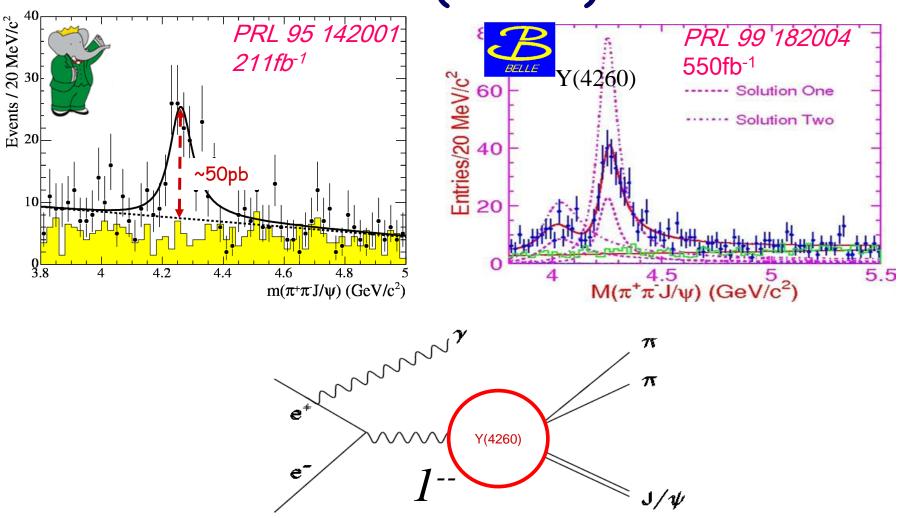

Recent results on exotic states at BESIII

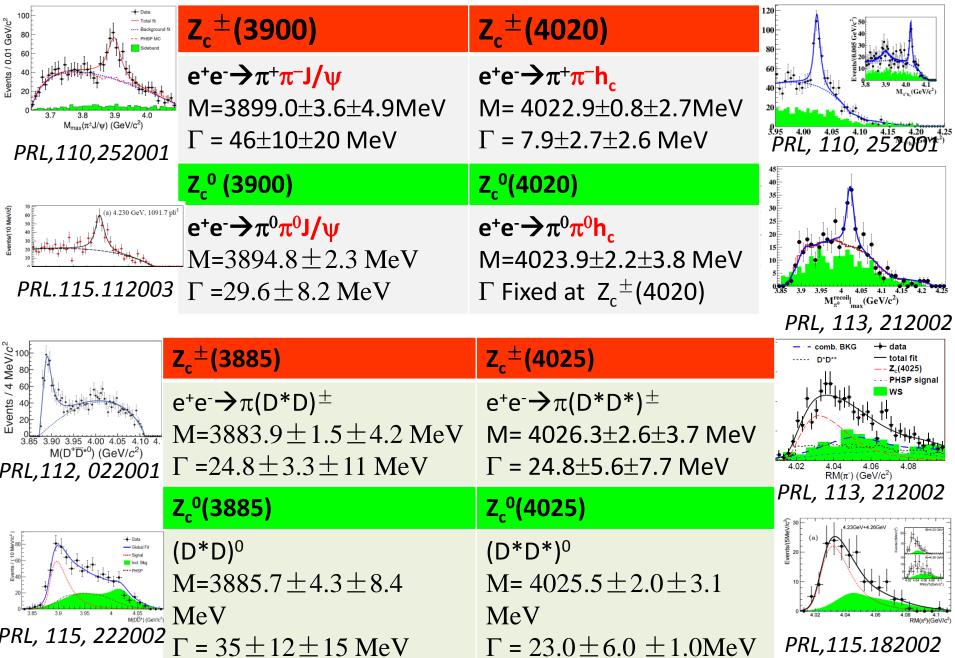
Jingzhi Zhang (IHEP, Beijing), 2016.11.23

Charmonium Spectroscopy


Particles

$\eta_c(1S)$ $J/\psi(1S)$ $\chi_{c0}(1P)$ $\chi_{c1}(1P)$ $h_c(1P)$ $\chi_{c2}(1P)$ $\eta_c(2S)$ $\psi(2S)$ $\psi(3770)$ $\psi(3823)$ was X(3823)X(3872)X(3900)Z(3900) X(3915) was $\chi_{c0}(3915)$ $\chi_{c2}(2P)$ X(3940)(4020)→ **Z(4020)** $\psi(4040)$ $X(4050)^{\pm}$ Seen by belle in B \rightarrow K $\pi\chi_{c1}$

From PDG live

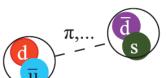

```
Seen by CDF/CMS /D0 in \phiJ/\psi
X(4140)
          ; not seen by Belle/LHCb
\psi(4160)
X(4160)
X(4200)^{\pm}
X(4230)
X(4240)^{\pm}
X(4250)^{\pm}
X(4260) \longrightarrow Y(4260)
X(4350)
X(4360)
\psi(4415)
X(4430)^{\pm}
X(4660)
```

The Y(4260)

From the data taken around 4.260 GeV, BES found Zs

I=1; J^p: favor 1⁺ (Ronggang'talk)

Many proposals


Conventional state

Hybrid \rightarrow if Y(4260) is a hybrid, BF(Y $\rightarrow \gamma \chi_c$) \langle BF(Y $\rightarrow \gamma \eta_c$)

