BABAR measurement of

baryon time-like form factors via ISR

Rinaldo Baldini Ferroli

International Workshop on $\boldsymbol{e}^{+} \boldsymbol{e}^{-}$collisions from ϕ to Ψ

Institue of High Energy Physics
13-16 October 2009, Beijing, China

Outline

Form factor definitions and properties

Initial State Radiation technique in BABAR

$p \bar{p}$ events selection and background
$p \bar{p}$ data: pointlike fermions at threshold
G_{E}^{p} / G_{M}^{p}
Neutral Baryons puzzle

Conclusions and Perspectives

Space-like and time-like regions

Time-like

$$
e^{+} e^{-} \leftrightarrow N \bar{N}
$$

Nucleon form factors and cross sections

Nucleon current operator (Dirac \& Pauli)

$$
\Gamma^{\mu}(q)=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i}{2 M_{N}} \sigma^{\mu \nu} q_{\nu} F_{2}\left(q^{2}\right)
$$

Electric and Magnetic Form Factors

$$
\begin{aligned}
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\tau F_{2}\left(q^{2}\right) \\
& G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned} \tau=\frac{q^{2}}{4 M_{N}^{2}}
$$

Elastic scattering

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} E_{e}^{\prime} \cos ^{2} \frac{\theta}{2}}{4 E_{e}^{3} \sin ^{4} \frac{\theta}{2}}\left[G_{E}^{2}+\tau\left(1+2(1+\tau) \tan ^{2} \frac{\theta}{2}\right) G_{M}^{2}\right] \frac{1}{1+\tau}
$$

Annihilation

$$
\begin{gathered}
\stackrel{d \sigma}{d \Omega}=\frac{\alpha^{2} \sqrt{1-1 / \tau}}{4 q^{2}} C\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right] \\
B_{S}=\left(2 \sqrt{\tau} G_{M}+G_{E}\right) / 3 \quad B_{D}=\left(\sqrt{\tau} G_{M}-G_{E}\right) / 3
\end{gathered}
$$

Analyticity of the nucleon form factors

q^{2}-complex plane

Perturbative QCD constrains the asymptotic behaviour
pQCD: $q^{2} \rightarrow-\infty$

$$
F_{i}\left(q^{2}\right) \rightarrow\left(-q^{2}\right)^{-(i+1)}\left[\ln \left(\frac{-q^{2}}{\Lambda_{\mathrm{QCD}}^{2}}\right)\right]^{-2.173_{5}}
$$

Analyticity: $\boldsymbol{q}^{2} \rightarrow \pm \infty$

$$
\left|G_{E, M}(-\infty)\right|=\left|G_{E, M}(+\infty)\right|
$$

Crucial at threshold: Coulomb Factor

- $p \bar{p}$ Coulomb interaction as FSI
(Sommerfeld, Sakharov, Schwinger, Fadin and Khoze)
Distorted wave approx.: $C=\left|\Psi_{\text {Coul }}(0)\right|^{2}$

S-wave:	$C=\frac{\pi \alpha / \beta_{p}}{1-\exp \left(-\pi \alpha / \beta_{p}\right)} \quad\left(\beta \rightarrow 0, C \rightarrow \frac{\pi \alpha}{\beta}\right)$
D-wave:	$C=1$

- Negligible spin dependence

Relativistic extension $\frac{1}{\beta_{p}} \rightarrow \frac{1}{\beta_{p}}-1$ (Y. Srivastava et al.)

No Coulomb factor for boson pairs (P-wave)

$e^{+} e^{-} \rightarrow p \bar{p}$ at BABAR

B-factory PEPII@SLAC

- Asymmetric B-factory at $\Upsilon(4 S)$
- $\Delta p_{T} / p_{T} \sim 0.5 \% \ldots \ldots$ at 1 GeV
- $(\Delta E / E)_{\text {Cal }} \sim 3 \% \ldots$.... at 1 GeV

BABAR Detector

$$
\frac{d \sigma_{e^{+} e^{-} \rightarrow p \bar{p} \gamma}}{d \cos \theta_{\gamma}^{*}}(w)=\frac{d x}{x} A\left(s, x, \theta_{\gamma}^{*}\right) \sigma_{0}(w)
$$

$w=p \bar{p}$ invariant mass $=\sqrt{s(1-x)}, x=2 E_{\gamma}^{*} / \sqrt{s}$

$$
A\left(s, x, \theta_{\gamma}^{*}\right)=\frac{\alpha}{\pi}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}^{*}}-\frac{x^{2}}{2}\right) \quad \theta_{\gamma}^{*} \gg \frac{m_{e}}{\sqrt{s}} \text { in } e^{+} e^{-} \text {c.m. }
$$

for $\theta_{\gamma}^{*}>20^{\circ}$ I.S.R. Angular Acceptance $\approx 15 \%$
ISR γ detected $\Longrightarrow \gamma \gamma$ interactions killed

