Rare tau decays at BABAR

George Lafferty, The University of Manchester for the BABAR Collaboration

International Workshop on e⁺e⁻ Collisions from Phi to Psi, Beijing, 13 – 16 Oct 2009

BaBar running ended in April 2008 with a total integrated luminosity of 531 fb⁻¹ Tau-pair cross section is 0.9 nb \rightarrow 488M tau pairs \rightarrow 976M tau decays

What suppresses rare/forbidden tau decays?

- Standard Model hadronic decays
 - Cabbibo suppresion
 - Helicity suppression
 - Limited phase space
 - J^{PG}: suppression of second-class weak hadronic currents
- Beyond the Standard Model
 - Lepton flavour conservation
 - Baryon number conservation

This talk reports on some examples of the above

hadrons

W*

Phase-space suppressed tau decays

- Decays to seven (or more) pions
 - If observed, could give information on tau neutrino mass
 - However ... (effective chiral Lagrangian) theory predicts branching fraction of order 10⁻¹¹ (or 10⁻¹⁰ if mediated by resonances)
- BABAR limits (at 90% CL):

BF(
$$\tau^- \to 4\pi^- 3\pi^+ v$$
) < 4.3 x 10^{-7}

Phys Rev D RC 72,012003(2005)

BF(
$$\tau^- \to 4\pi^- 3\pi^+ \pi^0 \nu$$
) < 2.5 x 10⁻⁷

BF(
$$\tau^- \to 3\pi^- 2\pi^+ 2\pi^0 \nu$$
) < 3.4 x 10⁻⁶

Phys Rev D 73,112003(2006)

BF(
$$\tau^- \to 2\omega \pi^- \nu$$
) < 5.4 x 10^{-7}

Second-class weak hadronic currents

- Weak (V-A) non-strange hadronic currents are classified according to values of spin-parity and G-parity, J^{PG}
- First-class currents dominate hadronic tau decays and have $J^{PG}=0^{++}~/~0^{--}(\pi^-)~/~1^{+-}(a_1^-)~/~1^{-+}(\rho^-)$
- Second-class currents (SCC) have an amplitude proportional to u-d quark mass difference, and have

$$\mathsf{J}^{\mathsf{PG}} = 0^{+-} \left(\mathsf{a}_0(980)^- \right) \ / \ 0^{-+} \ / \ 1^{++} \left(\mathsf{b}_1(1235)^- \right) \ / \ 1^{--} \left(\pi_1(1400)^- \right)$$

- SCC in tau decays expected at a level ~O(10⁻⁵)
- Difficult to measure because of large backgrounds

Search for second-class current in $\tau^- \rightarrow \omega \pi^- \nu$

Phys Rev Lett 103,041802(2009)

- Analysis using 347 fb-1 of BABAR data
- The $\omega \pi^-$ system has G = +1
- Using decay angular distributions to measure contributions from different J^P states

First class

Second class

J^P	L	$F(\cos\theta_{\omega\pi})$
1-	1	$(1-\cos^2\theta_{\omega\pi})$
0-	1	$\cos^2\theta_{\omega\pi}$
1+	0	1
1+	2	$(1+3\cos^2\theta_{\omega\pi})$

Search for second-class current in $\tau^- \rightarrow \omega \pi^- \nu$

$$F(\cos\theta_{\omega\pi}) = N[(1-\epsilon)F^{FCC}(\cos\theta_{\omega\pi}) + \epsilon F_{L=0}^{SCC}(\cos\theta_{\omega\pi})]$$

where $F^{FCC}(x) \propto (1-x^2)$ and $F^{SCC}_{L=0}(x) \propto (1)$

Phys Rev Lett 103,041802(2009)

$$\mathcal{L} = 347 \, \text{fb}^{-1}$$

Source	Uncertainty (σ_{ϵ})
${\cal B} \left(au^- ightarrow \omega \pi^- \pi^0 u_ au ight)$	±0.0007
un-simulated $ au$ decays	$^{+0.0000}_{-0.0055}$
$q\overline{q}$ scaling	± 0.0001
Total	$^{+0.0008}_{-0.0055}$

The result from the fit is $\epsilon = (-5.5 \pm 5.8(\text{stat.})^{+0.8}_{-5.5}(\text{syst.})) \times 10^{-3}$.

This sets limits in terms of $N_{\text{(non-vector current)}}^{\omega\pi}/N_{\text{(vector current)}}^{\omega\pi}$ of 0.69% at 90% C.L.

