Recent Results on XYZ from Belle

4th workshop on the XYZ particles

Junhao Yin (Institute of High Energy Physics) 2016.11.23

Outline

- ≻KEKB/Belle
- The X states
- ➤The Y states
- ➤The Z states
- >Other topics
- ➢Summary

KEKB/Belle : world highest luminosity e⁺e⁻collider

Belle Detector

Integrated Luminosity of B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Integrated Luminosity of B factories

> 1 ab⁻¹ On resonance: $\Upsilon(5S): 121 \text{ fb}^{-1}$ $\Upsilon(4S): 711 \text{ fb}^{-1} 772M BB$ $\Upsilon(3S): 3 \text{ fb}^{-1}$ $\Upsilon(2S): 25 \text{ fb}^{-1}$ $\Upsilon(1S): 6 \text{ fb}^{-1}$ Off reson./scan: $\sim 100 \text{ fb}^{-1}$

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

The X states

Search for more decay modes of X(3872)

- > X(3872) was discovered in 2003 but still unclassified.
- ➤ X(3872) is very close to the D⁰D^{*0} threshold (3871.81 ± 0.36) MeV/c².

Mass: $3872.9^{+0.6}_{-0.4}(\text{stat})^{+0.4}_{-0.5}(\text{sysm}) \text{ MeV}/c^2$. Width: $3.9^{+2.8}_{-1.4}(\text{stat})^{+0.2}_{-1.1}(\text{sysm}) \text{ MeV}$ B

 $Br(X \rightarrow D^0 \overline{D}^{*0})/Br(X \rightarrow J/\psi \pi^2)$

 $= 8.92\pm2.42, 19.9\pm8.05$ (calc from papers)

Belle BABAR

Search for more decay modes of X(3872)

- ▶ In the molecular mode, $X(3872) \rightarrow \gamma J/\psi$ is dominated by VMD while $\gamma \psi'$ is mostly by LQA (Phys. Lett. B 598, 197, Phys. Rep. 429, 243).
- ➢ But Barbar report $\mathcal{B}(X(3872) \rightarrow \gamma \psi') / \mathcal{B}(X(3872) \rightarrow \gamma J/\psi) = 3.4 \pm 1.4.$ (Phys. Rev. Lett. 102, 132001)
- ► Observe $X(3872) \rightarrow \gamma J/\psi$ but no significant signal for $\gamma \psi'$.

Search for more decay modes of X(3872)

Using $772 \times 10^6 \Upsilon(4S) B\overline{B}$ events, X(3872) and $\chi_{c1}(2P)$ is searched in $B^+ \rightarrow (\chi_{c1}\pi^+\pi^-) K^+$ decay. No signal of X(3872) or $\chi_{c1}(2P)$.

Search for X_b

> The X(3872) counterpart in the bottomonium sector X_b .

> As X_b is above $\omega \Upsilon(1S)$ threshold, this isospin conversing process should be a more promising decay mode (PRD, 88, 054007).

From the 2D fit of the $M(\pi^+\pi^-\pi^0) vs M(\gamma \Upsilon(1S))$:

Mode	Yield	$\Sigma (\sigma)$	ε (%)	σ_B (pb)	$B(10^{-3})$	$\sigma_{ m sys}^{(1)}$ (%)	$\sigma_{ m sys}^{(2)}$ (%)
$\pi^+\pi^-\pi^0\chi_{b0}$	< 13.6	1.0	6.43	< 3.1	< 6.3	25	24
$\pi^{+}\pi^{-}\pi^{0}\chi_{b1}$	80.1 ± 9.9	12	6.61	$0.90 \pm 0.11 \pm 0.13$	$1.85 \pm 0.23 \pm 0.23$	14	12
$\pi^+\pi^-\pi^0\chi_{b2}$	28.6 ± 6.5	5.9	6.65	$0.57 \pm 0.13 \pm 0.08$	$1.17 \pm 0.27 \pm 0.14$	14	12
$\omega \chi_{b0}$	< 7.5	0.5	6.35	< 1.9	< 3.9	29	28
$\omega \chi_{b1}$	59.9 ± 8.3	12	6.53	$0.76 \pm 0.11 \pm 0.11$	$1.57 \pm 0.22 \pm 0.21$	14	13
$\omega \chi_{b2}$	12.9 ± 4.8	3.5	6.56	$0.29 \pm 0.11 \pm 0.08$	$0.60 \pm 0.23 \pm 0.15$	26	25
$(\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b0}$	< 10.7	0.4	6.68	< 2.3	< 4.8	41	41
$(\pi^+\pi^-\pi^0)_{\rm non-\omega}\chi_{b1}$	23.6 ± 6.4	4.9	6.88	$0.25 \pm 0.07 \pm 0.06$	$0.52 \pm 0.15 \pm 0.11$	21	20
$(\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b2}$	15.6 ± 5.4	3.1	6.91	$0.30 \pm 0.11 \pm 0.14$	$0.61 \pm 0.22 \pm 0.28$	45	45

