Observation of e+e- \rightarrow KKJ/ ψ at sqrt(s) Between 4189 and 4600 MeV

Preliminary results

BESIII Collaboration

Data Samples

Energy [MeV]	Int. Lumin. $[pb^{-1}]$
4189	43.1
4208	54.6
4217	54.1
4226	1091.6
4241	55.6
4258	825.7
4308	44.9
4358	539.8
4387	55.2
4416	1073.6
4467	109.9
4527	110.0
4575	47.7
4600	566.9
TOTAL	4672.8

Event Selection

- At least 2(3) positive and 2(3) negative tracks for K⁺K⁻J/ψ (KsKsJ/ψ)
- "Good" Tracks
 - Angles within $|\cos(\theta)| < 0.93$
 - Tracks |z| < 10cm, |r| < 1cm from IP
- 4C (6C) fit for K⁺K⁻J/ ψ (KsKsJ/ ψ)

 $-\chi^2 < 10$

- For K+/-, Prob(K) PID hypothesis > Prob(π) PID hypothesis
- Opening Angle of $\operatorname{Tracks}_{KKJ/\psi \operatorname{Preliminary}} \cos(\theta) < 0.98$
- E/p < 0.25 for both muons

Results: KKJ/ψ

 σ_{E} () are the Born Cross-sections for that energy

The small errorbars are statistical errors, while the larger errorbars are combined statistical and systematic.

Grey Lines: Lower Luminosity Energy Points

KKJ/ψ Preliminary Results

Results: KsKsJ/ψ to K⁺K⁻J/ψ Ratio

Results: K⁺K⁻J/ ψ to $\pi^+\pi^-$ J/ ψ Ratio

Numerical Results

Energy [GeV]	$\sigma_{\rm E}(K^+K^-J/\psi)~{\rm [pb]}$	$\sigma_{\rm E}(K_S K_S J/\psi)$ [pb]	$\frac{\sigma_{\!\scriptscriptstyle \rm E}(K_SK_SJ/\psi)}{\sigma_{\!\scriptscriptstyle \rm E}(K^+K^-J/\psi)}$	$\frac{\sigma_{\!\scriptscriptstyle \rm E}(K^+K^-J/\psi)}{\sigma_{\!\scriptscriptstyle \rm E}(\pi^+\pi^-J/\psi)}$
4.189	$2.3^{+3.8}_{-1.6} \pm 0.3$	< 5.1	< 2.4	$0.14^{+0.20}_{-0.11}\pm0.02$
4.208	$1.5^{+2.4}_{-1.0} \pm 0.2$	$1.8^{+3.0}_{-1.3} \pm 0.3$	$1.3^{+2.9}_{-1.2} \pm 0.1$	$0.030^{+0.040}_{-0.021} \pm 0.004$
4.217	$2.7^{+2.7}_{-1.5} \pm 0.4$	< 4.2	< 1.7	$0.043^{+0.038}_{-0.024} \pm 0.006$
4.226	$5.64^{+0.63}_{-0.57} \pm 0.75$	$1.9^{+0.5}_{-0.4}\pm0.3$	$0.306^{+0.087}_{-0.072} \pm 0.024$	$0.0644^{+0.0072}_{-0.0067} \pm 0.0094$
4.241	$2.1^{+2.1}_{-1.1} \pm 0.3$	< 3.8	< 1.9	$0.024^{+0.022}_{-0.014} \pm 0.004$
4.258	$2.99^{+0.47}_{-0.41} \pm 0.40$	$1.3^{+0.4}_{-0.3}\pm0.2$	$0.47^{+0.17}_{-0.14}\pm0.04$	$0.0499^{+0.0076}_{-0.0070} \pm 0.0073$
4.308	$0.7^{+1.7}_{-0.7} \pm 0.1$	< 4.7	< 6.6	$0.015^{+0.020}_{-0.011}\pm0.002$
4.358	$0.44^{+0.22}_{-0.15}\pm0.06$	$0.46^{+0.34}_{-0.20}\pm0.07$	$1.03^{+0.92}_{-0.57} \pm 0.08$	$0.0185^{+0.0080}_{-0.0063}\pm 0.0027$
4.387	$0.5^{+1.2}_{-0.5}\pm0.1$	< 3.9	< 5.7	$0.028^{+0.039}_{-0.022}\pm0.004$
4.416	$1.14^{+0.22}_{-0.19} \pm 0.14$	$0.32^{+0.23}_{-0.15}\pm0.05$	$0.31^{+0.23}_{-0.15}\pm0.02$	$0.091^{+0.018}_{-0.016}\pm0.013$
4.467	$4.0^{+1.3}_{-1.0} \pm 0.5$	< 2.1	< 0.5	$0.36^{+0.13}_{-0.11}\pm0.05$
4.527	$4.3^{+1.4}_{-1.1} \pm 0.7$	$0.86^{+1.43}_{-0.60}\pm0.13$	$0.17^{+0.29}_{-0.13}\pm0.01$	$0.44^{+0.14}_{-0.13}\pm0.06$
4.575	$2.1^{+1.5}_{-0.9}\pm0.3$	< 4.4	< 2.3	$0.17^{+0.12}_{-0.09}\pm0.02$
4.600	$1.53^{+0.33}_{-0.27} \pm 0.20$	$1.12^{+0.50}_{-0.35} \pm 0.14$	$0.65^{+0.35}_{-0.25} \pm 0.05$	$0.215^{+0.049}_{-0.045} \pm 0.031$

