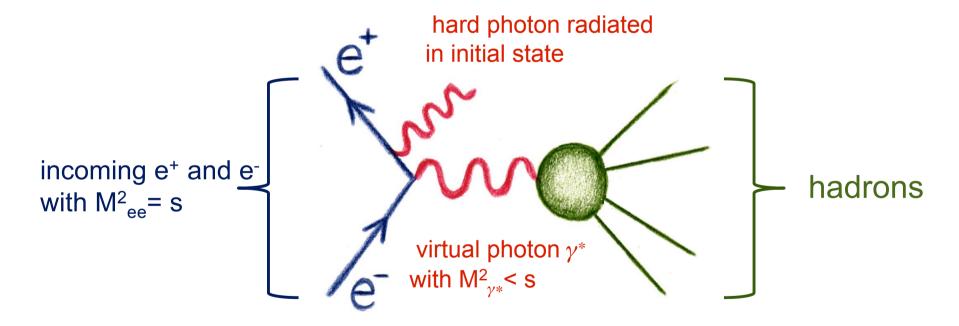

Measurement of the pion form factor between 0.1 and 0.85 GeV² with the KLOE detector


Stefan E. Müller Institut für Kernphysik, Universität Mainz

(for the KLOE collaboration)



PHIPSI09 Conference Beijing, 14.10.2009

ISR: Initial state radiation

Particle factories (DA Φ NE, PEP-II, KEK-B) can measure hadronic cross sections as a function of the hadronic c.m. energy using initial state radiation (radiative return to energies below the collider energy \sqrt{s}).

The emission of a hard γ in the bremsstrahlung process in the initial state reduces the energy available to produce the hadronic system in the e⁺e⁻ collision.

ISR: Initial state radiation

Neglecting final state radiation (FSR) terms, one can relate the measured differential cross section $d\sigma_{hadr+\gamma}/dM^2_{hadr}$ to the hadronic cross section σ_{hadr} using the radiation function $H(s, M^2_{hadr})$:

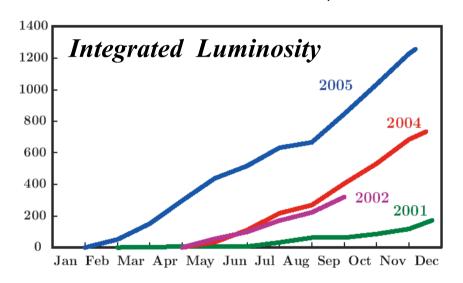
$$\frac{d\sigma(e^{+} e^{-} \rightarrow hadrons + \gamma)}{dM^{2}_{hadr}} = \frac{\sigma(e^{+} e^{-} \rightarrow hadrons, M^{2}_{hadr})}{s} H(s, M^{2}_{hadr})$$

$$= \qquad \qquad \times$$

$$\text{measured cross section} \qquad \text{resulting cross section} \qquad \text{radiator function}$$

Theoretical input:

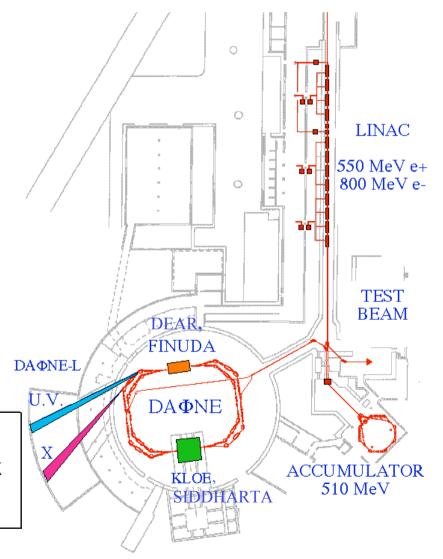
precise calculation of the radiation function H(s, M²_{hadr})


→ EVA + PHOKHARA MC Generator

Binner, Kühn, Melnikov; Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003 (exact next-to-leading order QED calculation of the radiator function)

