

*Detailed study on SOI shielding was reported at

- Used local bypass capacitor on SOI2 ground
- P-stop ring isolating pixels

CPIXTEG3b chip

- Signal processing chain in-pixel
 - N-in-P sensor, 310um thick
 - Charge sensitive amplifier with electrical calibration capability
 - Discriminator with a local DAC to tune the threshold
 - 6-bit ripple counter & 6-bit shift register
 - Hundreds of transistors
- Pixel array organization
 - Data chain organized in column
 - Counting mode or shift-readout mode
 - Bidirectional data bus shared by all columns
 - 64*64 pixel array at a pitch of 50um
 - Chip area 6*6mm²

Signal processing chain in-pixel

Setup for electrical characterizing

- Bare chip mounted in ceramic packages
- Hooked up with SEABAS* test system
- 4-channel oscilloscope synchronized with electrical test pulses
 - Measurement time-correlated with stimulus
- Chips from Double-SOI wafer and Single-SOI wafer
 - A unique chance for comparison

*A DAQ system developed by KEK, mainly for pixel chip readout

Front-end waveform inspection

- Double-SOI chips worked
 - Waveforms largely agree with simulation data;
 - Slower leading edge is due to capacitive load of cable;
- In the contrary, Single-SOI chips showed self-sustained oscillation
 - Managed to stop it by decreasing gain of shaper

Yunpeng Lu, China-Japan mini workshop on SOIPIX, Beijing, July, 2016

Pickup of digital switching

- Counter driven by external clock as a source
- 5mV @ shaper output for Double-SOI chip
 - 74 e⁻ referred to input charge
 - Submerged in noise floor(ENC ~ 113e⁻)
- 95mV for Single-SOI chip
 - ~3770e⁻ referred to input charge

Yunpeng Lu, China-Japan mini workshop on SOIPIX, Beijing, July, 2016

Synchrotron beam test

- KEK PF BL-14A
 - Beam spot 0.8mm in diameter
 - optional pin hole collimator, 10um beam spot

16 keV X-ray signal(shaper)

Micro-beam scan@ 16 keV

Threshold scan

- Counting rate vs threshold
 - Monotonically as expected
 - Inclined plateau possibly due to energy spread of beam and charge sharing
 - Threshold touched noise floor @ 850e⁻
 - Consistent with electrical calibration (blue line)

Energy spectrum of 16 keV beam

6 keV 800 \times 800 μ m² beam

16 keV 10×10 μm² beam

Yunpeng Lu, China-Japan mini workshop on SOIPIX, Beijing, July, 2016

Summary and outlook

- CPIXTEG3b was designed with an emphasis on the shielding of charge injection.
- Methods to mitigate the impact of sheet resistance of SOI2 verified:
 - Keep collection electrode clear of digital parts
 - Place SOI2 contacts as many as possible
 - Use local bypass capacitor on SOI2 ground
- Exciting measurement results achieved:
 - Charge injection well controlled
 - Sufficient S/N to detect 6 keV X-ray
 - Point spread full width < 50um @ 1% maximum height
 - Beam test S-curve consistent with electrical calibration
- Design of CNPIX1 finished recently, collaborative efforts between IHEP and KEK.
 - Much more powerful design: charge sharing arbitration, compact hexagonal layout, 18bit counter, lower noise
 - Expecting the chips back an the end of this year.

Thank you for your time!

Backup slides

The challenges in SOI pixel technology(1)

- KEK SOI process
 - Deep sub-micron CMOS process, excellent for front-end electronics
 - Fully-depleted HR substrate, excellent for sensor
 - Thin dioxide insulation (BOX) between front-end and sensor, good for connections
 - A problem of mutual interference to solve, however
- Back-gate effect
 - Lateral potential increase alters the threshold of MOS transistors
 - A Buried-P-Well (BPW) layer implanted to form a "blanket" of uniform potential
 - Success of BPW has brought about the prosperity of integrating type SOI pixel

The challenges in SOI pixel technology(2)

- Counting type SOI pixel has to tackle another direction of interference
 - Voltage transition in front-end induces charge in sensor
 - Charge injection, Q = C $\times \Delta V$
 - A fundamental issue recognized since 1990's
 - Different shielding schemes investigated

Charge injection from front-end to sensor

