

Exotic states from LHCb

Liming Zhang 张黎明 (清华大学)

On behalf of LHCb Collaboration

4th workshop on the XYZ particles Beihang University, 2016.11.23

Standard and Exotic Hadrons

- Mesons beyond qq and baryons beyond three-quark configurations are called as exotic hadrons
- Their existence is not forbidden by QCD as long as they maintain color-singlet configurations
- Multiquark objects were proposed separately by Gell-Mann and Zweig in 1964
- Recent discoveries in heavy quark states have revived hopes for conclusive proofs for existence of exotic hadrons

Detectors and data sets

- LHCb detector advantages:
 - Momentum: Mass : RICH $K - \pi$ separation:

 $\begin{array}{l} \Delta p/p = 0.4 \sim 0.6\% ~(5-100~{\rm GeV}/c) \\ \sigma_m = 8~{\rm MeV}/c^2 ~{\rm for}~B \rightarrow J/\psi X ~({\rm constrainted}~{\rm m}_{J/\psi}) \\ \epsilon(K \rightarrow K) \sim 95\% ~~{\rm mis-ID}~\epsilon(\pi \rightarrow K) \sim 5\% \end{array}$

All LHCb results use total RUN-I data (3.0 fb⁻¹)

$Z_c(4430)^- \to \psi' \pi^-$ and $P_c(4380)^+ P_c(4450)^+ \to J/\psi p$

Full amplitude fits and model-independent approaches

LHCb data samples (3 fb⁻¹)

- > factor of 10 better statistics than at the B factories, at smaller bkg
- Comparable signal statistics and bkg levels between the B^0 and Λ_b data samples

 $\rightarrow J/\psi\pi^-K^+$

LHCb-PAPER-2014-014 PRL **112**, 222002 (2014)

$\Lambda_b^0 \to J/\psi p K^-$: unexpected structure in $m_{J/\psi p}$

Full amplitude analyses

resonance

L. Zhang

Model of conventional resonances

			Well e	stablis	hed sta	tes from						
									Not	high- M_0		
Only sta	ite wi	t P=(-1) ^J	Ν	o high-1	1.				hi	$gh extsf{-}J^p$	All states	
doc	$\frac{1}{2}$	τι'=(±) Σ.Κ.π	IN		<u>, 0</u>				&	limit <u>L</u>	all <u>L</u>	
uec		JKA		nign-J		State	J^P	M_0 (MeV)	Γ_0 (MeV)	# of co	mplex	
State	J^P	$M_0 \; ({ m MeV})$]	$\Gamma_0 \ (MeV)$	# of co	\mathbf{p}	State	0		10 (110)	COUD	lings	
				coup	lings					Red	Evt	
				Red.	Ext.	4(1405)	1/0-	1.405	50	neu.	1770.	
NR	0^{+}			1	1	A(1405)	1/2	1405	50	<u>র</u>	4	
$K^{*}(800)^{0}$	0^{+}	682	547	1	1	A(1520)	$3/2^{-}$	1520	16	5	6	
$K^{*}(892)^{0}$	0^{+}	896	49	3	3	$\Lambda(1600)$	$1/2^{+}$	1600	150	3	4	
$K^*(1410)^0$	1-	1414	232	3	3	$\Lambda(1670)$	$1/2^{-}$	1670	35	3	4	
$K^*(1/30)^0$	0+	1425	202	1	1	$\Lambda(1690)$	$3/2^{-}$	1690	60	5	6	
$K^*(1430)^0$	0 9+	1420	100	2	2	$\Lambda(1800)$	$1/2^{-}$	1800	300	4	4	
$K_2(1430)$ $K^*(1680)^0$	2 1-	1452	200	0 9	0 9	$\Lambda(1810)$	$1/2^+$	1810	150	3	4	
$\frac{K^{*}(1000)}{K^{*}(1700)^{0}}$	1	1/1/	150	- 0	<u>ა</u>	A(1820)	$5/2^+$	1820	80	1	6	
$\frac{K_3(1780)^2}{(1780)^2}$	<u>ა</u>	1770	109		3	A(1830)	$5/2^{-}$	1830	95	1	6	
Total # of	free p	barameters		28	34	A(1890)	$\frac{3}{2}$	1800	100	2	6	
						A(2100)	7/9-	2100	200	1	6	
					A(2100)	1/2 F/0+	2100	200	1	0 6		
					A(2110)	3/2	2110	200		0		
Using Extend model to set significance				A(2350)	$9/2^+$	2350	150	0	6			
ofevo	tics	tates				$\Lambda(2585)$	$5/2^{-?}$	2585	200	0	6	
of exotic states						Total $\#$	of free p	arameters		64	146	