 $\frac{\sigma(e^+e^- \rightarrow \omega \chi_{b1})}{\sigma(e^+e^- \rightarrow \omega \chi_{b2})} = 0.38 \pm 0.16 \pm 0.09$, where the common systematic uncertainties cancel.

12

The Y states

- $J^{PC}: 1^{--}$
- Production: $e^+e^- \rightarrow (\gamma_{ISR})Y$
- Y has c and \overline{c} quarks.
- But not the simple charmonium.

PRL, 110, 252002.

- Two enhancement, Y(4008) and Y(4260) are observed.
- Two solutions for the unbinned maximum likelihood fit.

Parameters	Solution I	Solution II
$M(R_1)$	3890.8 ±	40.5 ± 11.5
$\Gamma_{\rm tot}(R_1)$	254.5 ± 3	39.5 ± 13.6
$\Gamma_{ee}\mathcal{B}(R_1 \to \pi^+ \pi^- J/\psi)$	$(3.8 \pm 0.6 \pm 0.4)$	(8.4 ± 1.2 ± 1.1)
$M(R_2)$	4258.6 ±	8.3 ± 12.1
$\Gamma_{\rm tot}(R_2)$	134.1 ±	16.4 ± 5.5
$\Gamma_{ee}\mathcal{B}(R_2 \to \pi^+\pi^- J/\psi)$	$(6.4 \pm 0.8 \pm 0.6)$	$(20.5 \pm 1.4 \pm 2.0)$
ϕ	$59 \pm 17 \pm 11$	$-116 \pm 6 \pm 11$

Y(4360) and Y(4660)

PRL,91, 112007.

- > Based on 980 pb^{-1} data.
- > Reconstructed with $\pi^+\pi^-\psi'$.
- ➤ Clear Y(4360) and Y(4660).
- Unbinned maximum likelihood fit without Y(4260), get two solutions with same mass and width:

Parameters	Solution I		Solution II
$M_{Y(4360)}$ $\Gamma_{Y(4360)}$		$\begin{array}{c} 4347 \pm 6 \pm 3 \\ 103 \pm 9 \pm 5 \end{array}$	
$\mathcal{B}[Y(4360) \to \pi^{+}\pi^{-}\psi(2S)] \cdot \Gamma_{Y(4360)}^{e^{+}e^{-}} M_{Y(4660)} \\ \Gamma_{Y(4660)}$	$9.2 \pm 0.6 \pm 0.6$	$\begin{array}{c} 4652 \pm 10 \pm 11 \\ 68 \pm 11 \pm 5 \end{array}$	$10.9 \pm 0.6 \pm 0.7$
$\mathcal{B}[Y(4660) \to \pi^+ \pi^- \psi(2S)] \cdot \Gamma_{Y(4660)}^{e^+ e^-} \phi$	$\begin{array}{c} 2.0 \pm 0.3 \pm 0.2 \\ 32 \pm 18 \pm 20 \end{array}$		$\begin{array}{c} 8.1 \pm 1.1 \pm 1.0 \\ 272 \pm 8 \pm 7 \end{array}$

Add Y(4260) in the fit with constrained mass and width. $Amp = BW_1 + e^{i\phi} \cdot BW_2 + e^{i\phi} \cdot BW_3$

The significance of Y(4260) is only 2.8σ , but it affects Y(4360) and Y(4660) masses and widths.

The Z states

• Many Z states have been observed now.