Hadronic molecules, \rightarrow predict small $Z \rightarrow \rho \eta_c$

Tetraquark states

 \rightarrow predict large $Z \rightarrow \rho \eta_c$

arXiv:1110.1333, 1303.6857

arXiv:1304.0345, 1304.1301

- Meson loop (arXiv:1303.6355)
- ISPE model (arXiv:1303.6842)

Initial single pion emission

Searches for more Z_c states

Open charm cross section

Cross-section of non-DDbar

$$- Z_c(3900) J^{pc}$$

$$-$$
 Z_c(3900) \rightarrow ρη_c

$$-$$
 Z_c(3900) → γη_c (2S) or γχ_{c0}

$$- Z_c(4040) \rightarrow \pi^0 \psi'$$

−
$$Zc(4040)\rightarrow \pi^+\psi^+$$

$$-$$
 e⁺e⁻ \rightarrow γη_{c2}(¹D₂)

$$- e^+e^- \rightarrow \pi^+\pi^- X(3823)$$

– e+e-
$$\rightarrow$$
η_cη ππ for Z(xxxx)

− e+e-
$$\rightarrow$$
 $\chi_{c1/2}$ π π for Z(4050)

-

$$- e^+e^- \rightarrow D+X$$

$$-e^+e^- \rightarrow DD$$

$$-e^+e^-\rightarrow D_s^+D_s^-$$

$$- e^+e^- \rightarrow D_s D_s^*$$

$$- e^+e^- \rightarrow D_s^* D_s^*$$

$$\rightarrow D_2(2460)D \rightarrow DD\pi$$

$$-e^+e^-\rightarrow DD^*\pi$$

$$- e^+e^- \rightarrow \pi^+\pi^-DD$$

$$e^+e^- \rightarrow \gamma \chi_{cl}$$
 (finished)

•
$$e^+e^- \rightarrow \gamma X(4140)$$
 (finish

•
$$e^+e^- \rightarrow \gamma \eta_c$$

•
$$e^+e^- \rightarrow \pi^+\pi^-h_c$$

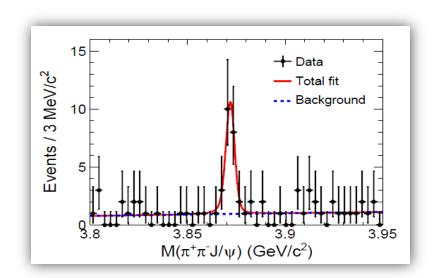
•
$$e^+e^- \rightarrow \pi^+\pi^- J/\psi$$

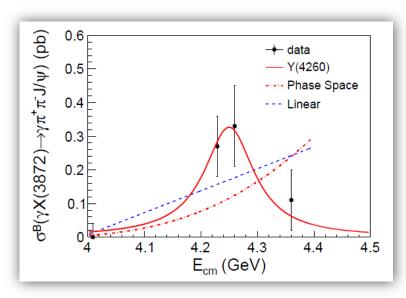
•
$$e^+e^- \rightarrow \omega J/\psi$$

•
$$e^+e^- \rightarrow KKJ/\psi$$

•
$$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta_c$$
, $\pi\rho\eta_c$

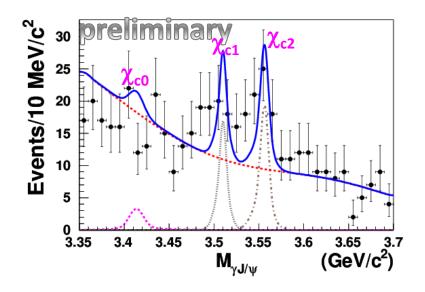
•
$$e^+e^-\rightarrow \mu^+\mu^-$$

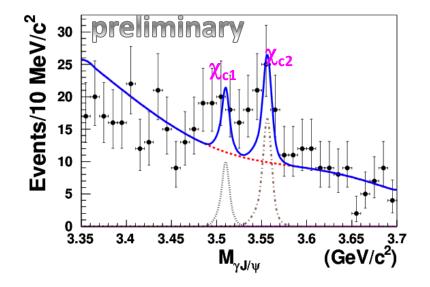

•
$$e^+e^- \rightarrow \eta Y(2175)$$


•
$$e^+e^- \rightarrow \phi \chi_{cl}$$

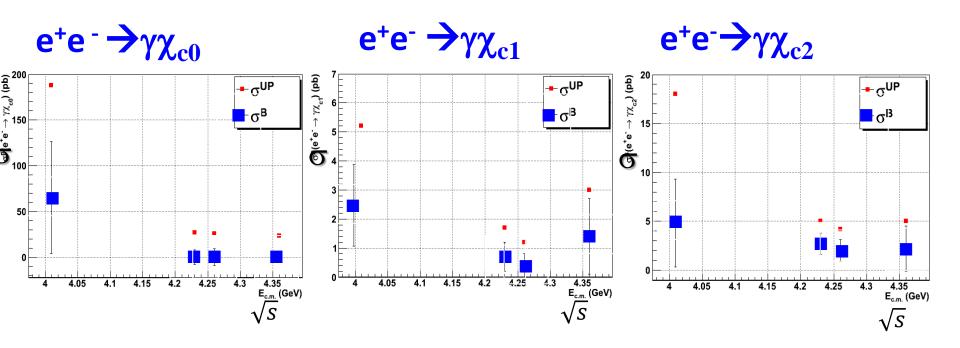
Found $e^+e^- \rightarrow \gamma X(3872)$

