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Isospin violating mechanisms in quarkonium

hadronic decays *
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Abstract We analyze the φ meson production in e+e− →ωπ0 as a probe for studying the isospin violation

mechanisms. By clarifying the dynamic sources causing the isospin violation, we succeed in quantifying those

mechanisms with the help of the recent KLOE data. Hence, the φ→ωπ0 branching ratio is extracted. We

find that apart from the electromagnetic (EM) transitions, the strong transition via intermediate kaon loops

plays an important role in understanding the cross section and its lineshape.
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1 Introduction

The e+e− annihilation below the charmonium

threshold is a major source of information on the

properties of light vector mesons (ρ, ω, φ) and their

excited states. KLOE collaboration at the φ factory

recently report the cross sections of e+e− → ωπ0 in

the vicinity of the φ meson [1, 2]. With tiny exper-

imental errors, the φ excitation appears as a dip at

the φ mass, while the background contributions are

smooth and flat. Since the reaction e+e− → ωπ0 is

dominated by the I = 1 transition matrix element, the

interferences due to the φ (I = 0) production will pro-

vide an opportunity for probing the isospin-violating

mechanism and its correlation with the Okubo-Zweig-

Iizuka (OZI) rule [3].

The study of φ → ωπ0 has been a long history.

This isospin-violating transition is correlated with the

OZI-rule violation if the φ and ω are indeed ideal

mixtures between the flavor singlet and octet. As we

have known, the isospin violation generally have two

sources. One is the electromagnetic (EM) transition,

and the other is strong transition arising from the

mass difference between the u and d quark. This will

cause nonvanishing transitions between isospin eigen

states with I = 1 and I = 0. In this sense, the state

mixing is correlated with the coupled channel transi-

tion. In early studies, mechanisms involving the π-η

mixing or empirical φ-ω-ρ0 mixing were explored [4–

9]. In our case, we distinguish the state mixing and

intermediate meson loop transitions based on an ef-

fective Lagrangian approach. It can be understood

as factorizing out the transition mechanisms in a dif-

ferent way. We can then explicitly calculate the tran-

sition amplitudes with constraints from independent

processes [10, 11]. As a consequence, the state mix-

ings can also be examined.

As follows, we first analyze the transition mecha-

nisms and introduce the effective Lagrangian frame-

work. In Sec. 3, calculation results are presented and

compared with the experimental data. In Sec. 4, we

draw conclusions and a brief summary is given.

2 Theory construction

Notice that the leading contributions to e+e− →
ωπ0 are from the single photon transitions. Thus,

the transition amplitude will be a product of the EM

current and an anti-symmetric tensor. Taking the ad-

vantage for the single Lorentz structure for the VVP

coupling, we can factorize the total amplitude into
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the following expression:

Mfi =MI=1
fi +MI=0

fi , (1)

with

MI=0
fi = MEM−I=0

fi +

eiδL(MLoop−I=0
fi +Mmixing−I=0

fi ), (2)

where MI=1
fi and MI=0

fi denote the isospin 1 and

0 component in the amplitude, respectively. The

isospin 0 amplitude can be further factorized into EM

and strong part, while the latter receives contribu-

tions from the intermediate meson loop transitions

and states mixings. δL is the phase angle for the EM

and loop transition amplitudes, which will be deter-

mined by the experimental data. The relative phase

between MLoop−I=0
fi and Mmixing−I=0

fi is given by the

effective Lagrangian.

As follows, we present those amplitude compo-

nents in detail.

2.1 I =1 transitions in VMD model

The I = 1 component plays a role as background

in respect to the φ meson excitation in e+e− →ωπ0.