Particle	С	J ^C	Decay	Year	Collaboration
$Z_C(3900)^+$	-	?	$\pi^+ J/\psi$	2013	BESIII, Belle, CLEOc
$Z_{C}(3885)^{+}$	-	1+	$(DD^{*})^{+}$	2013	BESIII
$Z_C(4020)^+$	-	?	$\pi^+ h_c(1P)$	2013	BESIII
$Z_{C}(4025)^{+}$	-	?	$(D^*D^*)^+$	2013	BESIII
$Z_C(4200)^+$	-	1+	$\pi^+ J/\psi$	2014	Belle
$Z_C(4200)^0$	-	1+	$\pi^0 J/\psi$	2014	BESIII
$Z_C(4050)^+$	+	?	$\pi^+\chi_{c1}$	2008	Belle
$Z_{C}(4250)^{+}$	+	?	$\pi^+\chi_{c1}$	2008	Belle
$Z_{C}(4430)^{+}$	-	1+	$\pi^+\psi(2S)$	2008	Belle, LHCb
$Z_b(10610)^{\pm}$		1+	$\pi^+\Upsilon(nS)$	2012	Belle
$Z_b(10650)^\pm$		1+	$\pi^+\Upsilon(nS)$	2012	Belle
$Z_b(10610)^0$		1+	$\pi^{0}\Upsilon(nS)$	2013	Belle

$Z_C(4050)^\pm \rightarrow \pi^\pm \psi(2S).$

- M(Z_c) = 4054 ± 3 ± 1 MeV/c²
 - Γ = 45 ± 11 ± 6 MeV
 - Significance: >3.5σ

No significant structure in the $\pi^{\pm}\psi(2S)$ system in Y(4660) singal region.

 $Z_C(4200)^+ \rightarrow \pi^+ J/\psi$

PRD, 90, 112009.

4-dimensional Amplitude analysis of $\overline{B}{}^0 \rightarrow J/\psi K^- \pi^+$: All K^* and $Z_C(4430)^+$ resonances.

The known mass and width of the $Z_C(4430)^+$ (PRD, 88, 074026) are used to limit the floating mass and width:

$$-2\ln L \to -2\ln L + \frac{(M-M_0)^2}{\sigma_{M_0}^2} + \frac{(\Gamma-\Gamma_0)^2}{\sigma_{\Gamma_0}^2},$$

- $\geq Z_C(4200)^+$ is observed with a significance of 6.2 σ .
- > The preferred assignment of the quantum number J^P : 1⁺ with global significance of 7.9 σ .
- Find evidence for $Z_C(4430)^+ \rightarrow \pi^+ J/\psi$, 4.0 σ .

Mass: $4190^{+31}_{-29}(\text{stat})^{+17}_{-13}(\text{sysm}) \text{ MeV}/c^2$. Width: $370^{+70}_{-70}(\text{stat})^{+70}_{-132}(\text{sysm}) \text{ MeV}$ A fit with the $Z_C(4200)^+$ Breit-Wigner amplitude changed to a combination of constant amplitudes is performed.

The plot for H_1 shows a resonancelike change of the amplitude absolute value and phase.

$$Z_b$$
 in $\Upsilon(5S) \to \pi^+\pi^-\Upsilon(nS)$

Study on 121.4 $fb^{-1} \Upsilon(5S)$ data, select $\pi^+\pi^-$ by requiring $M(\pi^+\pi^-)$ with tagged $\mu^+\mu^-$. Clear signal of $\pi^+\pi^-\Upsilon(nS)$.

PRD, 91, 072003.

➤ Amplitude analysis on $\pi^+\pi^-\Upsilon(nS)$: $A_{\pi\pi\Upsilon} = A_{\pi Z_1} + A_{\pi Z_2} + A_{\sigma\Upsilon} + A_{f_0\Upsilon} + A_{f_2\Upsilon} + A_{NR}$, where A_{NR} is the non-resonance components.

Remove the background contribution:

$$\mathcal{L} = -2\sum_{events} \ln(f_{sig}S + (1 - f_{sig})B))$$

- Solution By comparing the fitted maximum likelihood, the favored quantum number $J^P = 1^+$ for both Z_b .
- > $J^P = 1^-$, 2^{\pm} are rejected at confidence levels exceeding 6σ .

