

Status of SuperKEKB and Belle II Experiment

Wang, Boqun (王博群)

University of Cincinnati 4th Workshop on the XYZ Particles Beihang, Beijing, China November 25, 2016

The B Factories

A e⁺e⁻ collider runs at Y(4S) resonance to produce B meson pairs.

BaBar/PEP-II at SLAC (USA)

Belle/KEKB at KEK (Japan)

Physics Highlights

- Collected ~1.5 ab⁻¹ of data
- Measurement of the Unitarity triangle, and CKM parameters
- Observation of direct CP violation in B decays
- Observation of D meson mixing
- Observation of new (X, Y, Z) hadrons
- Search for rare tau decays
- Constraints on new physics
- Direct searches for light Higgs, dark photon, etc.

SuperKEKB

Target integrated luminosity for Belle II/SuperKEKB: ~50 ab⁻¹

SuperKEKB: Nano-Beam

Belle II Detector

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

> Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

> > positron (4GeV)

Belle II: PXD

Full sized pixel detector module 0

PXD

PXD: 2 layers of DEPFET R = 14, 22 mmSi thinned to 75 µm 8 (L1) / 12 (L2) self-supporting ladders

Mechanical mockup

7

Belle II: SVD **Exploded View** L6 Ladder FWD module (Kavli IPMU) FWD Origami +z L5 Ladder Origami ce Double Sided Strip Detectors 47 FW/BW (HEPHY) DSSD BWD + spares sensor thickness = 300-320µm Origami -z (4) L4 Ladder **BWD** module (TIFR) P⁺ strip L3 Ladder (Melbourne) Cooling pipe FWD module Cooling pipe (Pisa) **BWD** module Cooling pipe (Pisa) L4 mechanical prototype 8

Belle II: VXD Beam Test at DESY

- :- combined beam test PXD+SVD
- :- e⁻ beam, momentum 2-5GeV
- :- full readout chain, Beast II geometry
- :- B-field in PCMag: 0-1T
- :- total of ~340 runs in 4 weeks

VXD + Tel + Magnet

4 SVD ladders (L3-L6)

2 PXD half-ladders (L1-L2)

B. Schwenker

Belle II: CDC

- Belle II CDC will be larger than Belle CDC with smaller cells
- Improved p and dE/dx resolution
- Stringing completed in January 2014 with 51456 wires
- Installed to Belle II in October 2016

Belle II: CDC Installation

CDC installation in October

N. Taniguchi

- The imaging Time of Propagation subdetector (TOP or iTOP) will be used for particle identification in the barrel region of Belle II
- Each TOP module consists of two quartz bars, one mirror, one prism, and an array of photo-detectors to collect Cherenkov photons from charged tracks
- To distinguish between kaons and pions, the photo-detectors should have excellent position and timing resolution
- This is achieved by using MCP-PMTs and new waveform sampling electronics

Belle II: TOP

- TOP modules have been tested at beam test at SPring-8 LEPS in 2013, and good agreement between data and MC simulation has been obtained, with timing requirement ~O(100ps)
- All modules have been assembled (the optical and mechanical parts) and installed to Belle II.
- Firmware testing is underway.

Belle II: TOP

All modules were installed by May 2016

Belle II: ARICH

- Aerogel Ring Imaging Cerenkov (ARICH) detector will be used for particle identification in the forward end cap
- 420 Hybrid Avalanche Photo Detectors (HAPD), each with 144 channels
- Two layers of aerogel lead to better photon yield, while not affecting resolution Aerogel

Hamamatsu HAPD

End-cap PID: Aerogel RICH (ARICH)

HAPD

Belle II: ARICH

One sector of the ARICH has been instrumented (top) and Cherenkov rings were observed (left)

Belle II: ECL

Nevents

0. -100

-75

-50

-25

17

0 ∆t, ns 25

50

75

100

- Upgrades for high backgrounds:
 - Barrel: Csl(Tl) crystals reused, new electronics for waveform sampling
 - Endcaps: old crystals refurbished, bias filter is modified

Forward Endcan Calorimeter

Cosmic ray test is on going

Belle II: KLM

- Endcaps and parts of the barrel KLM RPCs of Belle will be replaced with scintillators due to increased backgrounds expected in Belle II
- Barrel KLM was the first subdetector to be installed in Belle II

Belle II: KLM

rec_y:rec_x:rec_z {layer>0&&layer<16}

Ehut: CPR7001-4 for barrel

Top of yoke: BFR 9UVME

Around detector: BB7 data concentrator

Belle II: DAQ & Trigger

Front-end electronics in Belle II

<u>High speed fiber</u> <u>connections</u> not masses of cables !!

Large numbers of FPGAs (Field Programmable gate arrays) on front-end; large number of CPUs. Probabilty of SEU (single event upset) is not small.

Figure 13.1: Conceptual design of Belle II DAQ system.