- Search for γ X(3872) with X(3872) $\rightarrow \pi\pi$ J/ ψ at E_{cm}=4.23, 4.26 and 4.36 GeV
- top: summed over all data X(3872) significance = 6.3σ
- Production in Y(4260) decay suggestive, but not conclusive
- If from Y(4260)


$$\frac{B(Y(4260) \to \gamma X(3872))}{B(Y(4260) \to \pi^+ \pi^- J/\psi)} \approx 0.1$$

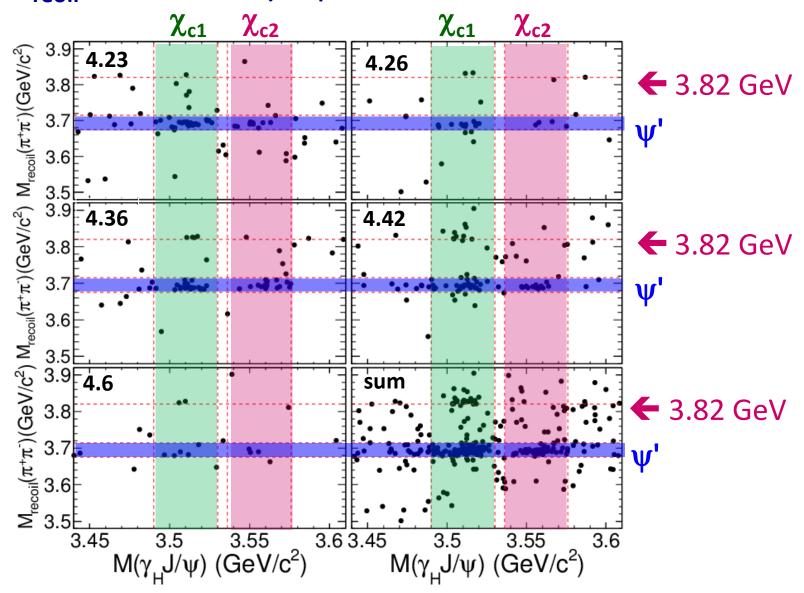

Study of $e^+e^- \rightarrow \gamma \chi_{cJ}$ -- Help to understand the nature of Y(4260)

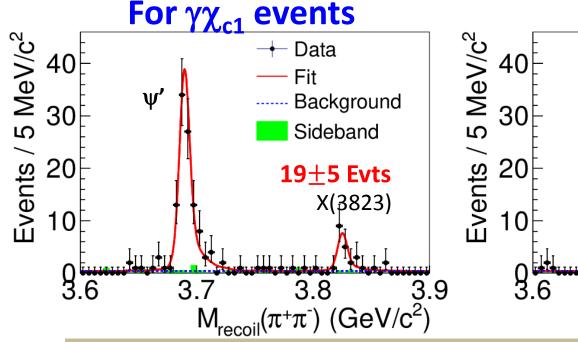
Fit to $M(\gamma J/\psi)$ for summing the events in the 4 CME points

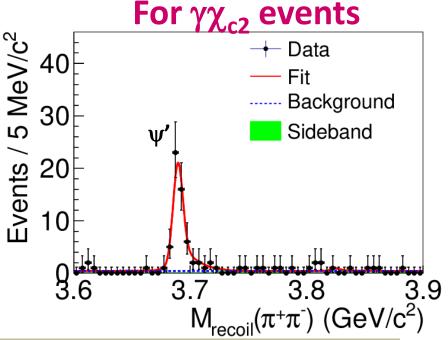

the statistical significance is **1.2** σ , **3.0** σ , **3.4** σ *for* χ_{c0} , χ_{c1} , χ_{c2} respectively.

A simultaneous fit to $M(\gamma J/\psi)$ at 4 CME points with <u>assuming the production</u> $\sigma(e^+e^- \rightarrow \gamma \chi_{cJ})$ at different \sqrt{s} follows the <u>lineshape of Y(4260)</u>

the stat. significance is 0, 2.4, 4.0σ for χ_{c0} , χ_{c1} , χ_{c2} , respectively


The measured Born corss-section $\sigma(e^+e^- \rightarrow \gamma \chi_{cl})$

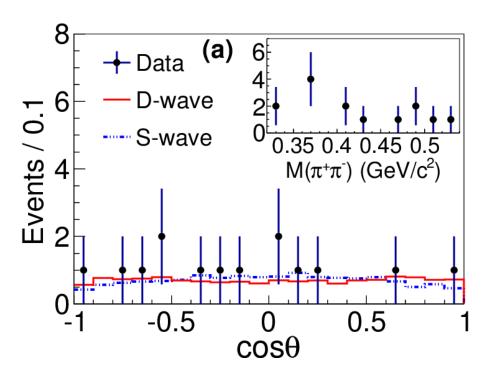

The upper limits on the cross section of e+e- $\rightarrow \gamma \chi_{cJ}$ are compatible with the theoretical predication. Ref: arXiv:1310.8597


$e^+e^- \rightarrow \pi^+\pi^- X(3823)[\psi_2(1^3D_2)], X \rightarrow \gamma \chi_{c1}$