Systematic Uncertainties

	$\pi^+\pi^- J/\psi$	K^+K^-J/ψ	$K_S K_S J/\psi$
Luminosity	1.0%	1.0%	1.0%
Tracking and PID	4.0%	7.0%	6.0%
Branching Ratios	0.39%	0.39%	0.40%
K_S Reconstruction	-	_	6.0%
J/ψ Resolution	1.0%	1.0%	1.0%
Kinematic Fit	2.6%	3.8%	5.9%
Vacuum Polarization	0.5%	0.5%	0.5%
ISR Correction	4.0%	6.0%	
Z_c Substructure	4.0%	-	
KK Substructure	-	10.0%	
Total	7.5%	14.1%	14.5%

Conclusions

• $\sigma_E(K^+K^-J/\psi)/\sigma_E(\pi^+\pi^-J/\psi)$ inconsistent with flat ratio at 4.226 GeV, 4.258 GeV, and 4.358 GeV

 χ^2 = 16.9 with 2 d.o.f. (3.5 σ difference)

Y(4260) as defined by $\pi^{*}\pi^{-}J/\psi$ inconsistent with $K^{+}K^{-}J/\psi$ at these energies

- $\sigma_{\rm E}(K^+K^-J/\psi)/\sigma_{\rm E}(\pi^+\pi^-J/\psi)$ inconsistent with flat ratio at 4.416 to 4.600 GeV

 $\chi^2 = 17.6$ with 4 d.o.f. (3.0 σ difference)

More complex structure in K^+K^-J/ψ at these energies

• $\sigma_{\rm E}$ (KsKsJ/ ψ)/ $\sigma_{\rm E}$ (K⁺K⁻J/ ψ) combined ratio i^{0.370^{+0.064}_{-0.058} ± 0.018 which is slightly inconsistent with the isospin symmetry prediction of 0.50 (first err stat, second err sys)}

Backups

Systematic Error: KK Substructure (1)

- Largest systematic error for K+K-J/ψ and KsKsJ/ψ at 10%
- Based on difference in efficiency when assuming a Phase Space substructure for KK from Monte Carlo (RED), and the efficiency weighted to the KK substructure seen in the data (GREEN)
- Difference at high-luminosity energy points is about 10%, used as conservative error.

[4230 MeV, 4260 MeV, 4420 MeV, 4600 MeV]

 KK Mass for Phase Space vs KK Mass seen in Data shown on next page.

KK J/ ψ Efficiencies

Systematic Error: KK Substructure