• Baryons have more than doubling of known states to include

- Two models for conventional resonances: Extended and Reduced, cross-check with each other
- Extended uses all established resonances, for significances and syst.
- Reduced keeps only significant contributions

Cannot describe the data with the conventional resonances (Extended) alone

State	Mass (MeV)	Width (MeV)	Fit frac. (%)	Sig.	State	Mass (MeV)	Width (MeV)	Fit frac. (%)	Sig.
<i>Z_c</i> (4430) ⁺	$4475 \pm 7^{+15}_{-25}$	$172 \pm 13^{+37}_{-34}$	${\bf 5.9 \pm 0.9 ^{+1.5}_{-3.3}}$	14σ	<i>P</i> _c (4450) ⁺	4449.8±1.7±2.5	39± 5±19	4.1±0.5±1.1	12σ
Belle	$4485 \pm 22^{+28}_{-11}$	$200{\pm}46^{+26}_{-35}$	$10.3 \pm 3.5 ^{+4.3}_{-2.3}$	5σ	<i>P</i> _c (4380) ⁺	4380 ±8±29	205±18±86	8.4±0.7±4.2	9σ

- $J^{P}=1^{+}$ at 9.7 σ incl. syst. (in Belle at 3.4 σ)
- Best fit has J^P=(3/2⁻, 5/2⁺), also (3/2⁺, 5/2⁻) & (5/2⁺, 3/2⁻) cannot be ruled out

L. Zhang

Fits including exotic hadrons

- Data are well described by the fits
- Conventional resonances dominate the rate
- Exotics spread across wide range of these masses

Decay angular projections

- They greatly increase discrimination power between resonances of different J^P
- Correctly describe interference

L. Zhang

Why two P_c^+ with opposite parity

- $1 P_c^+$ cannot fit well the peak
- Strong asymmetry angular distribution from P_c^+
- Can only be explained by interference two opposite parity P_c^+ Angular contribution from P_c

Argand diagrams for resonant behavior

LHCb-PAPER-2015-029

PRL **115**, 07201 (2015) Exotic hadron amplitudes modelled by 6 complex coefficients near

the peak mass, to compare with Breit-Wigner resonance amplitude

Good evidence for resonant character

- > The results are still dependent on the model of conventional hadrons
- Simultaneous PWA of the latter is not possible since exotics reflect into variables characterizing conventional hadrons
- However, we can assume exotics are not present and test for their presence in modelindependent way - next 5 slides

Argand diagrams for resonant behavior

Exotic hadron amplitudes modelled by 6 complex coefficients near the peak mass, to compare with Breit-Wigner resonance amplitude

Good evidence for resonant character

Large errors: not conclusive

- > The results are still dependent on the model of conventional hadrons
- Simultaneous PWA of the latter is not possible since exotics reflect into variables characterizing conventional hadrons
- However, we can assume exotics are not present and test for their presence in modelindependent way - next 5 slides

Rectangular Dalitz plane

Legendre moments

 $D_{(r)}$

$$\frac{dN}{d\cos\theta} = \sum_{l=0}^{l_{\max}} \left\langle P_l^U \right\rangle P_l(\cos\theta) \quad \theta = \theta_{K^*} \quad \text{or} \quad \theta_{\Lambda^*}$$

$$\left\langle P_l^U \right\rangle = \int_{-1}^{+1} \frac{dN}{d\cos\theta} P_l(\cos\theta) d\cos\theta \propto \sum_{i=1}^{n_{events}} \frac{1}{\varepsilon_i} P_l(\cos\theta_i)$$

 K^*/Λ^* can contribute only to low-order moments

 K^*/Λ^* -only hypothesis called H₀

$$l_{\rm max} = 2J_{\rm max}$$

 J_{max} is the highest spin of K^*/Λ^* resonance possible

Reflections of exotic hadrons can contribute to low **and high** order moments:

- Detecting non-zero moments above $2J_{max}$ signals presence of exotics

Setting l_{\max} as function of $m_{K\pi}/m_{Kp}$

From know K^*/Λ^* resonances, quark model predictions as a guide

Much fewer known states than predicted!