Advantages

- All \boldsymbol{q} at the same time \Longrightarrow Better control on systematics
- c.m. boost \Longrightarrow at threshold efficiency $\neq 0+\sigma_{W} \sim 1 \mathrm{MeV}$
- Detected ISR $\gamma \Longrightarrow$ full $p \bar{p}$ angular coverage

Drawbacks

$\mathcal{L} \propto$ invariant mass bin ΔwMore background

Events selection

ת Results, quoted in the following, concern $232 \mathrm{fb}^{-1}$ (out of $\sim 500 \mathrm{fb}^{-1}$)

- I.S.R. simulation:
- $20^{\circ}<\theta_{\gamma}^{*}<160^{\circ}$ (H. Czyz et al., Eur. Phys. J. C35 (2004) 527)
- Soft photons (M. Caffo et al., N. C. 110A (1997) 515)

Event selection:

- Tracks within DCH and DIRC acceptance
- Very tight proton selector ~ 30\% good events loss
- $\bar{p} \gamma$ kinematical fit
E_{γ} resolution not reproduced $\Longrightarrow 3 C$ fit
efficiency $\sim 18 \pm 1 \%$
- 4025 selected events

$p \bar{p}$ events background

$$
e^{+} e^{-} \rightarrow p \bar{p} \pi^{0}
$$

229 ± 32 estimated
$M_{p p}>4 \mathrm{GeV}$ $p \bar{p}$ signal is overwhelmed

Background Summary

	$\pi^{+} \pi^{-} \gamma$	$K^{+} K^{-} \gamma$	$p \bar{p} \pi^{0}$	$p \bar{p} \pi^{0} \gamma$	uds	$p \bar{p} \gamma$	data
N_{1}	5.9 ± 2.5	2.5 ± 1.0	229 ± 32	13 ± 3	26 ± 4	3737 ± 75	4025

Incredibly good at threshold ($\sim 1 \mathrm{MeV} / \mathrm{c}^{2}$), as $e^{+} e^{-}$c.m.

$$
\Delta p_{T} / p_{T} \sim 0.5 \% \text { at } 1 \mathrm{GeV}
$$

Baryon form factors at BABAR

$$
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)=\frac{4 \pi \alpha^{2} \beta C}{3 q^{2}}\left[\left|G_{M}\right|^{2}+\frac{2 M_{p}^{2}}{q^{2}}\left|G_{E}\right|^{2}\right]
$$

BABAR cross section from threshold to 4.5 GeV/c [PRD73 (2006) 012005]

Proton form factor at $q^{2}=4 M_{p}^{2}$

$$
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)\left(4 M_{p}^{2}\right)=0.83 \pm 0.05 \mathrm{nb}
$$

$$
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)\left(4 M_{p}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M_{p}^{2}} \frac{\beta p}{\beta_{p}}\left|G^{p}\left(4 M_{p}^{2}\right)\right|^{2}=0.85\left|G^{p}\left(4 M_{p}^{2}\right)\right|^{2} \mathrm{nb}
$$

$$
\begin{aligned}
& \qquad\left|G^{p}\left(4 M_{p}^{2}\right)\right| \equiv 1 \\
& \text { as pointlike fermion pairs! }
\end{aligned}
$$

$$
\left|G^{p}\left(4 M_{p}^{2}\right)\right|=0.99 \pm 0.04(\text { stat }) \pm 0.03(\text { syst })
$$

$$
\sigma^{\text {Coulomb }}=\frac{16 \pi^{2} \alpha^{3} M_{p}^{3 / 2} M_{N(1440)}^{3 / 2}}{\left(M_{p}+M_{N(1440)}\right)^{5}}\left|G^{p N(1440)}\right|^{2}=\left|G^{p N(1440)}\right|^{2} \times 0.49 \mathrm{nb}
$$

$$
\left|G^{p N(1440)}\right|=1.04 \pm 0.09
$$

The ratio $R=\mu_{p} \frac{\mathbf{G}_{\boldsymbol{E}}}{\boldsymbol{G}_{M}^{p}}$

JLab: Space-like G_{E}^{p} / G_{M}^{p} measurements

Space-Iike data

$$
\begin{aligned}
G_{E}^{p} & =F_{1}^{p}+\frac{q^{2}}{4 M_{p}^{2}} F_{2}^{p} \\
G_{M}^{p} & =F_{1}^{p}+F_{2}^{p}
\end{aligned}
$$