	$Z_b(10650)$				
$Z_b(10610)$	1+	1-	2+	2-	
1+	0(0)	60(33)	42(33)	77(63)	
1-	226(47)	264(73)	224(68)	277(106)	
2+	205(33)	235(104)	207(87)	223(128)	
2-	289(99)	319(111)	321(110)	304(125)	

Masses, widths and branching fractions are also determined.

Born cross section

Final state	$\Upsilon(1S)\pi^{+}\pi^{-}$	$\Upsilon(2S)\pi^{+}\pi^{-}$	$\Upsilon(3S)\pi^{+}\pi^{-}$
Signal yield	2090 ± 115	2476 ± 97	628 ± 41
Efficiency, %	45.9	39.0	24.4
$\mathcal{B}_{\Upsilon(nS)\to\mu^+\mu^-}, \% [14]$	2.48 ± 0.05	1.93 ± 0.17	2.18 ± 0.21
$\sigma_{e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-}^{\text{vis}}$, pb	$1.51 \pm 0.08 \pm 0.09$	$2.71 \pm 0.11 \pm 0.30$	$0.97 \pm 0.06 \pm 0.11$
$\sigma_{e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-}$, pb	$2.27 \pm 0.12 \pm 0.14$	$4.07 \pm 0.16 \pm 0.45$	$1.46 \pm 0.09 \pm 0.16$
$\sigma_{e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-}^{\text{vis}}$, pb [1]	$1.61 \pm 0.10 \pm 0.12$	$2.35 \pm 0.19 \pm 0.32$	$1.44^{+0.55}_{-0.45} \pm 0.19$

Parameter	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
$f_{Z_b^{\mp}(10610)\pi^{\pm}}, \%$	$4.8 \pm 1.2^{+1.5}_{-0.3}$	$18.1 \pm 3.1 \substack{+4.2 \\ -0.3}$	$30.0\pm6.3^{+5.4}_{-7.1}$
$Z_b(10610)$ mass, MeV/ c^2	$10608.5 \pm 3.4^{+3.7}_{-1.4}$	$10608.1 \pm 1.2^{+1.5}_{-0.2}$	$10607.4 \pm 1.5^{+0.8}_{-0.2}$
$Z_b(10610)$ width, MeV	$18.5 \pm 5.3^{+6.1}_{-2.3}$	$20.8\pm2.5^{+0.3}_{-2.1}$	$18.7\pm3.4^{+2.5}_{-1.3}$
$f_{Z_b^{\mp}(10650)\pi^{\pm}}, \%$	$0.87 \pm 0.32^{+0.16}_{-0.12}$	$4.05 \pm 1.2^{+0.95}_{-0.15}$	$13.3 \pm 3.6^{+2.6}_{-1.4}$
$Z_b(10650)$ mass, MeV/ c^2	$10656.7 \pm 5.0^{+1.1}_{-3.1}$	$10650.7 \pm 1.5 \substack{+0.5 \\ -0.2}$	$10651.2 \pm 1.0^{+0.4}_{-0.3}$
$Z_b(10650)$ width, MeV	$12.1^{+11.3+2.7}_{-4.8-0.6}$	$14.2\pm3.7^{+0.9}_{-0.4}$	$9.3\pm2.2^{+0.3}_{-0.5}$
ϕ_Z , degrees	$67\pm 36^{+24}_{-52}$	$-10\pm13^{+34}_{-12}$	$-5\pm22^{+15}_{-33}$
$c_{Z_b(10650)}/c_{Z_b(10610)}$	$0.40\pm0.12^{+0.05}_{-0.11}$	$0.53 \pm 0.07^{+0.32}_{-0.11}$	$0.69 \pm 0.09 \substack{+0.18 \\ -0.07}$
$f_{\Upsilon(nS)f_2(1270)}, \%$	$14.6 \pm 1.5^{+6.3}_{-0.7}$	$4.09 \pm 1.0^{+0.33}_{-1.0}$	_
$f_{\Upsilon(nS)(\pi^{+}\pi^{-})_{S}}, \ \%$	$86.5\pm3.2^{+3.3}_{-4.9}$	$101.0 \pm 4.2^{+6.5}_{-3.5}$	$44.0\pm 6.2^{+1.8}_{-4.3}$
$f_{\Upsilon(nS)f_0(980)}, \%$	$6.9\pm1.6^{+0.8}_{-2.8}$	-	_

PRD, 91, 072003.