Moments coefficients

Non-zero values in the hatched area imply exotic contribution

Null exotic hypothesis (H₀) vs data

- Toy simulates the reflection of mass and angular structure of $K\pi/Kp$ onto $m_{\psi'\pi/\psi p}$
- Limits of l_{max} used (i.e. zero moments for $> l_{\text{max}}$ order)
- $m_{\psi'\pi/\psi p}$ can not be explained by the reflections of conventional (non)resonances alone

Exotic contributions in Cabibbosuppressed decays $\Lambda_b^0 \rightarrow J/\psi p \pi^-$

Cabibbo suppressed decays $\Lambda_b^0 \rightarrow J/\psi p\pi^-$

• More than a factor of 10 lower signal statistics in $\Lambda_b^0 \to J/\psi p \pi^$ analysis than in $\Lambda_b^0 \to J/\psi p K^-$

$\Lambda_b^0 \rightarrow J/\psi p\pi^-$: Cabibbo suppressed

- Less statistics, more complex because of Z_c^-
- Here the exotic hadron contributions are examined for $P_c(4380)^+$, $P_c(4450)^+ \rightarrow J/\psi p$ and $Z_c(4200)^- \rightarrow J/\psi \pi^-$
- $Z_{c}(4200)^{-} m_{0} = 4196^{+35}_{-32}$ MeV, $\Gamma = 370^{+99}_{-149}$ MeV $J^{P}=1^{+}$ by Belle (6.2 σ) in $B^0 \rightarrow J/\psi \pi^- K^+$ decays [PRD 88, 074026] PAPER-2016-015 (2013)] PRL **117**. 082002 (2016) 30 GeV LHCb 28 $Z_{c}(4200)^{-1}$ P_c^{\dagger} J/ψ р 20 $P_{c}(4380)^{+}$ Z_c^- 18 N^* $m_0 \pm \Gamma_0$ 16F $m_{\rho\pi}^2$ [GeV²] **Nucleon** excitations

Model of N* and exotic states

			Better established states from PDG										
	Λ_b^0 –	→ J/ψ p π ⁻	si	only gnificant states limit <i>L</i>	All state	es •	Reduced						
State	J^P	$M_0~({ m MeV})$	$\Gamma_0 \ ({\rm MeV})$	# of co	omplex	•	Extende						
				coup	lings		systema						
ND	1 /0-			Red.	Ext.	-	A 1						
NR $p\pi$	$1/2^{-}$	-	- 250	4	4	•	Almost						
N(1440) N(1520)	$\frac{1}{2}$	1430 1515	300 115	3 9	4	1	as in $\Lambda_1^{(i)}$						
N(1520) N(1535)	$\frac{3}{2}$ $\frac{1}{2}$	1515	115	3 4	4								
N(1650)	$1/2^{-}$	1655	140	1	4	•	Fixed m						
N(1675)	$5/2^{-}$	1675	150	3	5	1							
N(1680)	$5/2^{+}$	1685	130	0	3		exotic st						
N(1700)	$3/2^{-}$	1700	150	0	3		7 (1200)						
N(1710)	$1/2^{+}$	1710	100	0	4	•	$Z_{c}(4200)$						
N(1720)	$3/2^{+}$	1720	250	3	5		Dech D.						
N(1875)	$3/2^{-}$	1875	250	0	3	•	Each P _c :						
N(1900)	$3/2^+$	1900	200	0	3		fixed to						
N(2190)	7/2-	2190	500	0	3								
N(2300)	$1/2^+$	2300	340	0	3								
N (2570)	5/2-	2570	250	0]							
Total # c	of free p	parameters		40	106								

- Reduced model for central values
- Extended for significance and systematics
- Almost as many free parameters as in $\Lambda_b^0 \rightarrow J/\psi p K^-$
- Fixed m_0 and Γ_0 for the N* and exotic states
- $Z_c(4200)$: 10 free parameters
- Each P_c : 4 free parameters + 8 fixed to that from $\Lambda_b^0 \rightarrow J/\psi p K^-$

Full amplitude fits to $\Lambda_b^0 \rightarrow J/\psi p\pi^-$

Further results for $\Lambda_b^0 \to J/\psi p\pi^-$

- Individual exotic hadron contributions are not significant if others are present. More data are needed
- Significance of two P_c is 3.3 σ , if assume production of $Z_c(4200)^-$ is negligible. No independent confirmation of the P_c^+ states
- The data are consistent with the P_c states production rates expected from the $J/\psi pK^-$ measurement and Cabibbo suppression

PRL **117**, 082002 (2016)

