

Lattice QCD Results on Exotics

Chuan Liu

The methods The XYZ's

Summary and outlooks

Lattice QCD Results on Exotics

Chuan Liu

Institute of Theoretical Physics and Center for High Energy Physics School of Physics, Peking University, Beijing 100871, China

Disclaimer

Lattice QCD Results on Exotics

Chuan Liu

The methods

The XYZ's

Summary and outlooks

I would like to thank...

- the organizers for the kind invitation
- my collaborators at CLQCD:
 - Y. Chen, M. Gong, N. Li, Z. Liu, J.P. Ma, Y.B. Liu, J.B. Zhang
- my graduate (ex-)students who contributed: N. Li, H. Liu, J. Liu, Y. Liu, Z. Wang, T. Chen, K. Zhang, C. Xiong, ...

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

- people who sent me information/plots:
 - S. Aoki, G. Bali, S. Dürr, D. Leinweber, K.-F. Liu,
 - G. Schierholz, C. Urbach, etc.

Outline

Lattice QCD Results on Exotics

The methods

The XYZ's

Summary and outlooks

Methodologies

- The conventional method (the GEVP)
- The not so conventional methods
 - Lüscher formalism
 - Other formalisms: HEFT, HALQCD, OP.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

The scattering of charmed mesons

- the XYZ's
- Prelovsek et al
- CLQCD
- HALQCD

Summary and outlooks

- Where we stand and
- what to expect next

1. Methods

Chuan Liu

The methods

The XYZ'

Summary and outlooks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The first step: GEVP in a typical lattice spectrum calculation

Lattice QCD Results on Exotics

Chuan Liu

The methods

The XYZ's

Summary and outlooks

- A set of interpolating operators with the "right" quantum numbers: {O_α : α = 1, 2, · · · , N_{op}}
- Compute the correlation matrix:

$$\mathcal{C}_{lphaeta}(t,0) = \langle \mathcal{O}_lpha(t) \mathcal{O}^\dagger_eta(0)
angle \;,$$
 (1)

 Solve the so-called Generalized Eigen-Value Problem (GEVP) for the eigenvalues λ_α's,

$$\mathcal{C}(t,0)\cdot \mathbf{v}_{\alpha} = \lambda_{\alpha}(t,t_0)\mathcal{C}(t_0,0)\cdot \mathbf{v}_{\alpha} , \qquad (2)$$

for some appropriately chosen t_0

From the eigenvalues $\lambda_{\alpha}(t, t_0)$, extract the corresponding eigenvalues of the Hamiltonian: E_{α} via

$$\lambda_{\alpha}(t,t_0) \sim e^{-E_{\alpha}(t-t_0)} . \tag{3}$$

• Pass the E_{α} 's to the second step

Complications

- Lattice QCD Results on Exotics
- Chuan Liu
- The methods
- The XYZ's
- Summary and outlooks
- **1** E_{α} 's are NOT hadron mass values!
 - E_{α} is the eigenvalue of the QCD Hamiltonian
 - not even in real world, but in a latticized finite box!
 - Most hadrons are resonances
- 2 Many types of operators enter (operator mixing)!
 - single hadron operators
 - multi-hadron operators (esp. beyond the threshold)...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The second step Relate the E_{α} 's to the spectral quantity

Lattice QCD Results on Exotics

Chuan Liu

The methods

The XYZ's

Summary and outlooks

- **O** E_{α} 's are "approximate" hadron masses
 - only if the hadron is stable
 - or the hadronic resonance is "narrow" enough
 - but, what does "narrow" mean really?
- 1 Using a version of the Lüscher formalism
 - single channel version has matured over the years
 - multi-channel applications just appeared
 - more channels? rather complicated!
- 2 Other approaches
 - the Hamiltonian Effective Field Theory (HEFT) approach

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- the HAL QCD approach
- the Optical Potential (OP) approach

Lüscher's approach

in theory (e.g. M. Lüscher, NPB354, 531, 1991)

Lattice QCD Results on Exotics

Chuan Liu

The methods

The XYZ's

Summary and outlooks

 original: single-channel spinless two-particle elastic scattering in COM frame,

$$E_{\alpha}(L) \Leftrightarrow \delta(E_{\alpha})$$
 . (4)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

$$\begin{cases} \tan \delta(\bar{k}) = \frac{\pi^{3/2} q}{Z_{00}(1, q^2)} , \\ 2\sqrt{\bar{k}^2 + m^2} = E(L) , \quad q = kL/(2\pi) . \end{cases}$$
(5)

extensions over the years

- to particles with spin
- to multi-channels
- different BC's,
- different frames,

...