 Z_h^0 in $\pi^0\pi^0\Upsilon(nS)$

➢ It's natural to expect the existence of neutral partners of the $Z_b^{\pm}(10610), Z_b^{\pm}(10650)$ States.

> $\pi^0 \pi^0 \Upsilon(nS)$ are observed in $\Upsilon(10860)$ decays for the first time.

PRD88, 052016 (2013)

Born cross section:

 $\sigma(e^+e^- \to \Upsilon(1S)\pi^0\pi^0) = (1.16 \pm 0.06 \pm 0.10) \text{ pb},$ $\sigma(e^+e^- \to \Upsilon(2S)\pi^0\pi^0) = (1.87 \pm 0.11 \pm 0.23) \text{ pb},$ $\sigma(e^+e^- \to \Upsilon(3S)\pi^0\pi^0) = (0.98 \pm 0.24 \pm 0.19) \text{ pb}.$

Approximately ½ of the corresponding values of $e^+e^+ \rightarrow \pi^+\pi^-\Upsilon(nS)$.

A mass constrained Dalitz Analysis is performed:

Two solutions are found for $\pi^0 \pi^0 \Upsilon(2S)$ sample while single solutions for $\pi^0 \pi^0 \Upsilon(1, 3S)$. PRD88, 052016 (2013)

- > 5.3 σ for the $Z_b^0(10610)$ in both solutions for $\pi^0\pi^0\Upsilon(2S)$ while 4.7 σ for $\pi^0\pi^0\Upsilon(3S)$.
- Simultaneous fit of $\pi^0 \pi^0 \Upsilon(2,3S)$, 6.8 σ of statistical significance for $Z_b^0(10610)$.
- > $Z_b^0(10650)$ is not significant although the data are consistent with the existence of $Z_b^0(10650)$.

Free the $Z_b^0(10610)$ parameters:

PRD88, 052016 (2013)

Mass: $10609 \pm 4 \pm 4 \text{ MeV}/c^2$.

First isospin partner among "XYZ".

$e^+e^- \rightarrow \pi^+\pi^-h_b(nP)$

 ✓ Using the scan data collected between Υ(5S) to Υ(6S).
 ✓ Reconstructed π⁺π⁻ and require M_{miss}(π[±]) in mass region: [10.59, 10.67] GeV/c², which is Z_b signal region.

PRL, 117, 142001.

With tagged $\pi^+\pi^-h_b(nP)$ signal, find evidence of $\Upsilon(5S)$ and observe $\Upsilon(6S)$ with significance of 3.5 σ and 5.3 σ , repectively.

Y(5*S*) Mass: 10884.7^{+3.6}_{-3.4}(stat)^{+8.9}_{-1.0}(sysm) MeV/ c^2 Width: 40.6^{+12.7}_{-8.0} (stat)^{+1.1}_{-19.1}(sysm) MeV Y(6*S*) Mass: 10999.0^{+7.3}_{-7.8}(stat)^{+16.9}_{-1.0}(sysm) MeV/ c^2 Width: 27⁺²⁷₋₁₁(stat)⁺⁵₋₁₂(sysm) MeV

$$\begin{split} &\sigma^B(e^+e^- \to h_b(1P)\pi^+\pi^-) = 1.66 \pm 0.09 \pm 0.10 \, \mathrm{pb}, \\ &\sigma^B(e^+e^- \to h_b(2P)\pi^+\pi^-) = 2.70 \pm 0.17 \pm 0.19 \, \mathrm{pb}. \end{split}$$

PRL, 117, 142001.

- > Release the requirement of an intermediate Z_b and yield the h_b .
- Fit the data where Z_b parameters are fixed and non-resonance background is set to zero.
- > The hypothesis that only $Z_b(10610)$ if produced in $\pi^+\pi^-h_b(1P)$ channel is excluded at the 3.3 σ level.