 $M_{reoil}(\pi\pi)$ vs. $M(\gamma J/\psi)$ for Selected Events

Simultaneous Fit to the $M_{recoil}(\pi^+\pi^-)$

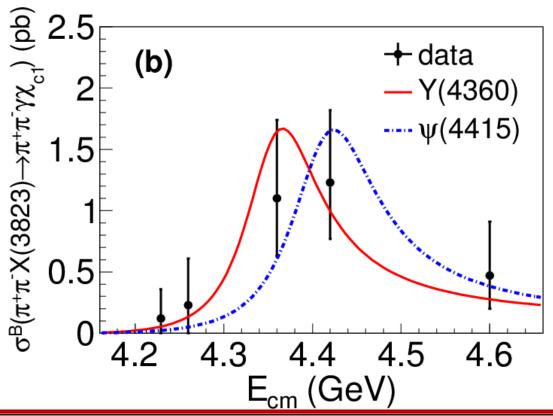
- ψ' is used to calibrate the absolute mass scale.
- Simultaneous fit with common X(3823) mass for diff. energies and for $\gamma\chi_{c1}$, $\gamma\chi_{c2}$ mode.
- Signal: MC shape ⊗ Gauss; bkg: linear function.


 $M=3821.7\pm1.3 MeV$

 $\Gamma(x)$ <16 MeV at 90% C.L.

Significance: 6.2 σ in $\gamma \chi_{c1}$

No X(3823) events in $\gamma \chi_{c2}$ $\mathcal{B}(X \rightarrow \gamma \chi_{c2})/\mathcal{B}(X \rightarrow \gamma \chi_{c1}) < 0.42$


Angular Distribution of $e^+e^- \rightarrow \pi^+\pi^- X(3823)$

Assume the $\pi\pi$ dominated by **S-wave**, **D-wave** between the $\pi\pi$ system and X(3823);

Due to limited statistics, both S-wave and D-wave hypotheses can be accepted.

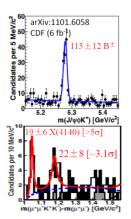
The Cross-section

\sqrt{s} (GeV)	\mathcal{L} (pb^{-1})	$N^{ m obs}$	ϵ	$1 + \delta$	$1/ 1-\Pi ^2$	$\sigma_X^B \cdot \mathcal{B}_1$ (pb)	$\sigma_X^B \cdot \mathcal{B}_2$ (pb)
4.230	1092	$0.7^{+1.4}_{-0.7}$ (<3.8)	0.168	0.755	1.056	$0.12^{+0.24}_{-0.12} \pm 0.02 \ (<0.64)$	
4.260	826	$1.1^{+1.8}_{-1.2}$ (<4.6)	0.178	0.751	1.054	$0.23^{+0.38}_{-0.24} \pm 0.04 \; (< 0.98)$	
4.360	540	$3.9^{+2.3}_{-1.7}$ (<8.2)	0.196	0.795	1.051	$1.10^{+0.64}_{-0.47} \pm 0.15 \ (< 2.27)$	(<1.92)
4.420	1074	$7.5^{+3.6}_{-2.8} (< 13.4)$	0.145	0.967	1.053	$1.23^{+0.59}_{-0.46} \pm 0.17 \ (< 2.19)$	(<0.54)
4.600	567	$1.9^{+1.8}_{-1.1} \ (<5.4)$	0.157	1.075	1.055	$0.47^{+0.44}_{-0.27} \pm 0.07 \ (<1.32)$	14

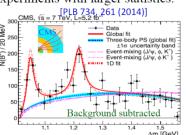
X(4140) -- a good candidate for $D_s^* (\bar{D}_s^*)$ molecular

From Liming Zhang

X(4140) and X(4274)



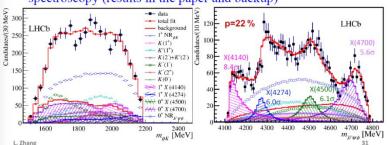
X(4140) and X(4274) from CMS

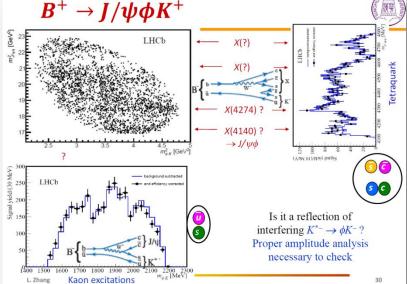


• CDF observed a narrow $(I/\psi\phi)$ structure in $B^+ \rightarrow I/\psi \phi K^+$ decays [Initial publication on 2.7 fb⁻¹ PRL102, 242002 (2009)]

- $-M = 4143.4 \pm 3.0 \pm 0.6 \text{ MeV}$
- $-\Gamma = 15.3^{+10.4}_{-6.1} \pm 2.5 \text{ MeV}$
- Necessarily exotic since it is narrow and above the $D_s^+D_s^-$ threshold
- [cscs] tetraquark?
- Hint of a second structure: X(4274)
- · Not confirmed by B-factories and LHCb with 0.37fb⁻¹ data

