Measurements of $\gamma^* \gamma \to \pi^0$ and $\gamma^* \gamma \to \eta_c$ transition form factors at BABAR

V. Druzhinin (BINP, Novosibirsk) for BaBar Collaboration

Two-photon reaction $e^+e^- \rightarrow e^+e^- P$

- Electrons are scattered predominantly at small angles.
- For pseudoscalar meson production the cross section depends on only one form factor $F(q_1^2, q_2^2)$, which describes the $\gamma^*\gamma^* \rightarrow P$ transition.

No-tag mode:

- √ both electrons are undetected
- $\sqrt{q_1^2}, q_2^2 \approx 0$
- $\checkmark\Gamma\gamma\gamma$ or F(0,0)

Single-tag mode:

- ✓one of electrons is detected
- $\sqrt{Q^2} = -q_1^2 = 2EE/(1-\cos\theta),$
- \checkmark do/dQ²~1/ Q⁶ for π^0
- $√F(Q^2,0)$

Two-photon reaction $e^+e^- \rightarrow e^+e^- P$

$$F(Q^2) = \int T(x,Q^2) \varphi(x,Q^2) dx$$

Hard scattering Nonperturbative amplitude for pion distribution $\gamma^* \gamma \rightarrow q\bar{q}$ transition amplitude which is calculable describing in pQCD

transition $P \rightarrow q\bar{q}$

x is the fraction of the meson momentum carried by one of the quarks

- √ electron is detected and identified
- $\checkmark \pi^0$ or η_c are detected and fully reconstructed
- ✓electron + meson system has low p
- √ missing mass in an event is close to zero

$e^+e^- \rightarrow e^+e^-\pi^0$

B.Aubert et al., Phys. Rev. D80, 052002 (2009)

- The main non-resonant background is virtual Compton scattering, the process e⁺e⁻ → e⁺e⁻γ with one of the final electrons directed along the beam axis.
- The peaking background comes e⁺ e⁻ → e⁺ e⁻ π⁰ π⁰, about 10% of signal events.

Detector	Q^2 , GeV^2	Events	Year
CELLO	0.7-2.2	127	1991
CLEO	1.6-8.0	1219	1998
BABAR	4-40	13200	2009

$e^+e^- \rightarrow e^+e^-\pi^0$

The data were divided into 17 Q² intervals.

$e^+e^- \rightarrow e^+e^-\pi^0$, cross section

Systematic uncertainty independent on Q² is 3%.

$e^+e^- \rightarrow e^+e^-\pi^0$, form factor

Systematic uncertainty independent on Q² is 2.3%.

✓ In Q² range 4-9 GeV² our results are in a reasonable agreement with CLEO data but have significantly better accuracy.

At Q²>10 GeV² the measured form factor exceeds the asymptotic limit $\sqrt{2}f_{\pi}$ =0.185 GeV. Most models for the pion distribution amplitude give form factors approaching the limit from below.

✓ Our data in the range 4-40 GeV² are well described by the formula

$$|Q^2|F(Q^2)| = A \left(\frac{Q^2}{10 \text{ GeV}^2}\right)^{\beta}$$

with A=0.182±0.002 GeV and β =0.25±0.02, i.e. F~1/Q^{3/2}.

$e^+e^- \rightarrow e^+e^-\pi^0$, comparison with theory

✓ A.P.Bakulev, S.V.Mikhailov, N.G.Stefanis, Phys. Rev. D 67, 074012, light-cone sum rule method at NLO pQCD+twist-4 power corrections.

✓ Q²<20 GeV²: large difference between the data and the theory in Q² dependence. The models are inadequate for Q²<15 GeV.

✓ $Q^2 > 20$ GeV²: theoretical uncertainties are expected to be smaller. Our data lie above the asymptotic limit and are consistent with the CZ model.