DAΦNE: A Φ-Factory

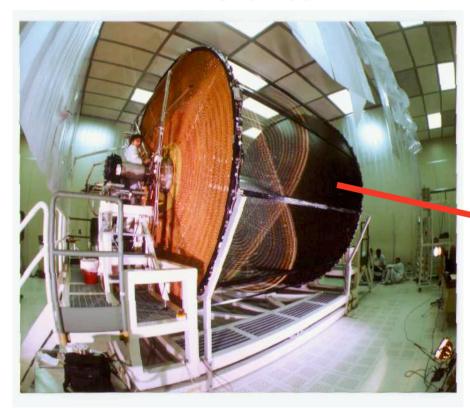
 e^+e^- - collider with $\sqrt{s}=m_{\phi}\approx 1.0195$ GeV



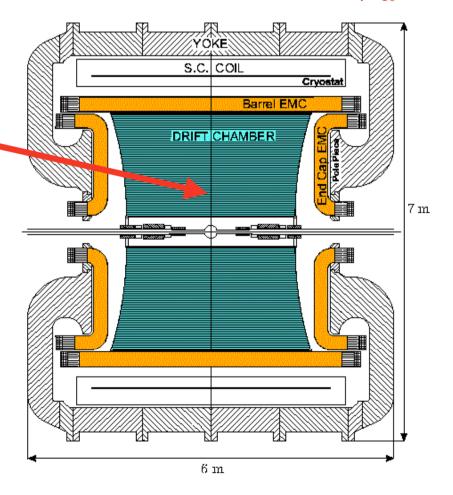
Peak Luminosity L_{peak}= 1.4 • 10³²cm⁻²s⁻¹ Total KLOE int. Luminosity:

 $\int \mathcal{L} dt \sim 2.1 \text{ fb}^{-1} (2001 - 05)$

2006:

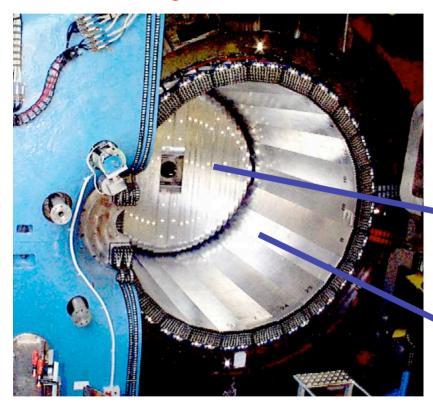

- Energy scan with 4 points around m_{ϕ} -peak
- 250 pb⁻¹ at \sqrt{s} = 1 GeV

KLOE Detector

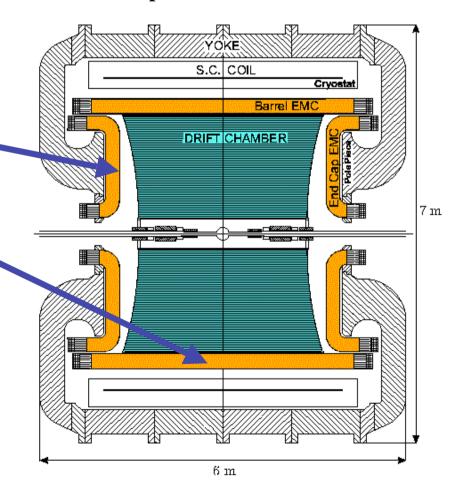

Drift Chamber

 $\sigma_p/p = 0.4\%$ (for 90° tracks) $\sigma_{xy} \approx 150 \ \mu m, \ \sigma_z \approx 2 \ mm$ **Excellent momentum**

resolution


Full stereo geometry, 4m diameter, 52.140 wires 90% Helium, 10% iC₄H₁₀

KLOE Detector

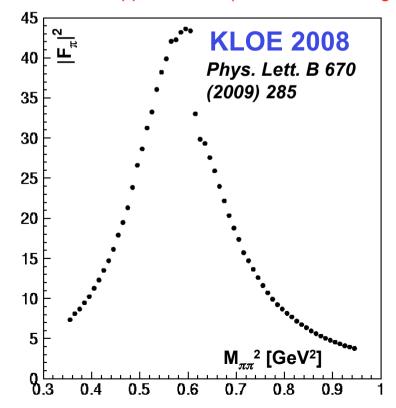


Electromagnetic Calorimeter

 $\sigma_{E}/E = 5.7\% / \sqrt{E(GeV)}$ $\sigma_{\rm T}$ = 54 ps / $\sqrt{\rm E(GeV)} \oplus 100$ ps (Bunch length contribution subtracted from constant term) **Excellent timing resolution**