$Z_b \text{ in } \Upsilon(5S) \to [B^{(*)}B^{(*)}]^+ \pi^- + c.c$

 $\geq Z_b(10610)$ and $Z_b(10650)$ might be loosely bound $B\overline{B}^*$ and $B^*\overline{B}^*$ system, respectively.

Reconstruct three body $[B^{(*)}B^{(*)}]\pi$. Identify B meson by mass and momentum in c.m.s.

Combined with right π : the right sign combination(RS). wrong π -wrong sign (WS), studied from MC, normalized in data.

PRL, 116, 212001.

Assuming that the known Z_b decay table is saturated. Give the relative branching fraction for Z_b decays.

$Z_b(10610)$	$Z_b(10650)$
$0.54_{-0.13-0.08}^{+0.16+0.11}$	$0.17\substack{+0.07+0.03\\-0.06-0.02}$
$3.62^{+0.76+0.79}_{-0.59-0.53}$	$1.39_{-0.38-0.23}^{+0.48+0.34}$
$2.15_{-0.42-0.43}^{+0.55+0.60}$	$1.63^{+0.53+0.39}_{-0.42-0.28}$
$3.45_{-0.71-0.63}^{+0.87+0.86}$	$8.41^{+2.43+1.49}_{-2.12-1.06}$
$4.67^{+1.24+1.18}_{-1.09-0.89}$	$14.7^{+3.2+2.8}_{-2.8-2.3}$
85.6+1.5+1.5	ated
Domin	73.7+3.4+2.7
	$\begin{array}{c} & Z_b (10010) \\ & 0.54 \substack{+0.16 + 0.11 \\ -0.13 - 0.08} \\ & 3.62 \substack{+0.76 + 0.79 \\ -0.59 - 0.53} \\ & 2.15 \substack{+0.55 + 0.60 \\ -0.42 - 0.43} \\ & 3.45 \substack{+0.87 + 0.86 \\ -0.71 - 0.63} \\ & 4.67 \substack{+1.24 + 1.18 \\ -1.09 - 0.89} \\ & 85.6 \substack{+1.5 + 1.5 \\ -2.0 - 2.1} \\ & \cdots \end{array}$

PRL, 116, 212001.

Other topic

Search for XYZ in $\Upsilon(1S)$ inclusive decay

- A common feature of these XYZ states is that they decay into a charmonium state such as J/ψ or ψ' .
- $\succ \Upsilon(1S)$ inclusive to J/ψ or ψ' with large branching ratios $[(6.5 \pm 0.7) \times 10^{-4} \text{ and } (2.7 \pm 0.9) \times 10^{-4}].$

≻Tag $\Upsilon(1S) \rightarrow J/\psi$ or ψ' + anything :

PRD, 93, 112032.

Search for *X*(3872), *Y*(4230), *Y*(4260), *Y*(4360) by combining J/ψ or ψ' with $\pi^+\pi^-$.

Search for *X*(4140), *X*(4350), *Y*(4260) by combining *J*/ ψ or ψ' with $K^+K^-(\phi)$.

• No evidence is found for new structures or any of the known XYZ states.

38

Search for Z states by combining J/ψ or ψ' with an extra π or K.

PRD, 93, 112032.