Lüscher's approach

Lattice QCD Results on Exotics

The methods

The XYZ's

Summary and outlooks

Scalar $\lambda \phi^4$ theory F. Zimmermann et al, hep-lat/9211029; NPB425, 413, 1994

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Sac

- pion-pion scattering
 - quenched 1992; Gupta et al, PRD48, 388, 1993
 - unquenched since 2005 or so

has matured in recent years

complicated for multi-channels

Other approaches: the HEFT approach

SEE e.g. J.M.M. Hall et al, PRD87;094510,2013; arXiv:1303.4157

Needs to construct the appropriate hamiltonian
 model parameters are determined by fitting low-energy data
 Example: N*(1535) (J^P = (1/2)⁻) study, z.-w. Liu et al, PRL116, 082004, 2016; 1512.00140

イロト 不得 トイヨト イヨト

-

Sac

effective Hamiltonian in a finite volume

Other approaches: the HEFT approach comparison of the levels

The finite volume levels from Z.-W. Liu et al, PRL116, 082004, 2016; 1512.00140

イロト 不得 トイヨト イヨト

ъ

Sac

nicely interpolates all existing lattice data

Other approaches: the HALQCD method

see e.t. N. Ishii et al, PRL99, 022001,2007; PLB712,437,2012.

Lattice QCD Results on Exotics

Chuan Liu

The methods

The XYZ's

Summary and outlooks

- HAL QCD: Hadrons to Atomic nuclei from Lattice QCD
- starts from the so-called NBS wavefunction (a four-point function).
- ^{IMP} Ex: *N*-Ω interaction study:

$$F_{N\Omega}(\mathbf{x}-\mathbf{y},t-t_0) = \langle 0|N_{\alpha}(\mathbf{x},t)\Omega_{\beta,l}(\mathbf{y},t)\bar{J}_{N\Omega}(t_0)|0\rangle \quad (6)$$

the potential is obtained via the time-dependent HALQCD approach,

$$V_C(r) \simeq \frac{1}{2\mu} \nabla^2 R(r,t) / R(r,t) - \frac{\partial}{\partial t} \ln R(r,t) ,$$
 (7)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with $R(r, t) = F_{N\Omega}(t, 0)/e^{-(m_N + m_\Omega)t}$. remains no need for GEVP

Other approaches: the optical potential

SEE e.g. D. Agadjanov et al, arXiv: 1603.07205

- measure the optical potential directly
 - analytically continue W(E) to $W(E + i\varepsilon)$
 - \blacksquare taking $L \to \infty,$ then $\varepsilon \to 0$
 - done by smoothing
- can handle multi-channels, or more than 2 particles
- relatively new, needs further study
- In particular, what is the relation with HALQCD approach?

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の ○ ○

2. Charmed meson scattering and the XYZ's

Lattice QCD Results on Exotics

Chuan Liu

The methods

The XYZ's

Summary and outlooks

The XYZ particles and other threshold exotics

• quarkonium-like states: valence quark structure $Q\bar{Q}q'\bar{q}$

- Neutral ones, q = q', e.g. X(3872), Y(4260), etc.
- Charged ones, $q \neq q'$, $Z_c(3900)$, $Z_c(4025)$, Z(4430), etc.
- Close to thresholds of mesons: $Q\bar{q}$ and $\bar{Q}q'$

Plus the newly discovered pentaquark states: P_c^+ , etc.

S. Prelovsek et al study on Z_c 's

5. Prelovsek et al, PRD91 014504 2015; 1405.7623

Lattice QCD Results on Exotics

Chuan Liu

- The methods
- The XYZ's

Summary and outlooks

- Focus on $I^G(J^{PC}) = 1^+(1^{+-})$ sector;
- gauge ensemble: $N_f = 2$ improved Wilson fermion
- One volume (L ~ 2fm)
- one lattice spacing $(a \sim 0, 124 {
 m fm})$
- one pion mass value ($m_\pi \sim 266 {
 m MeV})$
- Main pro: used many interpolating operators: DD^* , D^*D^* , $\rho\eta_c$, $J/\psi\pi$ and tetra-quark operators !
- ^{ICF} Main strategy: Study E_{α} 's and compare with the free case!