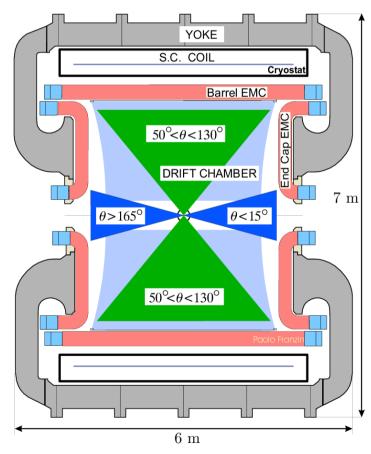
Pb / scintillating fibres (4880 PMT) **Endcap - Barrel - Modules**

$|\mathbf{F}_{\pi}|^2$ measurement: small angle



2 pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

Photons at small angles


$$\theta_{v} < 15^{\circ} \text{ or } \theta_{v} > 165^{\circ}$$

- √ high statistics for ISR events
- √ low relative FSR contribution
- ✓ suppression of $\phi \rightarrow \pi^+\pi^-\pi^0$ background

→ photon momentum from kinematics:

$$\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$$

1st KLOE result using 2001 data:

Phys. Lett. B 606, 12 (2005)

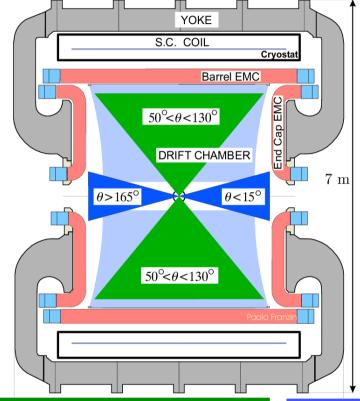
Updated and superseded by new result

based on 2002 data:

Phys. Lett. B 670, 285 (2009)

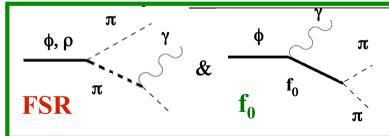
$|\mathbf{F}_{\pi}|^2$ measurement: large angle

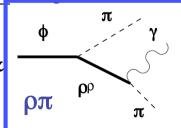
2 pion tracks at large angles


 $50^{\circ} < \theta_{\pi} < 130^{\circ}$

Photons at large angles

 $50^{\circ} < \theta_{\nu} < 130^{\circ}$

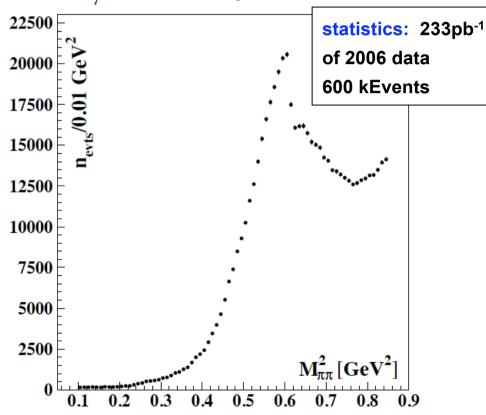

- √ independent complementary analysis
- √ threshold region (2m_x)² accessible
- √γ_{ISR} photon detected (4-momentum constraints)
- √ lower signal statistics
- ✓ larger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- ✓ irreducible background from ϕ decays ($\phi \rightarrow f_0 \gamma \rightarrow \pi\pi \gamma$)


At least 1 photon with $50^{\circ} < \theta_{\gamma} < 130^{\circ}$ and $E_{\nu} > 20$ MeV \rightarrow photon detected

Threshold region non-trivial

due to irreducible FSR-effects, which have to be estimated from MC using phenomenological models (interference effects unknown)

$|\mathbf{F}_{\pi}|^2$ measurement: large angle



2 pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

Photons at large angles $50^{\circ} < \theta_{y} < 130^{\circ}$

- √ independent complementary analysis
- √ threshold region (2m_π)² accessible
- √γ_{ISR} photon detected (4-momentum constraints)
- √ lower signal statistics
- ✓ larger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- ✓ irreducible background from ϕ decays ($\phi \rightarrow f_0 \gamma \rightarrow \pi \pi \gamma$)

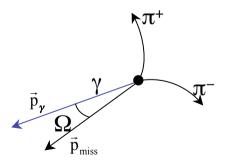
At least 1 photon with $50^{\circ} < \theta_{\gamma} < 130^{\circ}$ and $E_{\gamma} > 20$ MeV \Rightarrow photon detected