Around the φ mass region, the dominant contribu-

tions are due to the low-lying I = 1 vector mesons,

such as ρ0, ρ′(1450), etc. According to PDG [12],

these two states are the nearest to φ, thus, would be

the major contributing states. Their amplitudes can

be expressed as follows in terms of VMD [13]:

Ma
fi = v̄(s′)(p′

e)(−ieγβ)us(pe)
−1

s(s−M 2
ρ +iΓρ(s)

√
s)

eM 2
ρ

fρ

gωρπ

Mω

εαβµνp
α
ρpµ

ωεν
ω, (3)

Mb
fi = v̄(s′)(p′

e)(−ieγβ)us(pe)
−1

s(s−M 2
ρ′ +iΓρ′(s)

√
s)

eM 2
ρ′

fρ′

gωρ′π

Mρ′

εαβµνp
α
ρ′pµ

ωεν
ω, (4)

where eM 2
V/fV is a direct photon-vector-meson cou-

pling and gωρπ and gωρ′π are the VVP strong coupling

constants. Γρ(s) and Γρ′(s) are energy-dependent to-

tal widths for the intermediate ρ and ρ′, respectively.

They are described by the two major decay modes,

π+π− and ωπ0 [14]:

Γρ(s) = Γρ(M
2
ρ )

M 2
ρ

s

(

pπ(s)

pπ(M 2
ρ)

)3

+

g2
ωρπ

12πM 2
ω

p3
ω(s), (5)

Γρ′(s) = Γρ′(M 2
ρ′)

[

Bρ′
→ωπ0

(

pω(s)

pω(M 2
ρ′)

)3

+

(1−Bρ′
→ωπ0)

M 2
ρ′

s

(

pπ(s)

pπ(M 2
ρ′)

)3
]

, (6)

where the coupling constant gωρπ/Mω is taken to

be 17 GeV−1, which is the fitted value using three

different fitting schemes in Ref. [14]. This value is

consistent with the experimental values derived from

ω → π0γ, ρ → π0γ and ω → ρπ → π+π−π0 de-

cays, and theoretical estimates based on the QCD

sum rules [15–17].

In the above treatment, it is assumed that the

dominant I = 1 background is given by the ρ and ρ′

states, for which a relative phase angle is considered:

MI=1
fi =Ma

fi +eiδ1Mb
fi, (7)

where δ1 = 180◦ is applied as a constructive phase

between ρ and ρ′ terms in Eq. (7).

2.2 I =0 transitions

As pointed out earlier, the isospin-violating φωπ0

coupling can occur via the following processes: i) EM

transitions though the ss̄ annihilation; ii) OZI-rule-

evading transitions through intermediate kaon loops;

iii) State mixings such as φ−ω−ρ0 and π0−η. We

shall discuss these mechanisms in detail as follows.

2.2.1 I = 0 EM transitions in VMD model

Bothω and φ meson can contribute to this ampli-

tude except that ω contributes to the background as

illustrated by Fig. 3(c) and (d). We can also factorize

out the transition amplitude as the following:

MEM−I=0
fi = (Mc−ρ

fi +eiδ2Md−ρ

fi )+

eiδ1(Mc−ρ′

fi +eiδ2Md−ρ′

fi ), (8)

where the detailed expressions for M can be found

in Ref. [11] in the VMD model. In the calculation we

fix δ2 = 0◦ as given by the effective Lagrangians, while

δ1 = 180◦ is required as a constructive phase between

the transitions mediated by ρ and ρ′ in Fig. 1 (c) and

(d).
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Fig. 1. The schematic diagrams for I = 1 [(a) and (b)] and I =0 EM transitions [(c) and (d)].

2.2.2 I = 0 transitions via intermediate meson loops

The contributions from the intermediate meson

loops are correlated with the state mixings in the next

subsection. The transitions can be demonstrated by

Fig. 2(a)-(d) as the t-channel processes, while the φ-

ρ0 mixing can be recognized via Fig. 2(e) and (f) as

the s-channel. As explained earlier, the t-channel

strong isospin violation arises from the incomplete

cancellations between the charged and neutral kaon

loops since they have slightly different masses. In an-

other word, if the charged and neutral K (K∗) mesons

have the same mass, their amplitudes will exactly

cancel out and the isospin would be conserved. More

essentially, it can be recognized that the charged and

neutral kaon mass differences originate from the chiral

symmetry dynamic breaking which leads to md > mu.

Fig. 2. The transition mechanisms for φ→ωπ0 via t-channel [(a)-(d)] and s-channel transitions [(e) and (f)].