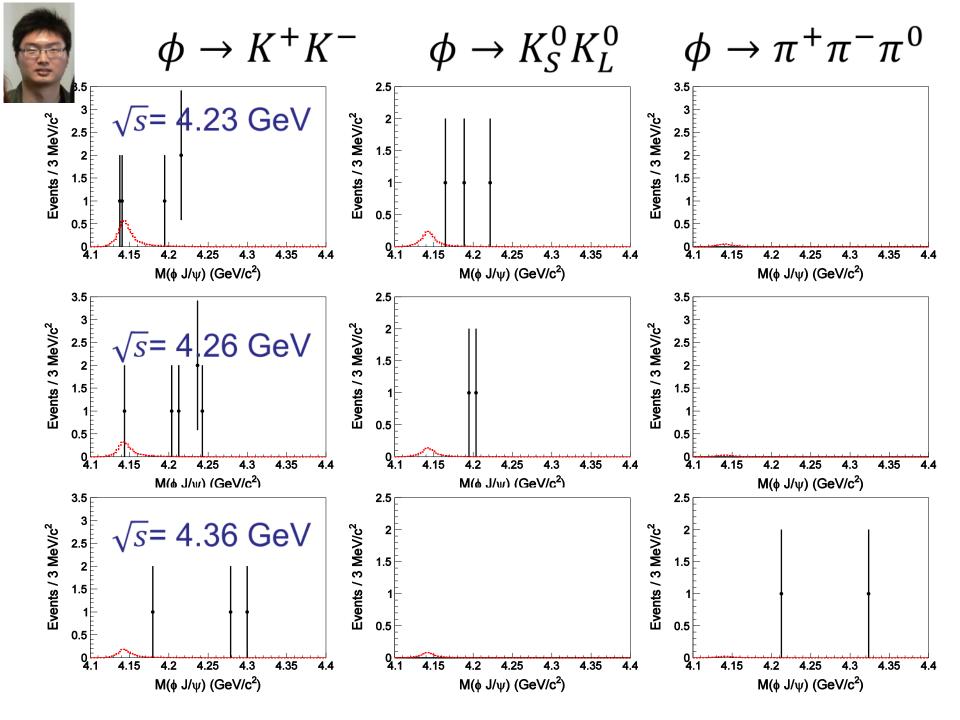
CMS, M 2000 2000 2000 2000 2000 2000 2000 2	s = 7 TeV, L = 5.2 fb ⁻¹	8 < m(K ⁺ K ⁻) < 1.035 GeV	experiments with		fit)
	X(4274-	CDF	CMS [PLB 734,	DØ [PRD 89,	

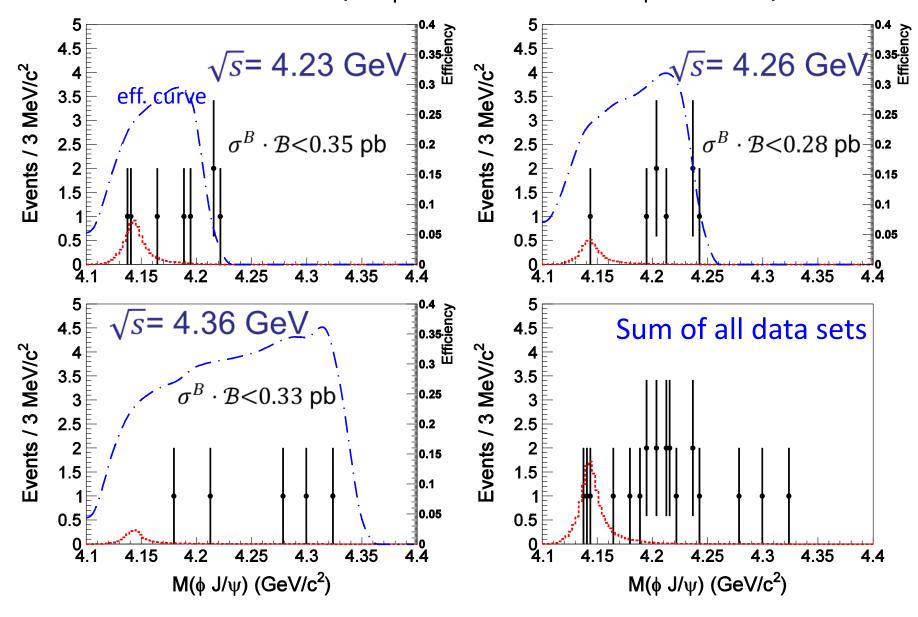

X(4274- 4351)?	CDF [arXiv:1101.6058]	CMS [PLB 734, 261 (2014)]	DØ [PRD 89, 012004 (2014)]
Significance	3.1♂	>3♂	
M_0 (MeV)	$4274.4^{+8.4}_{-6.7} \pm 1.9$	4313.8±5.3±7.3	4328.5 ±12.0
Γ_0 (MeV)	$32.3^{+21.9}_{-15.3} \pm 7.6$	$28^{+15}_{-11} \pm 19$	


L. Zhang

X(4140) & X(4274): identified as $J^{PC} = 1^{++}$ at $> 5\sigma$

- Default model also includes NR $\phi K + 7 K^*$ (float M_0 and Γ_0) that are significant
- These results add significantly to the knowledge of K spectroscopy (results in the paper and backup)




Search for Y(4140) $\rightarrow \phi$ J/ ψ at BESIII

e+e-
$$\rightarrow \gamma \phi J/\psi$$
; $J/\psi \rightarrow e^+e^-/\mu^+\mu^-$

- \$\phi \rightarrow \text{K}^+ \text{K}^-\$
 Partial reconstruction, only require one \$\text{K}\$
- 2. $\phi \rightarrow K_S K_L$ Partial reconstruction, only require K_S ; the K_L not reconstructed.
- 3. $\phi \rightarrow \pi^+ \pi^- \pi^0$ Full reconstruction.