Use data sample taken at √s≅1000 MeV, 20 MeV below the ϕ -peak

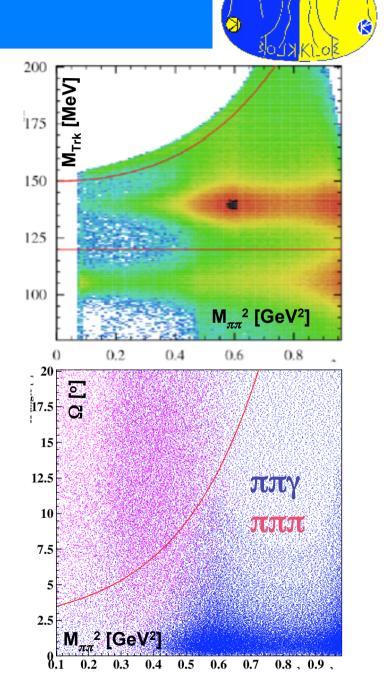
Event selection

Experimental challenge: Fight background from

$$- e^{+}e^{-} \rightarrow \mu^{+}\mu^{-} \gamma,$$


$$- e^{+}e^{-} \rightarrow e^{+}e^{-} \gamma$$

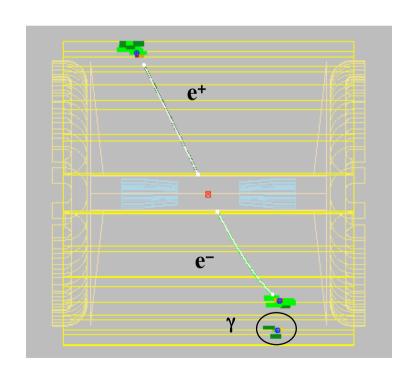
$$- \phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$$


separated by means of kinematical cuts in *trackmass M*_{Trk} (defined by 4-momentum conservation under the hypothesis of 2 tracks with equal mass and a γ)

$$\left(\sqrt{s} - \sqrt{p_1^2 + M_{trk}^2} - \sqrt{p_2^2 + M_{trk}^2}\right)^2 - (p_1 + p_2)^2 = 0$$

and the angle Ω between the photon and the missing momentum $\vec{p}_{miss} = -(\vec{p}_+ + \vec{p}_-)$

To further clean the samples from radiative Bhabha events, a particle ID estimator for each charged track based on Calorimeter Information and Time-of-Flight is used.


Luminosity:

KLOE measures L with Bhabha scattering

55° < θ < 125° acollinearity < 9° ≥ 400 MeV

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

F. Ambrosino et al. (KLOE Coll.) Eur.Phys.J.C47:589-596,2006

> generator used for σ_{eff} BABAYAGA (Pavia group):

C. M.C. Calame et al., NPB584 (2000) 459

Now: C. M.C. Calame et al., NPB758 (2006) 22

newer version (BABAYAGA@NLO) gives 0.7% decrease in cross section, and better accuracy: 0.1%

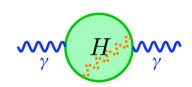
Systematics on Luminosity		
Theory	0.1 %	
Experiment	0.3 %	
TOTAL $0.1 \% \text{ th} \oplus 0.3\% \text{ exp} = 0.3\%$		

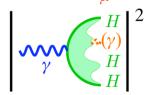
Radiative corrections

Radiator-Function $H(s,s_{\pi})$ (ISR):

- ISR-Process calculated at NLO-level *PHOKHARA* generator

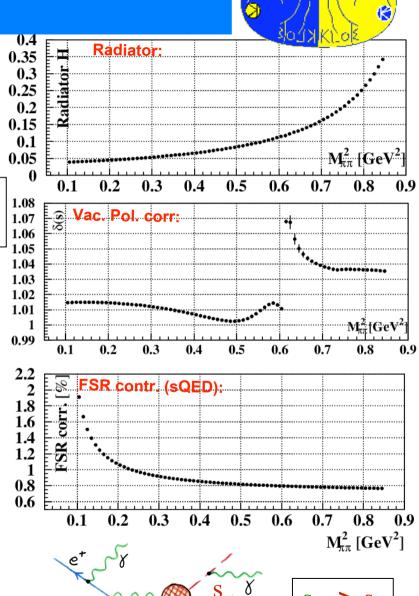
(H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC27,2003) 0.05