The transition amplitude for e+e− →φ→ωπ0 via

an intermediate meson loops can be expressed as:

Mfi = v̄(s′)(p′

e)(−ieγρ)us(pe)
−igρσ

s

eM 2
φ

fφ

×

iεσ
φ

s−M 2
φ +iΓφ(s)

√
s

∫
d4p2

(2π)4

∑

K∗pol

T1T2T3

a1a2a3

F(p2
2). (9)

where the vertex functions for KK̄(K∗) are






















T1 ≡ ig1(p1−p3) ·εφ

T2 ≡ ig2

Mω

εαβµνp
α
ωεβ

ωpµ
2εν

2 ,

T3 ≡ ig3(pπ +p3) ·ε2

where g1, g2, and g3 are the coupling constants at

the meson interaction vertices. The four vectors, pφ,

pω, and pπ0 are the momenta for the initial φ and

final state ω and π meson; The four-vector momen-

tum, p1, p2, and p3 are for the intermediate mesons,

respectively, while a1 = p2
1 −m2

1,a2 = p2
2 −m2

2, and

a3 = p2
3−m2

3 are the denominators of the propagators

of intermediate mesons.

The vertex functions for the KK̄∗(K) + c.c. loop

are






















T1 ≡ if1

Mφ

εαβµνp
α
φεβ

φpµ
3 εν

3 ,

T2 ≡ if2(p1−p2) ·εω ,

T3 ≡ if3(pπ−p2) ·ε3 .

where f1,2,3 are the coupling constants.

Similarly, we have vertex functions for the inter-

mediate KK̄∗(K∗)+c.c. loop:


























T1 ≡ ih1

Mφ

εαβµνp
α
φεβ

φpµ
3εν

3 ,

T2 ≡ ih2

m2

εα′β′µ′ν′pα′

2 εβ′

2 pµ′

ω εν′

ω

T3 ≡ ih3

m3

εα′′β′′µ′′ν′′pα′′

2 εβ′′

2 pµ′′

3 εν′′

3
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where h1,2,3 are the coupling constants. In the above

three kinds of vertex functions, the coupling constants

are determined via experimental value and SU(3) re-

lations [10, 12, 18].

The form factor F(p2), which takes care of the off-

shell effects of the exchanged particles and kills the

divergence of the loop integrals, is usually parameter-

ized as

F(p2) =

(

Λ2−m2
ex

Λ2−p2

)n

, (10)

where n = 0,1,2 correspond to different treatments

of the loop integrals. In the present work, we only

consider the monopole form factor, i.e. n = 1. The

cut-off energy Λ is parameterized as:

Λ = mex+αΛQCD, (11)

where we fix ΛQCD = 220 MeV and α is a tunable

parameter; mex is the mass of exchanged meson.

2.2.3 I = 0 transitions via φ-ρ0 and ω-ρ0 strong

mixings

The s-channel transitions in Fig. 2(e) and (f) give

rise to the φ-ρ0 and ω-ρ0 mixings. With the effective

Lagrangians, we can also calculate their contributions

to the φ excitations. The mixing effect cannot be

significant since the nonvanishing amplitudes are also

arising from the incomplete cancellations between the

charged and neutral meson loops.

Taking into account the charge-neutral term, the

amplitude can be written as

Mfi = v̄(pe+)(−ieγf)u(pe−)×

1

s(s−M 2
φ +iΓφ(s)

√
s)

eM 2
φ

fφ

×

εφρ

gωρπ

Mω

εefghp
e
πpg

ωεh
ω , (12)

where εφρ is the strong isospin-violating coupling

strength between φ and ρ0,

εφρ ≡ 1

6π
√

sDρ

[gφK+K−gρK+K−P 3
K+K−(s)+

gφK0K̄0gρK0K̄0P 3
K0K̄0(s)] , (13)

where Dρ ≡Dρ(s) = M 2
ρ−s−i

√
sΓρ(s) and PK+K− and

PK0K̄0 are the three-vector momentum of the charged

and neutral kaons, respectively. Note that there ex-

ists a sign between gρK+K− and gρK0K̄0 which brings

cancellation between those two terms on the right-

hand side of Eq. (13).