Implicit judgements & assumptions

- Lattice QCD Results on Exotics
- Chuan Liu
- The methods
- The XYZ's
- Summary and outlooks
- aware that E_{α} 's are not mass values!
- however, too many channels to be taken care of

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- not using Lüscher
- implicitly assuming weak interactions

S. Prelovsek et al study on Z_c 's

The methods

The XYZ's

Summary and outlooks

• Study E_{α} 's and compare with the free case!

S. Prelovsek et al, PRD91 014504 2015; 1405.7623

ロマネロマネート・ロークタの

CLQCD's study on Z_c 's

CLQCD, PRD89 094506 (2014);CLQCD, PRD92 054507 (2015)

- Lattice QCD Results on Exotics
- Chuan Liu
- The methods
- The XYZ's
- Summary and outlooks

- Focus on $I^{G}(J^{PC}) = 1^{+}(1^{+-})$ sector;
- gauge ensemble: $N_f = 2$ twisted mass fermion
- One volume (*L* ~ 2.1fm)
- one lattice spacing $(a \sim 0.067 \text{fm})$
- three pion mass values ($m_\pi \sim 300-485 {
 m MeV})$
- Main strategy: Single out the most important channel near threshold (single-channel approximation)

Charmed meson near-threshold scattering

 $N_f = 2$ twisted mass confs., using Lüscher

Lattice QCD Results on Exotics

Chuan Liu

The methods

The XYZ's

Summary and outlooks

 $(D^* \bar{D}^*)^{\pm} (Z_c(4025))$

CLQCD, PRD92 054507 (2015) $(D\bar{D}^*)^{\pm} (Z_c(3900))$

CLQCD, PRD89 094506 (2014)

- TBC utilized
- 3 m_π values: 300,425,485MeV
- weakly repulsive interaction found
- no indication of a bound state

Provide the set of the set

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Sac

For Z(4430) $N_f = 2$ twisted mass confs., using Lüscher

Lattice QCD Results on Exotics

Chuan Liu

The methods

The XYZ's

Summary and outlooks

- $(\bar{D}_1 D^*)^{\pm} (Z(4430))$ CLQCD, Phys.Rev. D93 (2016)
 - attractive interaction shows up
 - appears to be more attractive than the quenched results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- G. Meng et al, PRD80 034503 (2009)
- some indications of a bound state seen
- however, needs more volumes

The HALQCD approach $Z_c(3900)$, 1602.03465

• appears to be a coupled channel effect arising from the $\pi J/\psi - \bar{D}D^* - \eta_c \rho$ coupling

Sac

The HALQCD approach $Z_c(3900)$, 1602.03465

Lattice QCD Results on Exotics Chuan Liu

The methods The XYZ's

Summary and outlooks

- 2+1 improved Wilson
- one volume ($L \sim 2.9 \text{fm}$)
- one lattice spacing $(a \sim 0.09 \text{fm})$
- three pion masses (410 700MeV)
- model $Y(4260) \rightarrow \pi \bar{D}D^*, \pi \pi J/\psi$ three-body decays using experimental data from BESIII

∃ \(\0 \Q \Q \Q)

• spectator π plus re-scattering via $V^{\alpha\beta}$

Summary and outlooks

Lattice QCD Results on Exotics

Chuan Liu

The methods

The XYZ's

Summary and outlooks conventional computations have come to the precision era
 we can reproduce the ρ resonance nicely!

イロト 不得 トイヨト イヨト

э

590

Summary and outlooks

Lattice QCD Results on Exotics

Chuan Liu

The methods

The XYZ's

Summary and outlooks

2 The near-threshold exotics have been studied in LQCD

- looking at E_{α} 's directly \Rightarrow negative
- $\blacksquare \ \text{single-channel scattering} \Rightarrow \text{negative}$
- staggered fermion by Fermilab \Rightarrow negative
- HALQCD \Rightarrow coupled-channel effects?
- what's next?
- 3 More studies are needed
 - coupled-channel Lüscher to cross-check
 - more systematic studies

Thank you for your patience!

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