KLOE measurement of Ke2/K μ 2 and K \rightarrow ev γ

Alexei Sibidanov BINP, Novosibirsk

for the KLOE collaboration

International Workshop on e^+e^- collisions from Phi to Psi Beijing, China – 13-16 October 2009

13.10.2009

NP potential of $R_{\mu} = \Gamma(Ke2)/\Gamma(K\mu2)$

• SM prediction with 0.04% precision, benefits of cancellation of hadronic uncertainties (no f_{κ}): $\mathbf{R}_{\kappa} = 2.477(1) \times 10^{-5}$ [*Cirigliano Rosell arXiv:0707:4464*].

• Helicity suppression can boost NP [Masiero-Paradisi-Petronzio PRD74(2006)011701].

LFV can give O(1%) deviation from SM ($\Delta_{\rm R}^{31}$ ~ 5×10⁻⁴, tan β ~ 40, m_H~ 500 GeV) • Exp. accuracy on R_{κ} (before KLOE and NA62 results) at 5% level.

• New measurements of R_{κ} can be very interesting, if error at 1% level or better. 13.10.2009 A.Sibidanov – PHIPSI'09

IHEP, Beijing, China, 13-16 October, 2009

Ke2(γ): signal definition

• Evaluating **IB** spectrum (O(α)+resummation of leading logs) obtain a 0.0625(5) correction for the IB tail.

• Under 10 MeV, the **DE** contribution is expected to be negligible. 13.10.2009 A.Sibidanov – PHIPSI'09 IHEP, Beijing, China, 13-16 October, 2009

Charged kaon at KLOE

φ decay at rest provides pure kaon beams of know momentum $p_{\kappa} \sim 100 \text{ MeV}$

 $\lambda \sim 90$ cm (56% of K[±] decay in DC).

Kaon momentum measured (event by event) with 1 MeV resolution in DC.

Constraints from ϕ 2-body decay.

Particle ID with kinematics, energy deposition and ToF.

Tagging provides unbiased control samples for efficiency measurement.

4 m

13.10.2009

Analysis basic principles

13.10.2009

Analysis basic principles

Background rejection (track quality)

Background composition: $K\mu$ 2 events with bad p_K , p_{lep} , or decay vertex position reconstruction

• require good quality vertex and secondary track (χ^2 cut);

• reduce $K_{\mu 2}$ tails cutting on the error on M^2_{lep} expected from track parameters;

• quality cuts for K: the kinematic of $\phi \longrightarrow K^+K^-2$ -body decay allows redundant p_K determination.

Background rejection (track quality

- after cuts, we accept
 35% of decays in the FV
- most of Ke2 events lost have bad resolution
- S/B ~ 1/20, not enough!
- require the lepton track to be extrapolable to the calorimeter surface and to be associated to an energy release (cluster).

13.10.2009

Background rejection (PID)

Background rejection (PID)

Background rejection (PID)

Select a region with good S/B ratio in the $M_{lep}^2 - NN_{out}$ plane

K_{e2} event counting

Two-dimensional binned likelihood fit in the M²_{lep}–NN_{out} plane in the region **-4000**<**M**²_{lep}<**6100** and **0.86**<**NN_{out}**<**1.02**

K_{e2} event counting

Two-dimensional binned likelihood fit in the M²_{lep}–NN_{out} plane in the region **-4000**<**M**²_{lep}<**6100** and **0.86**<**NN_{out}**<**1.02**

K_{e2} event counting: systematics

Repeat fit with different values of $\max(M^2_{lep})$ and $\min(NN_{out})$: vary significantly (×20) bkg contamination + lever arm.

K_{e2} event counting: systematics

Repeat fit with different values of **max(M²_{lep})** and **min(NN_{out})**: vary significantly (×20) bkg contamination + lever arm.

K_{e2} event counting: systematics

We change by a factor of 20 the amount of bkg falling in the fit region by moving - min(NNout) - max(M²_{len}).

Signal counts change by 15%.

From the pulls of the R_K measurements **we evaluated a 0.3% systematic error**.