State	Fit fraction (%)	$BR(\Lambda_{b} \to P_{c}^{+}\pi)/BR(\Lambda_{b} \to P_{c}^{+}K^{-})$
<i>Z_c</i> (4200) ⁻	$7.7 \pm 2.8^{+3.4}_{-4.0}$	
$P_c(4380)^+$	$5.1 \pm 1.5^{+2.6}_{-1.6}$	$0.050 \pm 0.016^{+0.026}_{-0.016} \pm 0.025$
<i>P_c</i> (4450) ⁺	$1.6 \begin{array}{c} +0.8 \\ -0.6 \end{array} \begin{array}{c} +0.6 \\ -0.5 \end{array}$	$0.033 \begin{array}{c} ^{+0.016}_{-0.014} \begin{array}{c} ^{+0.011}_{-0.010} \pm 0.009 \end{array}$
Expectation a	assuming the second diagram negligible:	0.07~0.08

[Cheng and Chua, PRD 92, 096009 (2015) arXiv:1509.03708]

$\begin{array}{c} X \to J/\psi\phi \text{ in } B^+ \to J/\psi\phi K^+ \\ \text{ decays} \end{array}$

X(4140) and *X*(4274)

- CDF observed a narrow $(J/\psi\phi)$ structure in $B^+ \rightarrow J/\psi\phi K^+$ decays [Initial publication on 2.7 fb⁻¹ PRL102, 242002 (2009)]
 - $-M = 4143.4 \pm 3.0 \pm 0.6 \text{ MeV}$
 - $-\Gamma = 15.3^{+10.4}_{-6.1} \pm 2.5 \text{ MeV}$
 - Necessarily exotic since it is narrow and above the $D_s^+D_s^-$ threshold
 - [cscs] tetraquark ?
 - Hint of a second structure: X(4274)
- Not confirmed by B-factories and LHCb with 0.37fb⁻¹ data

X(4140) and X(4274) from CMS

• Crucial to check by different experiments with larger statistics.

<i>X</i> (4140)	CDF [arXiv:1101.6058]	CMS [PLB 734, 261 (2014)]	DØ [PRD 89, 012004 (2014)]		
Significance	>5ơ	>5 σ	3.1σ		
<i>M</i> ₀ (MeV)	$4143.4 \pm 3.0 \pm 0.6$	$4148.0\pm2.4\pm6.3$	$4159.0 \pm 4.3 \pm 6.6$		
Γ_0 (MeV)	$15.3^{+10.4}_{-6.1} \pm 2.5$	$28^{+15}_{-11} \pm 19$	$19.9 \pm 12.6 ^{+1}_{-8}$		

X(4140) and X(4274) from CMS

- HURRS A
- Crucial to check by different experiments with larger statistics.

<i>X</i> (4274- 4351)?	CDF [arXiv:1101.6058]	CMS [PLB 734, 261 (2014)]	DØ [PRD 89, 012004 (2014)]		
Significance	3.1σ	>3თ			
<i>M</i> ₀ (MeV)	$4274.4^{+8.4}_{-6.7} \pm 1.9$	4313.8±5.3±7.3	4328.5 ±12.0		
Γ_0 (MeV)	$32.3^{+21.9}_{-15.3} \pm 7.6$	$28^{+15}_{-11} \pm 19$			

LHCb $B^+ \rightarrow J/\psi \phi K^+$ data samples

LHCb-PAPER-2016-018 arXiv: 1606.07895 LHCb-PAPER-2016-019 arXiv: 1606.07898

• Statistically, the most powerful $B^+ \rightarrow J/\psi \phi K^+$ sample analyzed so far

Use sidebands to subtract background

 $B^+ \rightarrow J/\psi \phi K^+$

Amplitude fit including 4 exotic X

LHCb-PAPER-2016-019 arXiv: 1606.07898 $J/w\phi$ give very significant improvements

- Four X states + NR $J/\psi\phi$ give very significant improvements over the models with K*s alone
- Default model also includes NR ϕK + 7 K^* (float M_0 and Γ_0) that are significant
- These results add significantly to the knowledge of K spectroscopy (results in the paper and backup)

Results LHCb-PAPER-2016-019 arXiv: 1606.07898

- J^{PC} are useful for interpretations of the states
- X(4140) & X(4274): identified as $J^{PC} = 1^{++}$ at $> 5\sigma$
- X(4500) & X(4700): $J^{PC} = 0^{++}$ at > 4 σ