At the mass of the φ meson, we obtain εφρ =

(9.51− i3.31) × 10−4 as an effective strong isospin-

violating coupling for φ → ρ0. This result can be

compared with the intermediate meson transition in

Eq. (2.10) of Ref. [19] apart from factor Dρ, while

the EM part has been contained in the EM transition

amplitudes.

The ω-ρ0 strong mixing occurs only via interme-

diate charged pion loop transition. The transition

amplitude is similar to that for φ-ρ0 mixing, from

which the strong isospin-violating coupling strength

can be also defined,

εωρ ≡
1

6π
√

sDρ

gωπ+π−gρπ+π−P 3
π+π−(s). (14)

At the mass of φ meson, we obtain εωρ = (13.7−
i4.8)×10−3, which is larger than that εφρ. However,

we note in advance that the ω-ρ0 mixing effects are

negligibly small at the φ mass.

3 Calculation results

In the numerical study, we adopt resonance

masses and widths for ω, ρ0 from PDG [12], while

the coupling constants are either determined by ex-

perimental data or SU(3) symmetry [11]. We then

have only three parameters to be determined by the

KLOE data for e+e− → ωπ0, i.e. a phase angle δL

in Eq. (1), the form factor parameter α, and the to-

tal width Γρ′ for ρ′. Two fits are carried out as an

investigation of the parameter space. In Fit-I, we fix

the phase angle δL = −90◦ while leave α and Γρ′ to

be determined by the data. In Fit-II, we free these

three parameters to let them be fitted by the data.

In Table. 1, the fitted parameters are listed.

Table 1. The parameters fitted in Fit-I and Fit-

II schemes.

Para. δL α Γρ′/MeV χ2/d.o.f

Fit-I −90.0◦(fixed) 1.125±0.052 674±6 5.71

Fit-II −111.6◦±2.3◦ 1.244±0.051 683±6 0.54

Comparing Fit-I with Fit-II, it shows that the rel-

ative phase angle between the EM and strong isospin

violation amplitudes are important to improve the fit-

ting results. Also, we find very broad widths for ρ′.

This could be reasonable since the effective width con-

tains contributions from all ρ resonances apart from

the ρ0(770).

The extracted branching ratios from these two fits

are listed in Table 2. They are compared with the

PDG [12] and KLOE results [1, 2]. It shows that

the φ-ρ0 strong mixing is relatively small and in-

dependent of those parameters. Therefore, it keeps

the same for both fits and contributes an exclusive

branching ratio of 0.37× 10−5. The EM amplitudes
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will depend on the ρ′ width, which leads to small

differences between these two fits. We then notice

that significant differences between these two fits arise

from the meson loop contributions. In Fit-I, the loop

contributions constructively interfere with other tran-

sitions and lead to a relatively larger branching ratio,

BRφ→ωπ0 = 4.29×10−5, while in Fit-II the loop tran-

sition amplitude has a destructive effect and gives

BRφ→ωπ0 = 2.83×10−5. This is a novel feature aris-

ing from the precise data [2].

Table 2. Branching ratios for φ → ωπ0 extracted from our model with two different fitting schemes. Ex-

perimental data [1, 2, 12] and exclusive branching ratios from EM, t-channel meson loop transitions, and

s-channel φ-ρ0 mixing are also listed.

BR(×10−5) EM Meson loop φ-ρ0 mixing Total PDG [12] Exp [1] Exp [2]

Fit-I 2.95 0.93 0.37 4.29

Fit-II 2.97 1.14 0.37 2.83
5.2+1.3

−1.1 5.63±0.70 4.4±0.6

Fig. 3. The
√

s-dependence of the total cross section for e+e− →ωπ0 fitted in Fit-I (left) and Fit-II (right).