Precision: 0.5%


$$s \cdot \frac{d\sigma_{\pi\pi\gamma}}{ds_{\pi}} = \sigma_{\pi\pi}(s_{\pi}) \times H(s,s_{\pi})$$

Radiative Corrections:

- i) Bare Cross Section divide by Vacuum Polarisation $\delta(s) = (\alpha(s)/\alpha(0))^2$
 - → from F. Jegerlehner
- ii) FSR


Cross section $\sigma_{\pi\pi}$ must be incl. for FSR for use in the dispersion integral of a_{μ}

FSR corrections have to be taken into account in the efficiency eval. (Acceptance, M_{Trk}) and in the passage $s_{\pi} = M_{\pi\pi}^2 \rightarrow (M_{\pi\pi}^0)^2 = s_{\gamma*}$

(H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC33,2004)

11

KLOE result on large angle 2006:

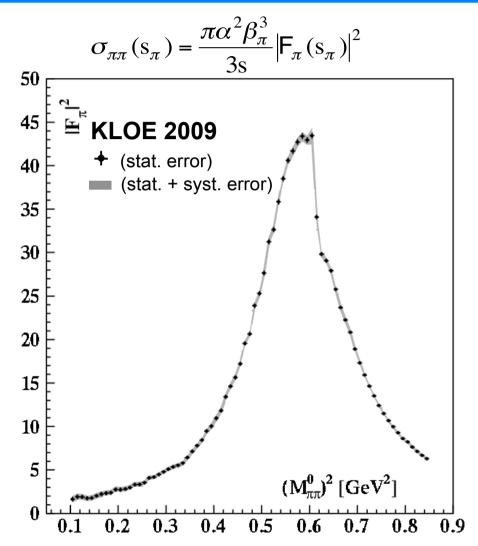


Table of systematic errors on $\Delta a_{\mu}^{\pi\pi}$ (0.1-0.85 GeV²):

	μ
Reconstruction Filter	< 0.1%
Background	0.5%
f_0 + $ ho\pi$	0.4%
Omega	0.2%
Trackmass	0.5%
π /e-ID and TCA	< 0.1%
Tracking	0.3%
Trigger	0.2%
Acceptance	0.4%
Unfolding	negligible
Software Trigger	0.1%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

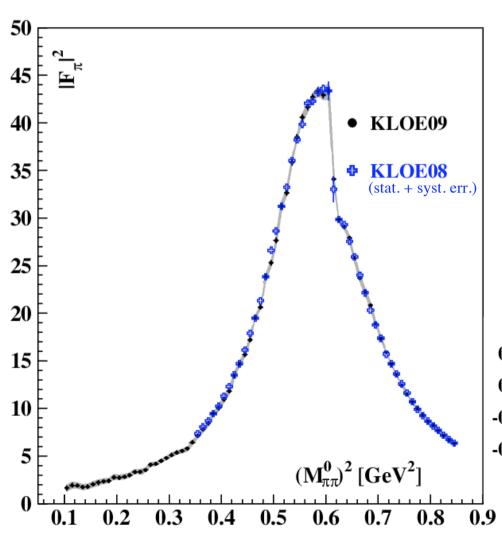
experimental fractional error on $\Delta a_{\mu} = 1.0 \%$

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	< 0.1%

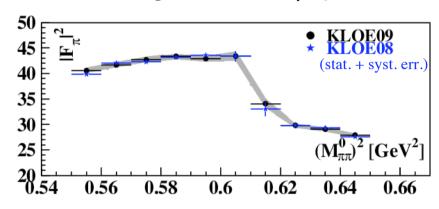
theoretical fractional error on $\Delta a_{\mu} = 0.6 \%$

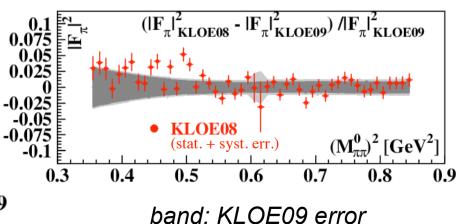
Disp. Integral:

$$a_{\mu}^{\text{had}} = \frac{1}{4\pi^3} \int_{x_1}^{x_2} \sigma^{\text{had}}(s) K(s) ds$$