	Contri-	sign.			Fit results
	bution	or Ref.	$M_0 \; [\mathrm{MeV}]$	$\Gamma_0 \; [{\rm MeV} \;]$	$\mathrm{FF}~\%$
	All $X(1^+)$				$16 \pm 3 + 6 \\ - 2$
	X(4140)	8.4σ	$4146.5 \pm 4.5 {}^{+4.6}_{-2.8}$	$83 \pm 21^{+21}_{-14}$	$13 \pm 3.2 {}^{+4.8}_{-2.0}$
Ave	rage other expe	eriments	4143.4 ± 1.9	15.7 ± 6.3	`substantially larger
	X(4274)	6.0σ	$4273.3 \pm 8.3 \substack{+17.2 \\ -3.6}$	$56 \pm 11^{+8}_{-11}$	$7.1 \pm 2.5 {}^{+3.5}_{-2.4}$
	CDF	[28]	$4274.4^{+8.4}_{-6.7} \pm 1.9$	$32^{+22}_{-15} \pm 8$	
	CMS	[25]	$4313.8 \pm 5.3 \pm 7.3$	$38^{+30}_{-15}\pm16$	
	All $X(0^+)$				$28\pm 5\pm 7$
	$\operatorname{NR}_{J/\psi\phi}$	6.4σ			$46 \pm 11 {}^{+11}_{-21}$
	X(4500)	6.1σ	$4506 \pm 11 {}^{+12}_{-15}$	$92 \pm 21 {}^{+21}_{-20}$	$6.6 \pm 2.4 {}^{+3.5}_{-2.3}$
	X(4700)	5.6σ	$4704 \pm 10 {}^{+14}_{-24}$	$120 \pm 31 {}^{+42}_{-33}$	$12\pm 5^{+9}_{-5}$

Search for $B_s^0 \pi^{\pm}$ state

A new $B_s^0 \pi^{\pm}$ state claimed by DØ

Upper limits

LHCb-PAPER-2016-029 PRL **117**, 152003 (2016)

5650 5700 5750 5800

0.01

Upper limit is set as a function of m(X) and Γ(X)

L. Zhang

5850 5900 5950 6000

Summary

- No significant signal for a tetraquark of $B_s^0 \pi^{\pm}$ for m < 6 GeV
- $Z_c(4430)$ state is confirmed, and two pentaquark states $P_c(4380)^+$ and $P_c(4450)^+$ are observed
- Using amplitude analysis, 3.1σ evidence is seen for the exotic hadron contributions in $\Lambda_b^0 \rightarrow J/\psi p\pi^-$ (more data needed)
- Four $X \to J/\psi\phi$ observed in the 1st full amplitude analysis of $B^+ \to J/\psi\phi K^+$
- More studied can be made with Run-II data, in similar channels where J/ψ replaced by ψ' , χ_{c1} , η_c etc.

BACKUP

Search for $B_s^0 \pi^{\pm}$ state: fits w/o signal

Search for $B_s^0 \pi^{\pm}$ state LHCb-PAPER-2016-029 arXiv:1608.00435

• Superimpose signal component assuming $\rho_X^{\text{LHCb}} = \rho_X^{\text{DØ}} = 8.6\%$

Amplitude analysis needed

- THOMSE STATE
- All previous analyses performed naïve 1D mass fits to $m_{J/\psi \varphi}$
 - Ad hoc assumptions about kaon contributions (e.g. 3-body phase-space distribution, incoherent)
 - No sensitivity to J^{PC} of X structures

Amplitude fits with kaon excitations only

Is X(4140) a $D_s^+D_s^{*-}$ cusp ?

- The cusp is preferred by 1.6σ over the Breit-Wigner amplitude for X(4140) from the fit likelihood ratio
- No success in describing any other $J/\psi\phi$ mass structures as a cusp

Amplitude Analysis Formalism

- Helicity formalism
 - Allows for the conventional $\Lambda^* \to pK$ resonances to interfere with pentaquark states $P_c^+ \to J/\psi p$
 - Use m(K⁻p) & 5 decay angles as fit parameters.