Combine 6 modes (3ϕ modes $\otimes 2 J/\psi$ modes)

No significant Y(4140) signal found @ BESIII

Set upper limit at the 90% CL. for

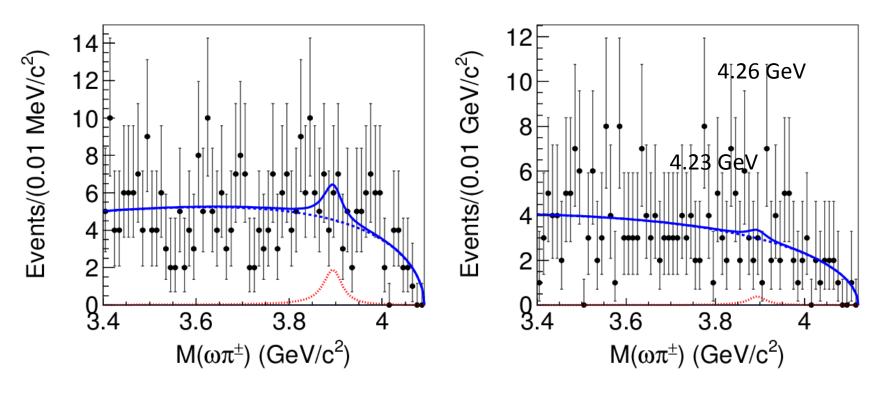
$$\sigma^B \times \mathcal{B} = \sigma^B(e^+e^- \to \gamma Y(4140)) \times \mathcal{B}(Y(4140) \to \phi J/\psi)$$

\sqrt{s} (GeV/ c^2)	Luminosity (pb ⁻¹)	$(1+\delta)$	$\sigma^B imes \mathcal{B}$
4.23	1094	0.840	<0.35
4.26	827	0.847	<0.28
4.36	545	0.944	<0.33

Systematic error included

Compared with the X(3872) product ion

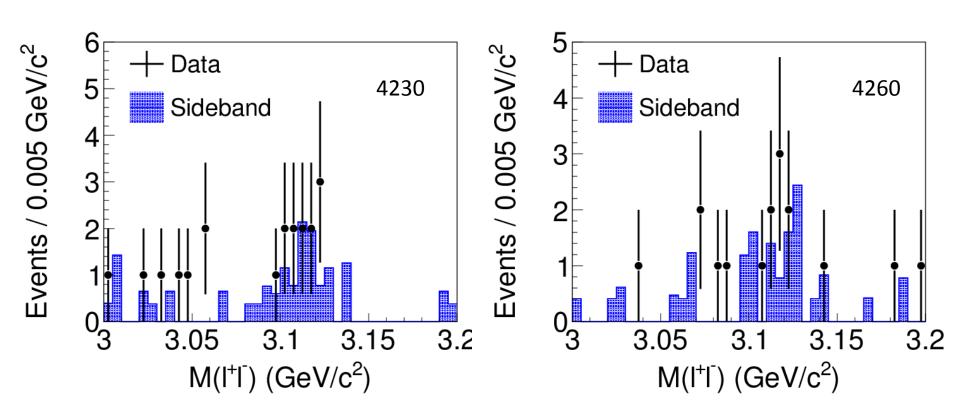
$$\sigma^B(e^+e^-\to\gamma X(3872))\times\mathcal{B}(X(3872)\to\pi^+\pi^-J/\psi)$$


Take
$$\mathcal{B}(X(3872) \to \pi^+\pi^- J/\psi) = 5\%$$
. arXiv: 0910.3138

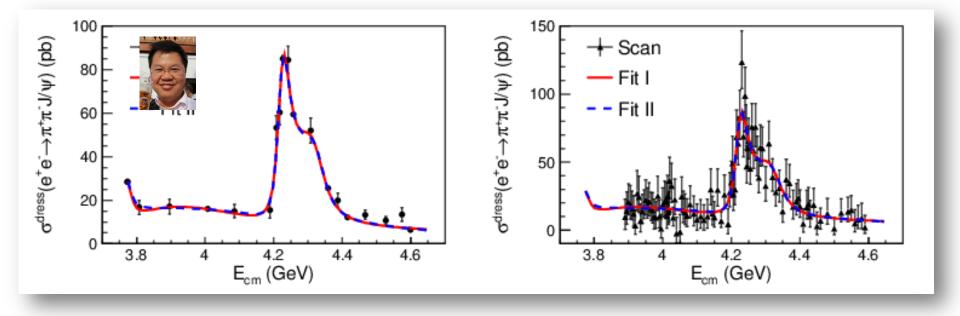
And $\mathcal{B}(Y(4140) \to \phi J/\psi) = 30\%$, molecular calculation, PRD 80, 054019.