$e^+e^- \rightarrow e^+e^-\pi^0$, after publication

- S.V.Mikhailov and N.G.Stefanis, Nucl. Phys. B821, 291 (2009), the growth of the form factor in Q² range 10-20 GeV² cannot be explained by NNLO pQCD and power corrections
- A.V. Radyuskin, arXive:0906.0323; M.V.Polyakov, arXive:0906.0538; H.N.Li and S.Mishima, arXive:0907.0166. A flat pion distribution amplitude is used to reproduce Q² dependence of BABAR data.

$\gamma \gamma^* \rightarrow \eta, \eta'$ form factors

- ✓ BABAR (Phys.Rev.D74, 012002 (2006)) measured the time-like form factors in $e^+e^- \rightarrow \eta \gamma, \eta' \gamma$ reactions at the c.m. energy 10.6 GeV.
- ✓ Asymptotic limits are calculated taking into account η - η' -mixing and have large model uncertainties.
- ✓ The large deviation from the asymptotic value (by a factor of 1.5-2) is observed for the form-factor ratio. The deviation from the asymptotic value for the π^0 form factor at large Q² is about 30%.
- \checkmark The analysis of BABAR data on two-photon η and η' production is in progress. We expect to cover Q² interval from 4 to 60 GeV².

$\gamma \gamma^* \rightarrow \eta_c$ form factor

- □pQCD: Due to relatively large c-quark mass, the $η_c$ form factor is rather insensitive to the shape of $η_c$ distribution amplitude. The form factor Q² dependence is expected to be described by the monopole form F(0)/(1+Q²/Λ) with Λ≈10 GeV².
- □ The η_c is observed via the η_c → K_S $K^+\pi^-$ decay.
- \Box The η_c two-photon width and branching fractions are not well measured.
- □No-tag data are also studied to measure the product
- $\Gamma(\eta_c \rightarrow \gamma \gamma) B(\eta_c \rightarrow KK\pi)$ and normalize the F(Q²) to F(0).
- \Box The high no-tag statistics allow to perform accurate measurement of the η_c mass and total width.

$e^+e^- \rightarrow e^+e^- \eta_c$, $\eta_c \rightarrow K_S K^+ \pi^-$, no-tag

Part of ISR events can be separated using the condition:

$$p^*/(1-M_{KK\pi}^2/s) > 5.1~{
m GeV}/c,$$

$e^+e^- \rightarrow e^+e^-\eta_c$, no-tag mode

- •The sources of non-resonant background are two-photon and ISR processes.
- •The peaking background is $e^+e^- \rightarrow J/\psi\gamma$, $J/\psi \rightarrow \eta_c\gamma \rightarrow K_SK^+\pi^-\gamma$. It is calculated from the fitted number of $J/\psi \rightarrow K_SK^+\pi$ events. 4%.

	Mass, MeV	Width,MeV
PDG	2980.3±1.2	26.7±3.0
BABAR(88 fb ⁻¹)	2982.5±1.1±0.9	34.3±2.3±0.9
BABAR(470 fb ⁻¹), preliminary	2982.2±0.4±1.5	31.7±1.2±0.8

Main sources of systematic uncertainties are unknown background shape and possible interference η_c and non-resonant two-photon amplitudes.

$$N(\eta_c)=13890\pm320\pm670$$

BABAR preliminary: $\Gamma(\eta_c \rightarrow \gamma \gamma)B(\eta_c \rightarrow KK\pi) = 0.379 \pm 0.009 \pm 0.031 \text{ keV}$

PDG: 0.44±0.04 keV, CLEO: 0.407±0.022±0.028 keV

$e^+e^- \rightarrow e^+e^-\eta_c$, single-tag mode

m=2985.7 \pm 2.0 MeV/c² Γ =31.9 \pm 4.3 MeV N=530 \pm 41 \pm 17

Peaking background from $e^+e^- \rightarrow e^+e^- J/\psi$, $J/\psi \rightarrow \eta_c \gamma \rightarrow K_S K^+\pi^- \gamma$ is calculated from the fitted number of $J/\psi \rightarrow K_S K^+\pi^-$ events. It varies from about 1% at Q²<10 GeV² to about 5% at Q²≈30 GeV²

$e^+e^- \rightarrow e^+e^-\eta_c$, single-tag mode

$e^+ e^- \rightarrow e^+ e^- \eta_c$, cross section

Systematic uncertainty independent on Q² is 6.7%.