So 6D fit

Systematic uncertainty

$\Lambda_b{}^0 \rightarrow J/\psi \ pK^-$									
Source	$M_0 ({\rm MeV}) \Gamma_0 ({\rm MeV})$					Fit fractions $(\%)$			
	low	high	low	high	low	high	$\Lambda(1405)$	$\Lambda(1520)$	
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15	
Λ^* masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45	
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05	
$10 < p_p < 100 \text{ GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01	
Nonresonant	3	0.3	34	2	2.35	0.13	3.28	0.39	
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03	
$J^P (3/2^+, 5/2^-)$ or $(5/2^+, 3/2^-)$	10	1.2	34	10	0.76	0.44			
$d = 1.5 - 4.5 \text{ GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91	
$L^{P_c}_{\Lambda^0_b} \Lambda^0_b \to P^+_c \ (\text{low/high}) K^-$	6	0.7	4	8	0.37	0.16			
$L_{P_c} P_c^+ (\text{low/high}) \to J/\psi p$	4	0.4	31	7	0.63	0.37			
$L^{\Lambda^*_n}_{\Lambda^0_b} \Lambda^0_b \to J/\psi \Lambda^*$	11	0.3	20	2	0.81	0.53	3.34	2.31	
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23	
Change $\Lambda(1405)$ coupling	0	0	0	0	0	0	1.90	0	
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89	
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13	

Systematic uncertainty

LHCb-PAPER-2016-015 arXiv: 1606.06999, to appear in PRL

Λ_{b}^{c}	⁰ → J/ψ p π⁻		
Source	$P_c(4450)^+$	$P_c(4380)^+$	$Z_c(4200)^-$
N^* masses and widths	± 0.05	± 0.23	± 0.31
P_c^+, Z_c^- masses and widths	± 0.32	± 1.27	± 1.56
Additional N^*	$+0.08 \\ -0.23$	$+0.59 \\ -0.55$	$+0.71 \\ -2.92$
Inclusion of $Z_c(4430)^-$	+0.01	+0.97	+2.87
Exclusion of $Z_c(4200)^-$	-0.15	+1.61	-
Other J^P	$^{+0.38}_{-0.00}$	$^{+0.92}_{-0.28}$	$+0.00 \\ -2.16$
Blatt–Weisskopf radius	± 0.11	± 0.17	± 0.21
$L^{N^*}_{\Lambda^0_b}$ in $\Lambda^0_b \to J/\psi N^*$	± 0.07	± 0.46	± 0.04
$L_{\Lambda_b^0}^{P_c^{\circ}}$ in $\Lambda_b^0 \to P_c^+ \pi^-$	-0.05	-0.17	+0.09
$L_{\Lambda_b^0}^{Z_c^0}$ in $\Lambda_b^0 \to Z_c^- p$	± 0.07	± 0.22	± 0.53
K-matrix model	-0.03	+0.11	-0.02
P_c^+ couplings	± 0.14	± 0.31	± 0.36
Background subtraction	-0.07	-0.13	-0.39
Total	$^{+0.55}_{-0.48}$	$+2.61 \\ -1.58$	$+3.43 \\ -4.04$

Systematic uncertainty

sys.	1^{+}	2	X(4140))	Х	(4274))	0^{+}	X	(4500)		Х	(4700)		NR
var.	\mathbf{FF}	M_0	Γ_0	\mathbf{FF}	M_0	Γ_0	\mathbf{FF}	\mathbf{FF}	M_0	Γ_0	\mathbf{FF}	M_0	Γ_0	\mathbf{FF}	FF
K^*	+2.0	+3.6	+17.1	+2.2	+11.2	+7.9	+1.4	+1.8	+9.3	+13.8	+2.0	+7.5	+38.6	+6.7	+8.0
model	-1.7	-2.6	-11.7	-1.9	-2.5	-8.5	-1.5	-11.0	-8.6	-16.6	-1.7	-18.9	-13.5	-4.8	-16.6
L	+3.2	+2.2	+7.3	+2.1	+10.6	+1.4	+1.0	+0.3	+1.3	+10.8	+1.7	+9.0	+12.4	+1.5	+1.2
var.	+0.0	-1.2	-6.2	-0.5	-0.8	-4.6	-1.2	-4.7	-9.6	-11.2	-1.6	-6.8	-24.9	-0.8	-8.5
NR exp.	+0.4	-0.2	-0.1	+0.4	-0.2	+0.6	+0.8	-1.7	+6.3	+0.3	+0.2	+7.1	-15.7	-1.7	-9.1
$X \operatorname{cusp}$	+2.2			+0.9	+6.4	-5.4	-1.4	-1.2	+0.0	+1.2	+0.2	+1.9	-2.5	0.5	-1.6
$\Gamma_{ m tot}$	-0.6	+0.2	+1.5	-0.4	+3.2	+0.2	-0.3	+0.1	+0.8	-0.1	-0.3	+0.9	-5.8	-0.9	-1.1
d = 1.5	-0.9	+1.1	+5.3	-0.5	+2.2	+0.8	-0.4	+0.5	+1.7	+3.2	+0.1	-0.1	+1.7	+0.0	+1.1
d = 5.0	+1.1	-0.2	-2.0	+0.6	+0.2	-0.8	+0.3	-0.5	-1.0	-3.1	-0.1	-1.2	-3.2	-0.7	-2.5
Left s.	+0.1	-0.4	-2.0	+0.1	+0.4	-0.8	+0.1	-0.5	-2.4	-2.6	-0.2	-1.5	-3.1	-0.7	-1.2
Right s.	-0.3	+0.3	+2.6	-0.2	-0.6	+1.0	+0.0	+0.5	+3.7	+3.4	+0.4	+1.2	+7.0	+0.8	+1.6
β	+1.2	-0.6	-3.6	+1.2	+1.7	-0.7	+0.9	-2.5	-4.6	-11.1	-0.5	-3.9	-6.1	-1.4	-1.4
No w^{MC}	+1.6	+0.0	+0.0	+0.1	+0.0	+0.0	+1.4	+1.7	+0.0	+0.2	+0.2	+0.1	+0.0	+1.2	+2.7
ϕ window	+2.5	+1.1	+4.7	+2.4	-1.6	+1.4	+1.8	+4.2	-4.3	+7.1	+1.2	-9.3	+5.8	+0.7	+4.7
Total	+5.9	+4.6	+20.7	+4.7	+17.2	+8.4	+3.5	+6.5	+12.0	+20.8	+3.2	+13.9	+42.0	+7.2	+11.0
sys.	-2.1	-2.8	-13.5	-2.0	-3.6	-11.1	-2.4	-6.7	-14.5	-20.4	-2.3	-24.1	-33.3	-5.3	-21.0
Stat.	2.8	4.5	20.7	3.2	8.3	10.9	2.5	5.1	11.1	21.2	2.4	10.1	30.7	4.9	10.7
$p_{\rm T}{}^{K} > 500$	-1.3	+1.6	+1.7	-2.7	+7.8	+12.2	+0.2	-9.6	-10.9	-18.6	-3.2	-4.7	-12.7	-6.6	-17.1