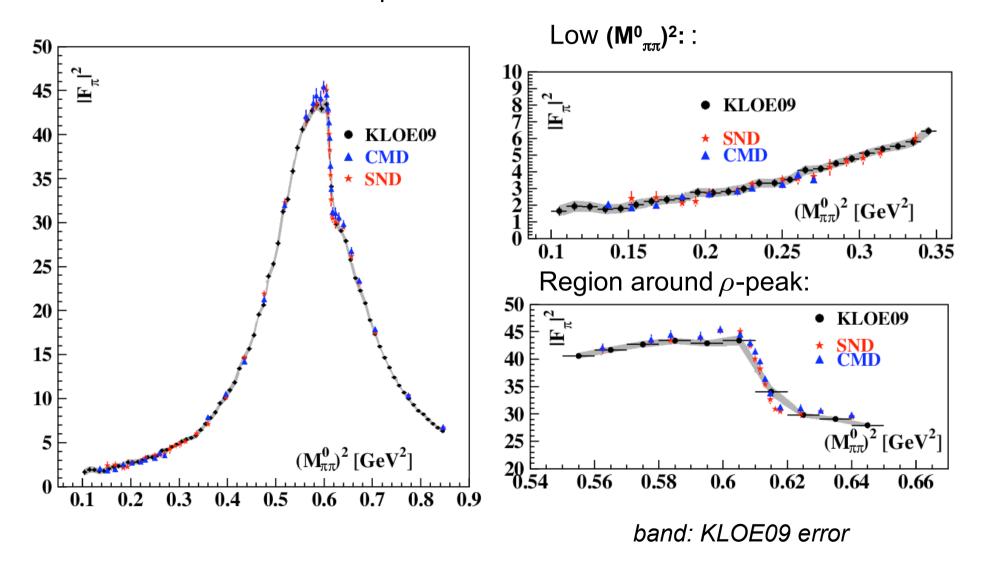

$$\Delta a_{\mu}^{\pi\pi}$$
(0.1-0.85 GeV²) = (478.5 ± 2.0_{stat}±4.8_{sys} ±2.9_{theo}) · 10⁻¹⁰

0.6% 1.0% 0.4%

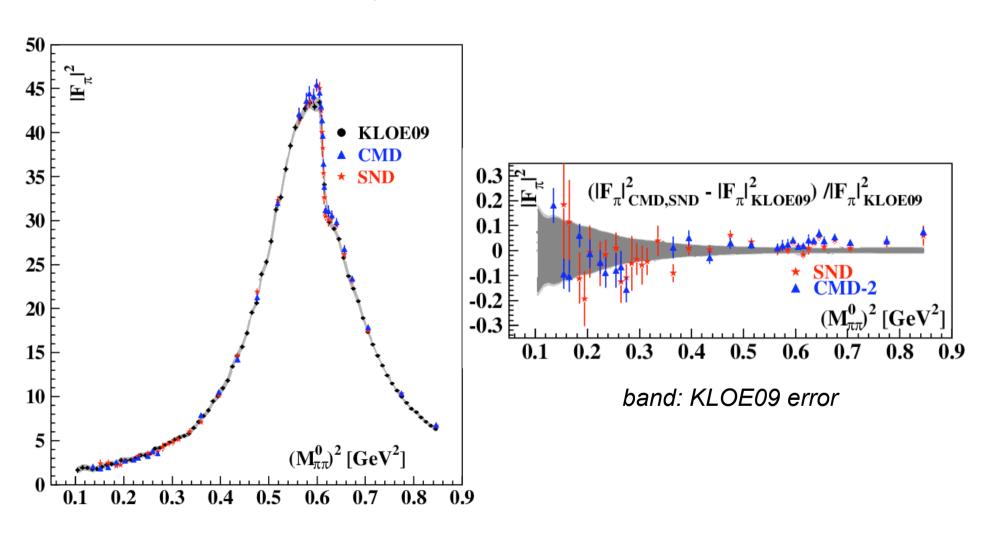

Comparison of results:

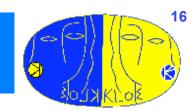

KLOE08 result compared to KLOE09:

Zoomed region around ρ -peak:


Fractional difference:

Comparison of results:


CMD and SND results compared to KLOE09:


Comparison of results:

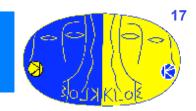
CMD and SND results compared to KLOE09: Fractional difference