$e^+e^- \rightarrow e^+e^- \eta_c$, form factor

Systematic uncertainty independent on Q² is 4.3%.

- The form factor is normalized to F(0) obtained from no-tag data.
- We fit the function

$$F(Q^2) = F(0)/(1+Q^2/\Lambda)$$

to the form factor data. The result

$$\Lambda = 8.5 \pm 0.6 \pm 0.7 \text{ GeV}^2$$

does not contradict the vector dominance model with

$$\Lambda = m^2_{J/W} = 9.6 \text{ GeV}^2$$
.

and lattice QCD (J.J.Dudek, R.G.Edwards, Phys. Rev. Lett. 97, 172001 (2006))

$$\Lambda = 8.4 \pm 0.4 \text{ GeV}^2$$

 Our data lie below a leading-order pQCD calculation (T. Feldmann, P.Kroll, Phys. Lett. B413, 410 (1997))

Summary

- The γ*γ→π⁰ transition form factor has been measured for Q² range from 4 to 40 GeV²
- The unexpected Q² dependence of the form factor is observed for Q²>10 GeV². The data lie above the asymptotic limit. This indicates that pion distribution amplitude is wide.
- This measurement stimulated development of new models for form-factor calculations.
- The γ*γ→η_c form factor has been measured for Q² range from 2 to 50 GeV²
- The form factor data are well described by the monopole form with Λ=8.6±0.6±0.7 GeV². The data are in reasonable agreement with both QCD and VDM predictions.

BACKUP SLIDES

$e^+e^- \rightarrow e^+e^-\pi^0$, detection efficiency

- Due to asymmetry of e⁺e⁻ collision the Q² region below 7 GeV² is measured only with positron tag
- We measure the cross section from $Q^2 > 4 \text{ GeV}^2$ to avoid possible systematic error due to data-MC difference near the edges of the detector
- The average π^{o} energy grows with Q². This leads to decrease of the detection efficiency for Q² > 10 GeV²

$e^+e^- \rightarrow e^+e^-\pi^0$, total efficiency correction

Total systematic error independent on Q² is 2.5% and includes

- 1% π^{o} losses,
- 2% trigger efficiency,
- 1% $\cos \theta_{e\pi}$ cut.

$e^+e^- \rightarrow e^+e^-\eta_c$, detection efficiency

- Due to asymmetry of e⁺e⁻ collision the Q² region below 6 GeV² is measured only with positron tag
- We measure the cross section from $Q^2 = 2 \text{ GeV}^2$ where the efficiency is about 2%.
- •For no-tag events the efficiency is (14.5±0.2)%
- •Data Dalitz plot distribution is used to reweight MC events. The shift of efficiency is small, (-1.1±1.6)%.

$e^+e^- \rightarrow e^+e^-\eta_c$, systematic uncertainty

Source	No-tag, %	Single-tag, %
trigger, filters	1.2	_
η_c selection	5.9	5.7
track reconstruction	1.4	1.5
K^{\pm} identification	0.4	0.5
e^{\pm} identification	_	1.0
total	6.2	6.0

- To estimate systematic uncertainty due to selection criteria we change
 - K_S mass window: 0.4875-0.5075 \Rightarrow 0.475-0.52
 - Limit on transverse momentum: 0.25 ⇒ 0.5
 - $0.387 < \theta < 2.4$ for kaon and pions
 - $-0.02 < r < 0.03 \implies -0.02 < r < 0.06$
- The significant (~6%) effect is observed for change of angular restrictions.