Space-like
F_{1} and $\frac{q^{2}}{4 M_{p}^{2}} F_{2}$ cancellation

$$
\frac{G_{F}^{p}\left(q^{2}\right)}{G_{m}^{p}\left(q^{2}\right)}<1
$$

Time-like

F_{1} and $\frac{q^{2}}{4 M_{p}^{2}} F_{2}$ enhancement

$$
\left|\frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}\right|>1
$$

$\cos \theta_{p}$ distributions form threshold up to 3 GeV [intervals in $\left.E_{C M} \equiv q(\mathrm{GeV})\right]$

Events/0.2 vs. $\cos \theta_{p}$

$$
\left.\frac{d \sigma}{d \cos \theta_{p}}=A\left[H_{E}\left(\cos \theta_{p}, q^{2}\right)\left|\frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}\right|^{2}+H_{M}\left(\cos \theta_{p}, q^{2}\right)\right] \right\rvert\, H_{E} \text { and } H_{M} \text { from MC }
$$

Histograms show contributions from

At low q
$\sin ^{2} \theta_{p}>1+\cos ^{2} \theta_{p}$
:---:
$\left\|G_{E}^{p}\right\|>\left\|G_{M}^{p}\right\|$

$$
\text { At higher } q, \quad\left|G_{E}^{p}\right| \rightarrow\left|G_{M}^{p}\right|
$$

Time-like $\left|G_{E}^{p} / G_{M}^{p}\right|$ measurements

$$
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2} \beta C}{2 q^{2}}\left|G_{M}^{p}\right|^{2}\left[\left(1+\cos ^{2} \theta\right)+\frac{4 M_{p}^{2}}{q^{2} \mu_{p}} \sin ^{2} \theta|R|^{2}\right]
$$

$$
R\left(q^{2}\right)=\mu_{p} \frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}
$$

$\gamma \gamma$ exchange

$\gamma \gamma$ exchange from $e^{+} e^{-} \rightarrow p \bar{p} \gamma$ BABAR data

$$
\mathcal{A}\left(\cos \theta, q^{2}\right)=\frac{\frac{d \sigma}{d \Omega}\left(\cos \theta, q^{2}\right)-\frac{d \sigma}{d \Omega}\left(-\cos \theta, q^{2}\right)}{\frac{\frac{d \sigma}{d \Omega}}{}\left(\cos \theta, q^{2}\right)+\frac{d \sigma}{d \Omega}\left(-\cos \theta, q^{2}\right)}
$$

Reconstructed time-like R (BABAR only)

Phases from DR: $\left|B_{s}^{p}\left(q^{2}\right)\right|$ and $\left|B_{D}^{p}\left(q^{2}\right)\right|$

BABAR $\sigma\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p}\right)+\mathbf{D R}$

The neutral baryons puzzle

$$
\sigma\left(e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}\right) \text { not zero at threshold? }
$$

- No Coulomb enhancement
- $G_{\Lambda} \propto 1 / \sqrt{\beta}$? Coulomb enhancement at quark level?

Cross sections of $e^{+} e^{-} \rightarrow \Sigma^{0} \overline{\Sigma^{0}}, \Lambda \overline{\Sigma^{0}}$ via ISR (BABAR)

$$
\sigma\left(e^{+} e^{-} \rightarrow \Sigma^{0}{\overline{\Sigma^{0}}}^{0}\right)_{\mathrm{th}}=30 \pm 13 \mathrm{pb}
$$

$$
\sigma\left(e^{+} e^{-} \rightarrow \Lambda \overline{\Sigma^{0}}\right)_{\mathrm{th}}=47 \pm 22 \mathrm{pb}
$$

U-spin relation:

$$
\text { U-spin relation: } \quad G^{\Sigma^{0}}-G^{\wedge}+\frac{2}{\sqrt{3}} G^{\wedge \Sigma^{0}}=0
$$

$$
M_{\Sigma^{0}} \sqrt{\sigma_{\Sigma^{0} \bar{\Sigma}^{0}}}-M_{\Lambda} \sqrt{\sigma_{\Lambda \bar{\pi}}}+\frac{2}{\sqrt{3}} \overline{M_{\Lambda \Sigma^{0}}} \sqrt{\sigma_{\Lambda \Sigma^{0}}}=(-0.06 \pm 6.0) \times 10^{-4}
$$

Conclusions

- Proton-antiproton
- $G_{p}\left(4 M_{p}^{2}\right)=1$: No strong interaction at threshold
- More data needed to disentangle G_{E}^{p}, G_{M}^{p}
- Neural baryons
- Puzzling non vanishing cross section at threshold?
- Much more data are needed

Perspectives

- BABAR \times 2, BESIII, VEPP2000
- SuperKEKB, SuperB?

BACK-UP SLIDES

Belle $\sigma\left(e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}\right)$

$\left|G^{\Lambda_{c}}\left(4 M_{\Lambda_{c}}^{2}\right)\right|=1.1 \pm 0.3$ (stat) ± 0.4 (syst)