$\Delta a_{\mu}^{\pi\pi}$ for different exp.:

 $\Delta a_{\mu}^{\ \pi\pi}$ (0.35-0.85GeV²):

KLOE08 (small angle)

KLOE09 (large angle)


$$a_{\mu}^{\text{had}} = \frac{1}{4\pi^3} \int_{x_1}^{x_2} \sigma^{\text{had}}(s) K(s) ds$$

$$a_{\mu}^{\pi\pi}$$
 = (379.6 ± 0.4_{stat}±2.4_{sys} ±2.2_{theo}) · 10⁻¹⁰

$$a_{\mu}^{\pi\pi} = (376.6 \pm 0.9_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.1_{\text{theo}}) \cdot 10^{-10}$$

$$0.2\% \quad 0.6\% \quad 0.6\%$$

$\Delta a_{\mu}^{\pi\pi}$ for different exp.:

 $\Delta a_{\mu}^{\ \pi\pi}$ (0.35-0.85GeV²):

KLOE08 (small angle)

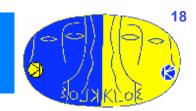
KLOE09 (large angle)

 $\Delta a_{\mu}^{\pi\pi}$ (0.152-0.270 GeV²):

KLOE09 (large angle)

CMD-2

$$a_{\mu}^{\text{had}} = \frac{1}{4\pi^3} \int_{x_1}^{x_2} \sigma^{\text{had}}(s) K(s) ds$$


$$a_{\mu}^{\pi\pi} = (379.6 \pm 0.4_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.2_{\text{theo}}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (376.6 \pm 0.9_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.1_{\text{theo}}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (48.1 \pm 1.2_{\text{stat}} \pm 1.2_{\text{sys}} \pm 0.4_{\text{theo}}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (46.2 \pm 1.0_{stat} \pm 0.3_{sys}) \cdot 10^{-10}$$

$\Delta a_{\mu}^{\pi\pi}$ for different exp.:

$$\Delta a_{\mu}^{\pi\pi} (0.35\text{-}0.85\text{GeV}^2)$$
:

KLOE09 (large angle)

$$\Delta a_{\mu}^{\ \pi\pi}$$
 (0.152-0.270 GeV²):

KLOE09 (large angle)

CMD-2

 $\Delta a_{\mu}^{\ \pi\pi}(0.397\text{-}0.918 \text{ GeV}^2)$:

KLOE08 (small angle)

CMD-2

SND

$$a_{\mu}^{\text{had}} = \frac{1}{4\pi^3} \int_{x_1}^{x_2} \sigma^{\text{had}}(s) K(s) ds$$

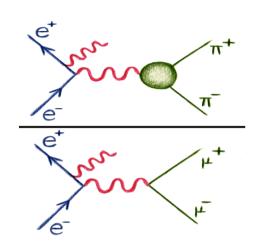
$$a_{\mu}^{\pi\pi}$$
 = (379.6 ± 0.4_{stat}±2.4_{sys} ±2.2_{theo}) · 10⁻¹⁰

$$a_{\mu}^{\pi\pi} = (376.6 \pm 0.9_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.1_{\text{theo}}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (48.1 \pm 1.2_{stat} \pm 1.2_{sys} \pm 0.4_{theo}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (46.2 \pm 1.0_{stat} \pm 0.3_{sys}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (356.7 \pm 0.4_{\text{stat}} \pm 3.1_{\text{sys}}) \cdot 10^{-10}$$

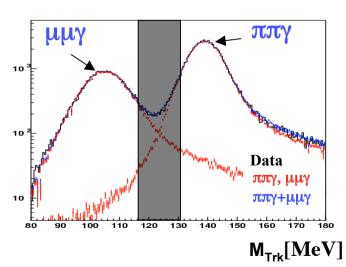

$$a_{\mu}^{\pi\pi} = (361.5 \pm 1.7_{\text{stat}} \pm 2.9_{\text{sys}}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (361.0 \pm 2.0_{\text{stat}} \pm 4.7_{\text{sys}}) \cdot 10^{-10}$$

Good agreement in $\Delta a_{\mu}^{\ \pi\pi}$ for different experiments

Future $\sigma_{\pi\pi}$ measurement: π/μ

An alternative way to obtain $|F_{\pi}|^2$ is the bin-by-bin ratio of pion over muon yields (instead of using absolute normalization with Bhabhas).