The data are from KLOE measurement [2]. In the lower panels, the dotted curves denote the exclusive

t-channel meson loop contributions, the solid lines denote the contributions from the φ-ρ0 mixing, the dot-

dot-dashed lines denote the contributions from the ω-ρ0 mixing, while the dashed ones for the inclusive cross

sections for φ excitations (EM plus strong isospin violation). The dot-dashed lines stand for cross sections

from ρ′(1450) with fitted total widths. In the upper panels, the dotted lines denote the contributions from the

ρ meson, while the dashed lines are for the inclusive contributions from background including the dominated

I =1 component (ρ plus ρ′(1450)) and a small I = 0 ω excitation. The solid curves are the full model results.

In Fig. 3, we plot the cross sections from different

transitions. The following points can be learned from

the fitting results:

i) The extracted branching ratio is very sensitive

to the lineshape of the φ meson dip. This raises ques-

tions on the theoretical input in the data analysis.

Although such a sensitivity may reflect some model-

dependent aspects of this approach, we give cautions

to possible uncertainties with the extracted branching

ratio from both experiment and theory.

ii) The side-band cross sections are important for

determining the background contributions. As shown

by the solid curve for the full calculation, at the en-

ergies away from the φ mass, the contributions from

the φ excitation die out quickly, and the cross sec-

tions are dominated by the I = 1 components. This

is also related to the large values for the extracted

ρ′ width. Perhaps, more detailed modelling for the
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I = 1 component is needed.

iii) Cautions should also be given to the under-

standing of the non-ωπ0 background which will con-

tribute to the 4π final state as studied in experiment

[2].

iv) Our calculations show that the ω-ρ0 mixing

effects are negligibly small at the φ mass region as

illustrated by the dot-dot-dashed curved in the lower

panels of Fig. 3. Also, we mention that the contribu-

tions from the η−π0 is small [4] and we neglect it in

this work.

v) By defining the background cross section

σ0(
√

s) (from I = 1 transitions and I = 0 ω exci-

tation), the full cross section can be parameterized as

[20–22]:

σ(
√

s) = σ0(
√

s)

∣

∣

∣

∣

1−Z
MφΓφ

Dφ

∣

∣

∣

∣

2

, (15)

where Mφ and Γφ are the φ mass and width and

Dφ = M 2
φ−s− i

√
sΓφ is the inverse propagator of the

φ meson; Z is a complex interference parameter that

equals to the ratio of φ excitation amplitude to the

background terms and describes the energy evolution

of their relative phase. Our model gives the real and

imaginary part of this complex quantity as follows

[11]:

Fit-I : (0.107±0.005, −0.110±0.009), (16)

Fit-II : (0.065±0.002, −0.103±0.005) , (17)

which are compatible with the experimental results

[1, 20–22].

4 Summary

The precise measurement of the φ excitation in

e+e− →ωπ0 [2] as a consequence of interferences be-

tween the I = 1 and I = 0 components in the tran-

sition amplitudes provides an opportunity to study

the isospin violation mechanisms at low energies. We

investigate this process by quantifying the isospin vi-

olations in both EM and strong transitions. The

I = 1 and I = 0 EM contributions are studied in

the VMD model, while the I = 0 strong isospin vio-

lating process is described by the t-channel OZI-rule-

evading intermediate-mesons-exchange loops and s-

channel φ-ρ0 mixing.

The study shows that the cross section of e+e− →
ωπ0 has evident width-dependence on the ρ′ which

contributes to the I = 1 transition amplitudes. We

also find that the extracted branching ratio for φ→
ωπ0 is very sensitive to the line shape of the cross

sections in the vicinity of φ excitation and the back-

ground estimate. Our result turns to be smaller than

that given by Ref. [2]. This signals difficulties in ex-

tracting the tiny φ → ωπ0 branching ratio in both

experiment and theory.

The OZI-rule-evading transitions via intermediate

meson loops provide a natural solution for the φ me-

son non-KK̄ decays. Such a mechanism is also found

important in heavy quarkonium decays such as the

ψ(3770) non-DD̄ decays [23]. We expect further ex-

perimental results from the φ factory and τ-charm

factory would help clarify many long-standing ques-

tions in the strong QCD sector [24].
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