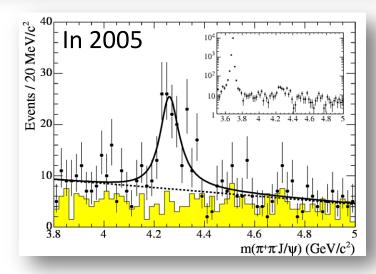
$$\frac{\sigma^B(e^+e^-\to \gamma Y(4140))}{\sigma(e^+e^-\to \gamma X(3872))} \le 0.1$$
 at \sqrt{s} =4.23 and 4.26 GeV.

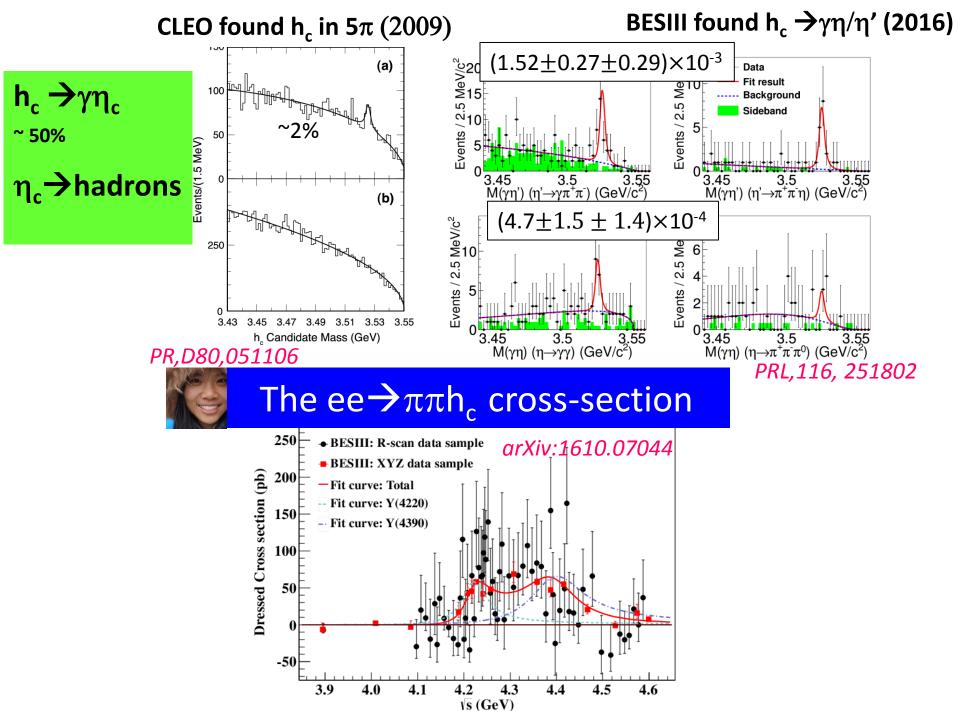
Negative searches also provide useful info about the XYZ


• No $Z_c(3900)^{\pm} \rightarrow \omega \pi^{\pm}$ observed

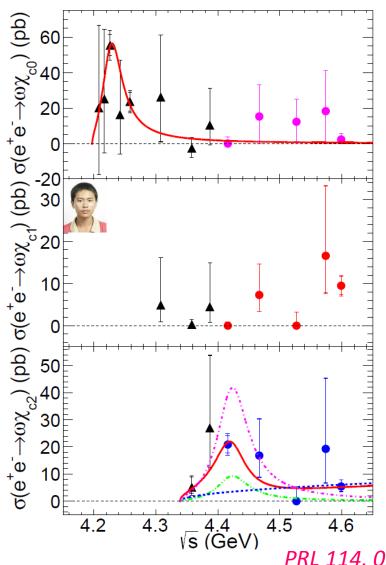
• No resonant structure in $J/\psi\pi$ is observed in $B^0 \rightarrow J/\psi\pi^+\pi^-$ by LHCb [PR,D90,012003], in $B^0 \rightarrow J/\psi K^-\pi^+$ by Belle [PR,D90,012009]


• No $Y(4260) \rightarrow J/\psi \eta \pi^0$ found

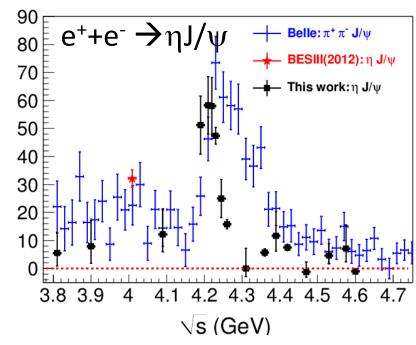

-- the isospin violating decay



arXiv:1611.01317 (2016)


BESIII measured the $\pi^+\pi^-J/\psi$ lineshape --- The Y(4260) is not a simple Breit-Wigner

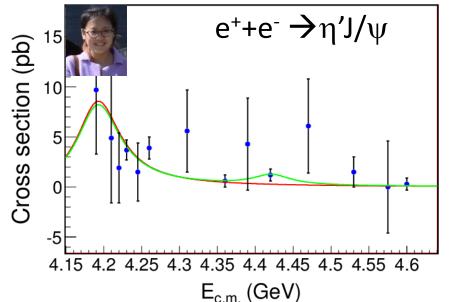
$e^+e^- \rightarrow \omega J/\psi$



It seems consistent with the first structure in $\pi+\pi-J/\psi$ line shape.