Log-likelihood ratio method

- Likelihood ratio for PDF $(m_{\psi'\pi/\psi p}|H_0)$ and PDF $(m_{\psi'\pi/\psi p}|H_1)$
- H₁ can well present $m_{\psi'\pi/\psi p}$ spectrum in data using $l_{\text{max}}=30/31$ B⁰ $\rightarrow \psi'\pi^-\text{K}^+$ $\Lambda_b \rightarrow J/\psi p \text{K}^-$

However, this approach cannot characterize exotics – amplitude analysis is still necessary

NERS

Fitted angles in J/ψφK

• Fit quality is good in all fitted variables

K* results

Default model: 6 K* resonances (of 4 different J^{P}) + 1 NR ϕ K

Our results are given by the red points with error bars

Excellent agreement between our results and both theory and previous experiments

Argand diagram: Breit-Wigner vs cusp

JERS!

Cusps

- Cusp peaks at the sum of masses of the virtual narrow-D_{sX}^(*) pairs.
- Width of cusp in Swanson model is controlled with a free parameter (β_0)
- J^P of cusp determined by J^Ps of virtual D_s pairs (cusps occur in S-wave)

Theoretical interpretations of X(4140), X(4274)

Molecular models

- The determination of the quantum numbers of X(4140) as $J^{PC}=1^{++}$ rules out many interpretations. Namely, 0⁺⁺ or 2⁺⁺ D_s* $\overline{D_s}$ * molecules. The large width is also not expected for true molecular bound states.
- However, X(4140) may be a 1⁺⁺
 D_sD_s* cusp (form of rescattering)

Hybrid models

 Hybrid charmonium states proposed for X(4140) would have J^{PC}=1⁻⁺. Thus they are also ruled

out.

Tightly-bound tetraquark models

- There are tetraquark models which predict states with J^{PC}=0⁻⁺, 1⁻⁺ or 0⁺⁺, 2⁺⁺ near X(4140); these can be ruled out.
- A tetraquark model implemented by Stancu [JP G37, 075017 (2010), arXiv:0906.2485] correctly assigns 1⁺⁺ to X(4140) and predicts a second 1⁺⁺ state at a mass not much higher than X(4274)
- A Lattice calculation by Padmanth et al [PRD92, 034501 (2015)], based on a diquark tetraquark model, found no evidence for a 1⁺⁺ tetraquark below 4.2 GeV