Previous best limit was at 5.4% at 90% C.L. (CLEO)

BF $(\tau^- \rightarrow \omega \pi^- \nu)$ via SCC < 1.4 x 10⁻⁴ at 90% CL

Search for second-class current in $\tau^- \rightarrow \eta' \pi^- \nu$

- An $\eta'\pi^-$ system in tau decay has $J^{PG} = 0^{+-}$ or 1^{--}
- So it can only be produced via a second-class current

Mass spectrum of $\eta\pi^-\pi^+$ in $\tau^- \to \eta\pi^-\pi^+\pi^-\nu$ candidates

BF($\tau^- \rightarrow \eta' \pi^- \nu$) < 7.2 x 10⁻⁶ at 90% confidence level

Phys Rev D77, 112002(2008)

Searches for Lepton Flavour Violation

 In SM, LFV allowed at rates too low to be detectable, since neutrino mass differences are very small

- LFV decays of τ or μ have a clean experimental signature: the lepton is fully reconstructed, no undetected neutrinos
- Then, any experimental observation of LFV is a clear evidence of NP
- Many models beyond SM allow for some LFV rates within experimental reach (10⁻⁷-10⁻⁸)

SM and New Physics predictions for LFV in tau decay

Model	Publication	$\tau \to \ell \gamma$	$ au ightarrow \ell \ell \ell$
$SM + \nu$ mixing	PRD 16 (1977) 1444 PRD 45 (1980) 1908	Undetectably small	
SUSY Higgs	PLB 549 (2002) 159 PLB 566 (2003) 517	10^{-10}	10^{-7}
$SM + heavy Maj \nu_R$	PRD66 (2002) 034008	10^{-9}	10^{-10}
Non-universal Z'	PLB 547 (2002) 252	10^{-9}	10^{-8}
SUSY $SO(10)$	NPB 649 (2003) 189 PRD 68 (2003) 033012	10^{-8}	10^{-10}
mSUGRA + Seesaw	EPJ C14 (2002) 319 PRD 66 (2002) 115013	10^7	10-9
SM + heavy Dirac ν	PRD 62 (2000) 036010 NP B437 (1995) 491	10-6	_

Some possible LFV diagrams involving new physics

Basic event selections and analysis techniques for LFV

- in tau LFV decay hemishpere
 - neutrinoless tau decay
 - ▶ inv. mass decay products = M_{τ}
 - ▶ sum of energies = E_{τ} = E_{beam}

- ♦ tag hemisphere ordinary tau decay
 - ▶ 1- or 3-prongs, $E < E_{\text{beam}}$, $M < M_{\tau}$
- ♦ plot events in ΔE vs. ΔM graph
- count events in signal box, or max LH fit
- expected background from data side-bands

Selection strategy:

Three regions defined in $(\Delta M, \Delta E)$ plane

Signal Box (SB): different for each channel, dimension optimized to give the best UL for each channel.

Data events in this region are BLIND

Grand Sideband (GS): is the unblinded region of the LB.

Background estimation made extrapolating data from GS to SB

Typical backgrounds in searches for LFV tau decays

$au ightarrow \ell \gamma$

- △E, std M_{EC}
- Lumi: 482M τpairs
- hep-ex 0908.2381
- Improvement from last Belle results
- Submitted to PRL

Mode	$\epsilon (\%)$	$\sigma_{ m syst}(\%)$	$N_{ m bkg}$	$N_{\rm obs}$	UL	$_{90}^{\text{obs}}(10^{-8})$
eγ	3.9	7.7 1	.6 ± 0.4	0		3.3
$\mu\gamma$	6.1	7.4 3	.6 ± 0.7	2		4.4

$au o \ell\ell\ell$

- Lumi: 430M τpairs
- No signal observed
- Preliminary, to be published on PRD-RC

Mode	$\epsilon(\%)$	$\sigma_{ m syst}(\%)$	$N_{ m bkg}$	$N_{ m obs}$	$UL_{90}^{\text{obs}}(10^{-8})$
$e^-e^+e^-$	8.6	2.3	0.12 ± 0.02	0	2.9
$e^-e^+\mu^-$	8.8	5.7	0.64 ± 0.19	0	2.2
$e^-\mu^+e^-$	12.6	5.5	0.34 ± 0.12	0	1.8
$e^{-}\mu^{+}\mu^{-}$	6.4	6.2	0.54 ± 0.14	0	3.2
$\mu^{-}e^{+}\mu^{-}$	10.2	5.9	0.03 ± 0.02	0	2.6
$\mu^+\mu^-\mu^+$	6.6	9.0	0.44 ± 0.17	0	3.3

- Major improvements
 - Better event selection with neural network
 - Better PID efficiency, specially for muons (with smaller syst.)
 - UL improved by a factor 2-3 with lumi increased of 25%

Search for $\tau^- \rightarrow \ell^- K^0_s$

- Analysis using 431M tau pairs
- BF($\tau^- \to e^- K_s^0$) < 3.3 x 10⁻⁸ at 90% CL
- BF($\tau^- \rightarrow \mu^- K^0_s$) < 4.0 x 10⁻⁸ at 90% CL

Phys Rev D 79,012004(2009)

Status of tau LFV results from HFAG-Tau

90% C.L. Upper limits for LFV τ decays HFAG-Tau Summer 2009 CLEO BaBar Belle Status of tau LFV results from HFAG-Tau 18

Conclusions

- BABAR completed data-taking in April 2008
- Final sample comprises almost 109 tau decays
- Analyses of rare decay channels now nearing completion
- Some unique results in searches for second-class currents and for high-multiplicity hadronic tau decays
- Many results in searches for Lepton Flavour Violation currently remain competitive with Belle
- HFAG now includes tau results, combining BABAR and Belle
- Thanks to all BABAR colleagues (and particularly to Swagato Banerjee and Alberto Lusiani)