- A tetraquark? Phys.Rev.D91, 117501 (2015)
- •ψ(4S)? EPJC 74:3208 (2014)
- •Threshold effect?
- •No significant $e+e-\rightarrow \omega \chi_{c1}$ events
- •Can be described by ψ (4415)

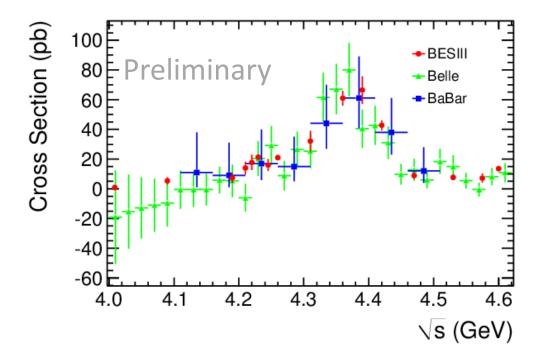
PRL 114, 092003 (2015) PRD 93, 011102(R) (2016)

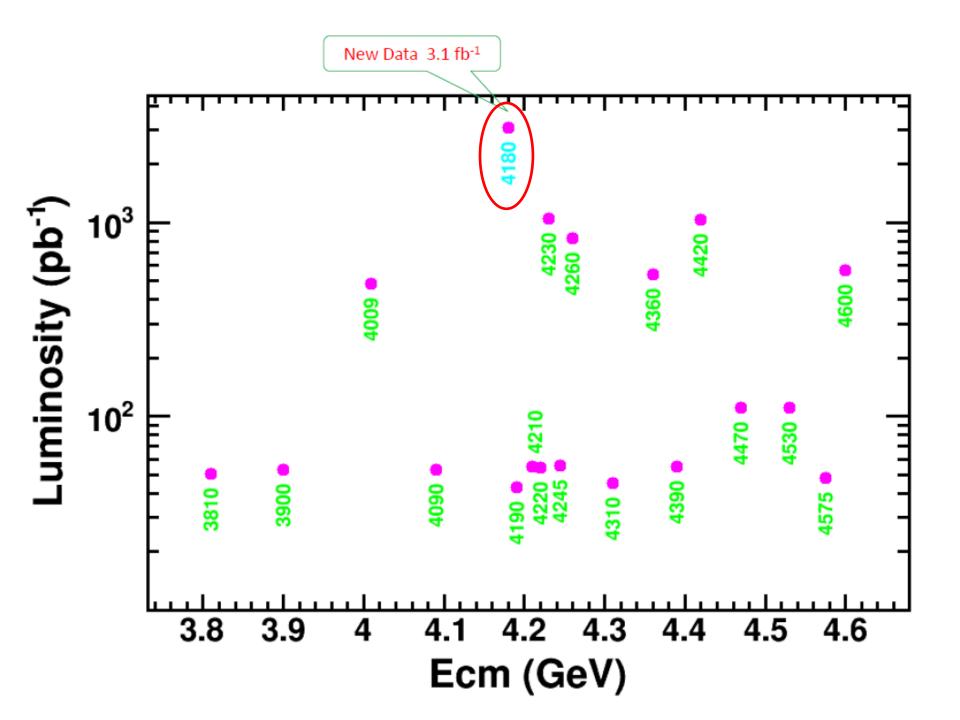

$e^++e^-\rightarrow \eta/\eta'J/\psi$

Cross Sections (pb)

- The cross section peaks around 4.2 GeV
- Different from the e+e- $\rightarrow \pi\pi/\psi$ lineshape.

PRD 91, 112005 (2015)




- •First observation at \forall s = 4.23 & 4.26 GeV.
- •Fit with ψ (4160) and ψ (4415) resonances (fixed mass and width); looking at data at 4180.
- σ (η' J/ ψ) is much lower than σ (η J/ ψ) , in contradiction to the calculation in the framework of NRQCD

PRD 94, 032009 (2016)

$e^+e^-\to \pi^+\pi^-\psi(3686)$

- Reconstructed modes:
 - Mode I: $\Psi(3686) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow I^+I^-$ (I=e/ μ)
 - Mode II: $\Psi(3686) \rightarrow$ neutrals+J/ ψ , neutrals= $(\pi^0 \pi^0, \pi^0, \eta \text{ and } \gamma \gamma) \text{ J/} \psi \rightarrow \text{I+I-} (\text{I=e/}\mu)$
- The measured Born cross sections of e⁺e⁻→π⁺π⁻ψ(3686)

Summary

- BESIII is in a unique position to both directly access these states and to search for new states.
- BESIII has been intensively studied the XYZ structures.
- We are for most time limited by statistics. Optimize data taking? Measure more decay modes; build connections between states at this region.
- Very complex structures in the cross sections > 4GeV, which may point to the existence of exotics.
- BESIII plans to take data at 4.19-4.30 GeV. What are you going to do with these data?

人类对微观世界物质组成的探索是无止境的, 五彩缤纷的基本粒子带给人们无限的思索和遐想。 T 轻子、粲粒子、多夸克态、胶子球, 无不引人入胜。感谢北京正负电子对撞机和北京谱仪, 为粒子物理学谱写了新的篇章。

—— 赵光达(理论物理学家,中国科学院院士)