Belle II: Data Flow

Belle II: BEAST

Beam Exorcism for A STable experiment

BEAST PHASE I: Feb-June 2016 (Belle II roll-in in March 2017)

PHASE II Operation: Starts in ~Nov 2017 (TBC) [Begin with damping ring commissioning; First collisions; *limited physics without vertex detectors*]

Phase III: Belle II Physics Running: late 2018 [vertex detectors in]

QCSL at the IP, Aug 2016 QCSR will be at KEK, Dec 2016

Summary of Belle II Physics

Observables	Belle	Belle II		\mathcal{L}_{s}
	(2014)	5 ab^{-1}	$50 \mathrm{~ab^{-1}}$	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B ightarrow \phi K^0)$	$0.90^{+0.09}_{-0.19}$	± 0.053	± 0.018	> 50
$S(B o \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	> 50
$S(B\to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$\left V_{ub}\right $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
$\mathcal{B}(B o au u)$ [10 ⁻⁶]	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
$\mathcal{B}(B \to \mu \nu)$ [10 ⁻⁶]	< 1.7	5σ	$>>5\sigma$	$>\!50$
$R(B\to D\tau\nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B ightarrow D^{\star} au u)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B\to K^{\star+}\nu\overline{\nu})~[10^{-6}]$	< 40		$\pm 30\%$	> 50
${\cal B}(B o K^+ u \overline{ u}) \ [10^{-6}]$	< 55		$\pm 30\%$	>50
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B ightarrow X_s \gamma)$		± 0.01	± 0.005	8
$S(B \rightarrow K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9~(B o X_s\ell\ell)$	${\sim}20\%$	10%	5%	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \rightarrow \tau^+ \tau^-)$ [10 ⁻³]		< 2		2

Observables	Belle	Belle II		\mathcal{L}_{o}
	(2014)	$5 \ {\rm ab}^{-1}$	50 ab^{-1}	$[ab^{-1}]$
$\mathcal{B}(D_s \rightarrow \mu \nu)$	$5.31\times10^{-3}(1\pm0.053\pm0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
${\cal B}(D_s o au u)$	$5.70\times10^{-3}(1\pm0.037\pm0.054)$	$\pm (3.5\% \text{-} 4.3\%)$	$\pm (2.3\%\text{-}3.6\%)$	3-5
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 - 0.13)$	$\pm (0.05 - 0.08)$	5-8
A_{Γ} [10 ⁻²]	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03$ -0.05)	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32\pm0.21\pm0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma}$ [10 ⁻²]	± 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-}$ [10 ⁻²]	$0.56 \pm 0.19 \pm rac{0.07}{0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-}$ [10 ⁻²]	$0.30 \pm 0.15 \pm rac{0.05}{0.08}$	± 0.08	± 0.05	15
$ q/p ^{K_S \pi^+\pi^-}$	$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-}$ [°]	$-6 \pm 11 \pm \frac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \; [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$ au o \mu\gamma~[10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e \gamma \ [10^{-9}]$	< 120	< 39	< 12
	$ au ightarrow \mu \mu \mu \; [10^{-9}]$	< 21.0	< 3.0	< 0.3

Potential new physics:

- Flavor changing neural currents
- Probing charged Higgs
- New sources of CPV
- Lepton Flavour Violation
- Dark sectors

Physics: Phase II

Latest Proposal:

Once collisions and luminosity are established, record ~2 fb⁻¹ at the Upsilon(4S); verify functionality of Belle II; check B meson reconstruction.

Take remaining ~20 fb⁻¹ at the peak of the Upsilon(6S) (build a unique dataset for strong interaction physics to provide initial early Belle II physics publications.)

Above Y(5S):

- Charged bottomonium-like states Bellow Y(4S):
 - Study of $\eta_b(1S, 2S)$
 - h_b(1P) and Y(n³D₁) studies
 - Analyses with converted photons to improve resolution
 - Hadronic / Radiative transitions

Physics: $Z_b^{\pm}(106XX)$

Anomalous Y(5S) $\rightarrow \pi\pi Y(pS)$ transitions led to discovery of Z_b [±](106XX)

Physics: $Z_b \pm (106XX)$

Preliminary evidence for $Y(6S) \rightarrow \pi \pi h_b(nP)$, via $\pi Z_b^{\pm}(106XX)$ decay

Resonance structure of $Y(6S) \rightarrow \pi \pi Y(pS)$ decays not fully studied

Physics: Phase II Feasibility

► Lack of vertex detector diminishes low p_T track reconstruction ► $\Upsilon(3S) \rightarrow \pi^+ \pi^- \Upsilon(2S)$ infeasible, but $\Upsilon(6S) \rightarrow \pi Z_b \rightarrow \pi h_b(nP)$ unaffected

B. Fulsom, B2TiP, May 2016

Schedule

Luminosity Profile

Belle II Collaboration

696 colleagues, 101 institutions, 23 countries/regions

Summary

- B-factories had some rich and successful physics results and many hints of new physics.
- Belle will be upgraded to Belle II to further explore these opportunities.
- BEAST phase I has finished and phase II will start from November 2017. Collision data on Y(6S) will be taken.
- The target integrated luminosity for physics data is 50 ab⁻¹, which is much larger than the current data set.