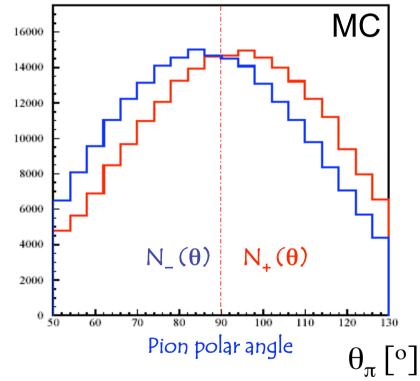
Many radiative corrections drop out:

- radiator function
- int. luminosity from Bhabhas
- Vacuum polarization

Separation between pions and muons done experimentally using kinematical cuts:

- $muons: M_{Trk} < 115 MeV$
- $pions: M_{Trk} > 130 \, MeV$

Forward-backward asymmetry:

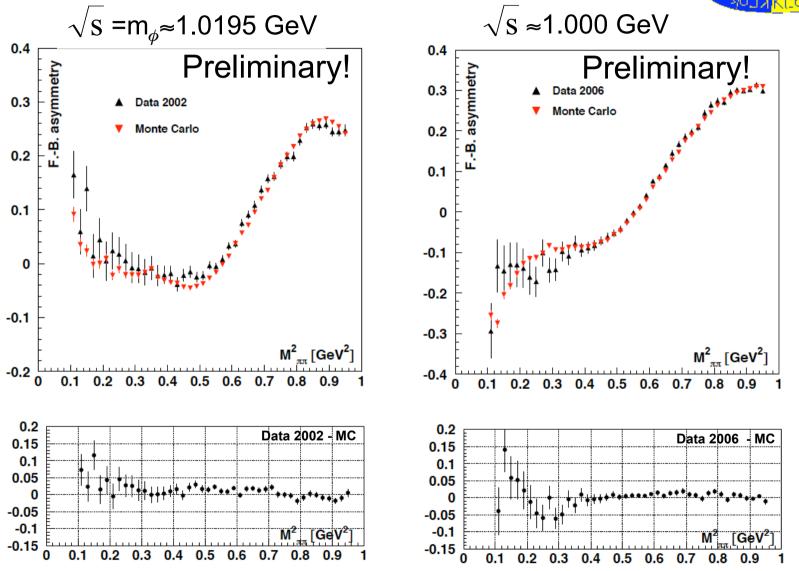

In the case of a non-vanishing FSR contribution, the interference term between ISR and FSR is odd under exchange $\pi^+ \leftrightarrow \pi^-$. This gives rise to a non-vanishing asymmetry:

Binner, Kühn, Melnikov, Phys. Lett. B 459, 1999

Forward-backward asymmetry:

$$A = \frac{N(\theta^{+} > 90^{o}) - N(\theta^{+} < 90^{o})}{N(\theta^{+} > 90^{o}) + N(\theta^{+} < 90^{o})}$$

Ideal tool to test the validity of models used in Monte Carlo to describe the pionic final state radiation (point-like pion assumption, $R\chi T$, etc.)



In a similar way like FSR, radiative decays of the ϕ into scalar mesons decaying to $\pi^+\pi^-$ also contribute to the asymmetry.

Czyz, Grzelinska, Kühn, hep-ph/0412239

Forward-backward asymmetry:

PHOKHARA-MC modified by O. Shekhovtsova using Kaon-Loop-Model used in KLOE analysis of $\pi^0\pi^0\gamma$ final state (Talk of P. Gauzzi yesterday and **EPJC49(2007)473**)

Conclusions:

The KLOE experiment has used the radiative return to determine the pion form factor between 0.1 - 0.85 GeV²:

- In the overlap-region 0.35 -0.85 GeV², the result is in very good agreement with the previous KLOE result (KLOE08, PLB670 (2009) 285)
- Reasonable agreement with results from CMD-2 and SND data (especially at low M_{mm}²)
- Good agreement in $\Delta a_{\mu}^{\ \pi\pi}$ with KLOE08 and CMD-2 results

The new KLOE result for the large angle analysis using off-peak data is final, and will be published very soon.

Ongoing KLOE activities:

- Measurement of the pion form factor with muon normalisation
- Study of charge asymmetry to determine model parameters of scalar mesons and FSR