X(4140) from B-factories

Search for X_b

- $X_b \rightarrow \Upsilon(1S)\pi^+\pi^-$: bottomonium counterpart of X(3872)
- Set 95% CL upper limit on $R = \frac{(\sigma \mathcal{B})_{X_b}}{(\sigma \mathcal{B})_{Y(2S)}}$ as a function of M_{Xb}

0.7 0.75 0.8 n(π⁺π⁻) [GeV] CMS: $\pi^-\pi^+$ spectrum in X(3872) \rightarrow J/ $\psi \pi^+$ CMS N π^{-} decays, consistent with ρ^{0} [JHEP 1304, 154 (2013)] 0.65 • LHCb: search for $X(3872) \rightarrow \overline{p}p$ decays, 0.0 in $B^+ \rightarrow K^+ \bar{p}p$ with 1 fb⁻¹ [EPJC73, 2642 (2013)] ö Candidates/(3 MeV/*c*²) 1000 Candidates/(10 MeV/c²) LHCb LHCb 6951±176 ¹¹/2 do/dm 800 b) 40 X(3915) X(3872) 600 20 400 200 5350 5400 М_{рък} [MeV/*c*²] 5250 3800 3900 5150 5200 5300 3850 3950 4000 $M_{pp} [MeV/c^2]$ Upper limit: $\frac{\mathsf{BR}(\mathsf{X}(3872) \rightarrow p\overline{p})}{\mathsf{BR}(\mathsf{X}(3872) \rightarrow \mathsf{J}/\psi\pi^+\pi^-)}$ <2.0 × 10⁻³

X(3872) decay

• First exotic observed by Belle in 2003, and then confirmed by CDF and other experiments

- Studied now in details:
 - Mass = 3871.69 \pm 0.17 MeV [PDG], Width < 1.2 MeV

 $m_{X(3872)} - (m_{D^{*0}} + m_{D^0}) = -0.11 \pm 0.22 \text{ MeV}$ [PDG]

- Decays: open charm, charmonium $(J/\psi\pi^+\pi^-, ...)$
- Production both in *B* decays and hadron collisions
 Like conventional charmonium state
- It also decays with strong isospin violation

$$\frac{\mathcal{E}(X \to \omega J/\psi)}{\mathcal{E}(X \to \rho J/\psi)} \approx 1$$

Comparable with a $D^{*0}\overline{D}^{0}$ molecular interpretation

X(3872) J^{PC}: Motivation

X(3872) quantum numbers will help to better understand the state.

- $\succ D^{*0}\overline{D}^0$ molecule, i.e. a $((u\overline{c})(c\overline{u}))$ system?
 - Requires $J^{PC} = 1^{++}$
- ➤ Tetraquark?

 $(n^{2s+1}L)$

- Allows with $J^{PC} = 1^{++}$
- Conventional charmonium states?
 - $\chi_{cl}(2^{3}P_{l})$ requires $J^{PC} = 1^{++}$
 - $\eta_{c2}(l^1D_2)$ requires $J^{PC} = 2^{-+}$

• Measurement of $R_{\psi\gamma} = \frac{\mathcal{E}(X(3872) \rightarrow \psi(2S)\gamma)}{\mathcal{E}(X(3872) \rightarrow J/\psi\gamma)}$ a good probe for internal structure of X(3872)

For theory predictions, see references in Nucl.Phys. B886, 665 (2014)

• Previous measurements by BaBar and Belle barely consistent and favoring the opposite conclusions

Radiative decays of X(3872)@LHCb

The most significant evidence for X(3872) $\rightarrow \psi(2S)\gamma$ to date!

efficiency($\psi(2S)\gamma$) / efficiency($J/\psi\gamma$) ~ 0.2

Detecting soft photons at hadron collider is hard.

Projections of 2D fit to $m_{\psi\gamma k^+}$ vs $m_{\psi\gamma}$

Radiative decays of X(3872)@LHCb

- The LHCb results are consistent with, but more precise than, the BaBar and Belle results
- The results are not consistent with the expectations for pure molecular X(3872)
- The favorite X(3872) interpretation is a mixture of a $\chi_{c1}(2^3P_1)$ charmonium state and of $D^{*0}\overline{D}^0$ molecule or cusp [arXiv:1404.3723]

X(3872) production

A HONIS

• All hadron collisions reported X(3872)

CDF [PRL93, 072001 (2004)], D0 [PRL93, 162002 (2004)], LHCb [EPJC72, 1972 (2012)] and CMS [JHEP 1304, 154 (2013)].

• Study regions: central (<u>CMS</u>, |y| < 1.2) or forward (<u>LHCb</u>, 2.5<y<4.5)