State	N_{fit}	$N_{\rm up}$	$\varepsilon(\%)$	$\sigma_{\rm syst}(\%)$	$\Sigma(\sigma)$	\mathcal{B}_R
$X(3872) \rightarrow \pi^+\pi^- J/\psi$	4.8 ± 15.4	31.4	3.26	18.7	0.3	$< 9.5 \times 10^{-6}$
$Y(4260) \to \pi^+ \pi^- J/\psi$	-31.1 ± 88.9	134.6	3.50	35.6	_	$< 3.8 \times 10^{-5}$
$Y(4260) \to \pi^+ \pi^- \psi(2S)$	6.7 ± 29.4	56.9	0.71	35.0	0.2	$< 7.9 \times 10^{-5}$
$Y(4360) \to \pi^+\pi^-\psi(2S)$	-25.4 ± 30.1	45.6	0.86	50.0	_	$< 5.2 \times 10^{-5}$
$Y(4660) \to \pi^+\pi^-\psi(2S)$	-55.0 ± 26.2	23.1	1.06	40.7	_	$< 2.2 \times 10^{-5}$
$Y(4260) \rightarrow K^+ K^- J/\psi$	-13.7 ± 10.9	14.5	1.91	45.8	_	$< 7.5 \times 10^{-6}$
$Y(4140) \rightarrow \phi J/\psi$	-0.1 ± 1.2	3.6	0.69	11.0	_	$< 5.2 \times 10^{-6}$
$X(4350) \rightarrow \phi J/\psi$	2.3 ± 2.5	7.6	0.92	10.4	1.2	$< 8.1 \times 10^{-6}$
$Z_c(3900)^{\pm} \rightarrow \pi^{\pm} J/\psi$	-26.5 ± 39.1	57.5	4.39	47.3	_	$< 1.3 \times 10^{-5}$
$Z_c(4200)^{\pm} \rightarrow \pi^{\pm} J/\psi$	-238.6 ± 154.2	235.1	3.87	48.4	_	$< 6.0 \times 10^{-5}$
$Z_c(4430)^{\pm} \rightarrow \pi^{\pm} J/\psi$	94.2 ± 71.4	195.8	3.97	34.4	1.2	$< 4.9 \times 10^{-5}$
$Z_c(4050)^{\pm} \rightarrow \pi^{\pm}\psi(2S)$	37.0 ± 47.7	112.7	1.27	46.2	0.4	$< 8.8 \times 10^{-5}$
$Z_c(4430)^{\pm} \rightarrow \pi^{\pm}\psi(2S)$	23.2 ± 42.4	92.0	1.35	47.1	0.1	$< 6.7 \times 10^{-5}$
$Z_{cs}^{\pm} \to K^{\pm} J/\psi$	-22.2 ± 17.4	22.4	3.88	48.7	_	$< 5.7 \times 10^{-6}$

We searched for a variety of XYZ states in $\Upsilon(1S)$ inclusive decays for the first Time. No evident signal is found for any of them and 90% C.L. upper limits are set on the product branching fractions.

Search for exotic baryons in *pK* systems

- ▶ LHCb report the observation of $P_C(4380)$ and $P_C(4450)$ in $J/\psi p$ system.
- The possibility of exotic baryons is discussed in [J. Phys. G30,1801 (2004)].
- Search for exotic baryons, denoted as $\Theta(1540)^0 \rightarrow pK^-$ and $\Theta(1540)^{++} \rightarrow pK^+$ in $\gamma\gamma \rightarrow p\bar{p}K^+K^-$.

A simultaneous fit to $M(pK^-)$ with $\Lambda(1520)^0$ and $\Theta(1540)^0$ shape: $\Lambda(1520)^0$ with 8.6 σ . $\Theta(1540)^0$ with 1.4 σ .

Fit to $M(pK^+)$, with $\Theta(1540)^{++}$ shape only. No $\Theta(1540)^{++}$ singal.

PRD, 93, 112017.

Simultaneous fit to the pK invariant mass distribution in each $p\bar{p}K^+K^-$ mass bin.

No evidence of $\Theta(1540)^0 \rightarrow pK^-$ and $\Theta(1540)^{++}$ is seen in $M(pK^-)$ or $M(pK^+)$.

Summary

- Although the data taking was finished on June 30, 2010, there may be rich physics to be analyzed in Belle data, both for charmonium (-like) and bottomonium (-like) states.
- Partner state is a a key to go further, which also needs more data.
- Belle II will start data taking soon, about 50 times larger integrated luminosity!!

Thank you!

Back up

Charmonium region at Belle II

ISR produces events at all CM energies BESIII can reach

In $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$ decay mode Mass: Very close to $\overline{D}{}^{0}D^{*0}$ threshold. Width: Very narrow, < 1.2 MeV. J^{PC} : 1⁺⁺.

Observed with significance of 10.3σ . $M_X = M_X^{meas} - M_{\psi}^{meas} + M_{\psi}^{PDG} = 3872.0 \pm 0.6 \pm 0.5$ MeV $\Gamma < 2.3$ MeV

Nature (very likely exotic) Loosely $\overline{D}^0 D^{*0}$ bound state (like deuteron?)? Mixture of excited χ'_{c1} and $\overline{D}^0 D^{*0}$ bound state? Many other possibilities (if it is not χ'_{c1} , where is χ'_{c1} ?)