Ke2 fit: radiative corrections

• Analysis is inclusive of photons in the final state. In our fit region we expect:

 $\frac{\text{Ke2} (\text{E}_{\gamma} > 10 \text{MeV})}{\text{Ke2}(\text{E}_{\gamma} < 10 \text{MeV})} \sim 10\%$ 10[°] **MC** spectra **K**μ 2 **PID>0.98** • Repeat fit by varying Ke2 ($E_{\gamma} > 10 \text{ MeV}$) 10^{4} by 15% (DE uncertainty) get 0.5% error. **Ke2 (E_γ <10MeV)** We performed a **dedicated study of the** 10 ³ **Ke2γ** differential decay rate: - $\mathbf{E}_{\mathbf{v}}$ spectrum measured for the first Ke2 (E_v>10MeV time 10^{2} - confirm DE content of our MC, evaluated with ChPT O(p^4), within ~ 4% accuracy - obtain 0.2% systematic error on Ke2_{IB} -5000 5000 0 M²_{lep} (Me

13.10.2009

Ke2 y selection

To select Ke2 γ events additional selection criteria were applied: • Harder cut on NN output to reject Kµ2 with accidental γ • Explicit detection of γ with E>20 MeV

• Time for γ and e in EMC must be compatible:

Ke2 y selection

Ke2γ fit result

Ke2γ spectrum

We measure $\frac{1}{\Gamma(K_{\mu 2})} \frac{d\Gamma_{SD+}(K_{e2\gamma})}{dE_{\gamma}}$, where "SD+" means: $E_{\gamma}^* > 10 \text{ MeV}, \ \cos \theta_{e\gamma}^* < 0.9, \ p_e^* > 200 \text{ MeV}/c$ $N_{SD+}(Ke2\gamma) = 1378 \pm 63 \Rightarrow \Gamma_{SD+}(Ke2\gamma)/\Gamma(K\mu2) = 1.484(66)_{stat}(16)_{syst} \times 10^{-10}$ which is in agreement with $\chi PT O(p^4)$ prediction 1.447×10⁻⁵ [Bijnens, Ecker, Gasser '93] KLOE MC was validated to within 4.6% \Rightarrow systematic error on R_k is 0.2% ^{× 10⁻⁵} χΡΤ Ο(p⁶) ^{∗10⁻⁵} Light Front Quark x 10 χΡΤ O(p⁴) 0.6 Model $\chi^2 = 1.9/3$ $\chi^2 = 5.4/5$ $\chi^2 = 127/5$ 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 100 200 100 200 100 200 300 300 300 13.10.2009 A.Sibidanov - PHIPSI'09 IHEP, Beijing, China, 13-16 October, 2009

Reconstruction efficiencies

The ratio of Ke2 to Kµ2 efficiencies is evaluated with MC and corrected using data control samples

1) kink reconstruction (tracking): K⁺e3 and K⁺μ 2 data control samples selected using the tagging and additional criteria based on EMC information only (next slide)

2) cluster efficiency (e, μ): K_L control samples, selected with tagging and kinematic criteria based on DC information only

3) trigger: exploit the OR combination of EMC and DC triggers (almost uncorrelated); downscaled samples are used to measure efficiencies for cosmic-ray and machine background vetoes

We obtain: ε(Ke2)/ε(Kμ2) = 0.946±0.007

13.10.2009

Control samples for tracking efficiencies

Just an example: selection of K⁺e3 control sample to measure tracking efficiency for electrons

0) Tagging decay (K μ 2 or K π 2);

1) Tagging decay (K μ 2 or K π 2): reconstruction of the opposite charge kaon flight path;

2) Using a ToF technique a $\pi^{0} \rightarrow \gamma \gamma$ decay vertex is reconstructed along the K decay path;

3) Require an electron cluster: p_e estimated from a kinematic fit with constraints on E/p, ToF, cluster position, and E_{miss} - P_{miss} .

Evaluate the K + electron kink reconstruction efficiency

13.10.2009

A.Sibidanov – PHIPSI'09 IHEP, Beijing, China, 13-16 October, 2009 Tag(Kµ2)

Control samples for tracking efficiencies

Systematics and checks

Cross-check on efficiencies: use same algorithms to measure $R_{13} = \Gamma(Ke3)/\Gamma(K\mu 3)$

 $\begin{aligned} R_{13} &= 1.507 \pm 0.005 \text{ for } \text{K}^+ \\ R_{13} &= 1.510 \pm 0.006 \text{ for } \text{K}^- \end{aligned}$

SM expectation (FlaviaNet) $R_{13} = 1.506 \pm 0.003$

Summary of systematics:

Tracking	0.6%	K ⁺ control samples
Trigger	0.4%	downscaled events
syst on Ke2 counts	0.3%	fit stability
Ke2γ DE component	0.2%	measurement on data
Clustering for e, µ	0.2%	K _L control samples

Total Syst

0.8%

(0.6% from statistics of control samples)

13.10.2009

R_κ: KLOE result

 $R_{\rm K} = (2.493 \pm 0.025 \pm 0.019) \times 10^{-5}$

Total error:

1.3% = 1.0%_{stat} + 0.8%_{syst} 0.9% from 14k Ke2 dominated + bkg subtraction by statistics The result does not depend upon the kaon charge: K⁺: 2.496(37) vs K⁻: 2.490(38) (uncorrelated errors only)
Agrees with SM prediction

R_κ : sensitivity to new physics

Sensitivity shown as 95% CL excluded regions in the tan β –M_H plane, for different values of the LFV effective coupling, $\Delta_{13} = 10^{-3}$, 5×10⁻⁴, 10⁻⁴

Conclusion

- Using 2.2 fb⁻¹ of data acquired at the ϕ peak, KLOE measured: R_K = (2.493 ±0.025_{stat}±0.019_{syst})×10⁻⁵
- This results confirms the SM prediction within the 1.3% accuracy
- Systematic error from DE model of KLOE MC on R_{κ} is 0.2%
- $\bullet \, {\rm E}_{\!\scriptscriptstyle \gamma}$ spectrum measured for the first time
- The error is dominated by the counting and the control samples statistics.
- Can contribute to set constraints on the parameter space of MSSM with LFV.

Kµ2 event counting

Fit to M²_{lept} distribution: 300 million Kµ 2 events per charge Background under the peak <0.1%, from MC A.Sibidanov – PHIPSI'09 IHEP, Beijing, China, 13-16 October, 2009

13.10.2009

Tracking efficiency

NN details

1) E/P;

2) 1st momentum of the distribution of the longitudinal energy path deposition (cluster centroid depth) evaluated at cell level;

3) the 3td momentum of the longitudinal energy path deposistion (skewness);

4,5) asymmetry of energy lost in first two innermost (outermost) planes;

- 6) RMS of energy plane distribution;
- 7) energy lost in the 1st plane;
- 8) number of the plane with larges energy deposition;
- 9) largest energy deposition in a single plane;
- 10) slope of the E_int(x) energy distribution;
- 11) curvature of the E_int(x) energy distribution;
- 12) de/dx i.e. value of $E_int(x)/x|x<15$ cm

Additional separation using ToF information: difference δ T of the time measured in the EMC with that expected from the DC measurements in electron mass hypothesis has been included in the final version of the NN: 12-25-20-1 becomes 13-25-20-1

13.10.2009

NN input distributions: some

example

Distributions for Ke2y decay

Ke2y process

Dalitz density $\frac{d\Gamma(Ke2\gamma)}{dxdy} =$

 $= \rho_{\rm IB}(x, y) + \rho_{\rm DE}(x, y) + \rho_{\rm INT}(x, y)$

helicity suppressed

negligible

 $x=2E_{\gamma}/M_K, \; y=2E_e/M_K$ E_{γ}, E_e in the K rest frame

Structure Dependent

 $\rho_{\rm DE}(x,y) = \frac{G_F^2 |V_{us}|^2 \alpha}{64\pi^2} M_K^5 \left((f_V + f_A)^2 f_{\rm SD+}(x,y) + (f_V - f_A)^2 f_{\rm SD-}(x,y) \right)$

 $f_{V,}f_{A}$: effective vector $SD+ = V+A : \gamma$ polarization +and axial couplings $SD-= V-A : \gamma$ polarization +

13.10.2009

Ke2γ: theory predictions

Dalitz plots for SD+ and SD-

Ke2y fit results

Projections on $M\ell^2$ axis for 2 most populated $E\gamma^*$ bins

The KLOE experiment

Be beam pipe (0.5 mm thick) Instrumented permanent magnet quadrupoles (32 PMTs) Drift chamber (4 m $\emptyset \times 3.3$ n 90%He+10% iC₄H₁₀, composite frame, 12582 stereo sense wires Electromagnetic calorimeter Lead/scintillating fibers 4880 PMTs Superconducting coil (5 m B = 0.52 T (B dl = 2 T·m)

13.10.2009