PWA on Zc states

Ping Ronggang

Institute of High Energy Physics, CAS

(For BESIII collaboration)

Outline:

- Introduction
- Data sets
- •Amplitude construction
- •Partial wave analysis results
- •Systematic uncertainties
- •Summary

4th workshop on the XYZ particles, Beihang Univ. 2016-11-23 1

Introduction

• Observation of Zc at BESIII [Phys.Rev.Lett. 110 (2013) 252001]

- Luminosity; 525 pb⁻¹ (4.26GeV)
- Observed candidates $\pi^+\pi^- J/\psi$: 1447

Data sets

Event selection criteria: Phys.Rev.Lett. 110 (2013) 252001

√s (GeV)	L (pb ⁻¹)	Events	backgrounds
4.23	1092	4415	365
4.26	827	2447	272
sum	1919	6862	637 3

Amplitude construction

(a):
$$A_1(\lambda_0, \lambda_2) = \sum_{\lambda_1, j} F_{\lambda_1, \lambda_2}^Y(r_1) D_{\lambda_0, \lambda_1 - \lambda_2}^{1*}(\theta_0, \phi_0) BW_j(m_{\pi^+\pi^-}) F_{0,0}^{R_j}(r_2) D_{\lambda_1, 0}^{J_1*}(\theta_1, \phi_1),$$

(b):
$$A_2(\lambda_0, \lambda_2) = \sum_{\lambda_1, j} F_{\lambda_1, 0}^Y(r_1) D_{\lambda_0, \lambda_1}^{1*}(\theta_0, \phi_0) BW_j(m_{J/\psi\pi}) F_{\lambda_2, 0}^{Z_c}(r_2) D_{\lambda_1, \lambda_2}^{J_{1*}}(\theta_1, \phi_1),$$

$$F^J_{\lambda\nu} = \sum_{ls} \left(\frac{2l+1}{2J+1}\right)^{1/2} < l0S\delta | J\delta > < s\lambda\sigma - \nu | S\delta > g_{ls}r^l B_l(r),$$

See Ref.1S. U. Chung, Phys. Rev. D57, 431 (1998);2S. U. Chung, Phys. Rev. D48, 1225 (1993).

4

(c): direct 3-body decay $\begin{aligned}
\stackrel{\text{Z. Phys. C 8, 43}}{\underset{\text{Eur. Phys. J. C 71, 1808}}{\text{Prog. Part. Nucl. Phys., 61, 455}}}_{\underset{\text{Eur. Phys. J. C 71, 1808}}{\text{Prog. Part. Nucl. Phys., 61, 455}}\\
&A_3(\lambda_0, \lambda_3) = \frac{F}{f_\pi^2} \epsilon_Y(\lambda_0) \cdot \epsilon_{J/\psi}(\lambda_3) \left\{ \left[q^2 + \kappa (\Delta M)^2 (1 + \frac{2m_\pi^2}{q^2}) \right]_{\text{S-wave}} + \left[\frac{3}{2} \kappa ((\Delta M)^2 (1 - \frac{4m_\pi^2}{q^2}) (\cos^2 \theta - \frac{1}{3}) \right]_{\text{D-wave}} \right\},
\end{aligned}$

• Resonance lineshape

$$BW(m) = \frac{1}{m^2 - m_0^2 - im\Gamma},$$

For f₀(980), using Flatte formula

$$f = \frac{1}{M^2 - s - i(g_1 \rho_{\pi\pi}(s) + g_2 \rho_{K\bar{K}}(s))}, \text{ where } \rho(s) = \frac{2k}{\sqrt{s}}$$

For σ_0 , there are many types of lineshape in the market, using

$$\Gamma_X(s) = \rho \Gamma = \sqrt{1 - \frac{4m_\pi^2}{s}} \Gamma. \quad (E791)$$

Other types need to check consistency in results.

• Total amplitude and differential cross section

$$A(\lambda_0, \lambda_3) = \sum_{i=1}^3 g_i A_i(\lambda_0, \lambda_3), \quad d\Gamma = \left(\frac{3}{8\pi^2}\right) \sum_{\lambda_0, \lambda_3} A(\lambda_0, \lambda_3) A^*(\lambda_0, \lambda_3) d\phi_3,$$

• Fit method

The joint probability density

$$\mathcal{L} = \prod_{i=1}^{N} P(x_i), \text{ where: } P(x_i) = \frac{(d\sigma/d\Phi)_i}{\sigma_{MC}}, \quad \sigma_{MC} = \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} \left(\frac{d\sigma}{d\Phi}\right)_i.$$

 $S = -\ln \mathcal{L}$ is minimized using the package MINUIT.

$$\ln \mathcal{L} = \ln \mathcal{L}_{\rm data} - \ln \mathcal{L}_{\rm bg}.$$

Signal yields: $N_i = R_i * (N_{obs} - N_{bg})$, with $R_i = \frac{\sigma_i}{\sigma_{tot}}$,

Stati. error:

$$\delta N_i^2 = \sum_{m=1}^{N_{\text{pars}}} \sum_{n=1}^{N_{\text{pars}}} \left(\frac{\partial N_i}{\partial X_m} \frac{\partial N_i}{\partial X_n} \right)_{\mathbf{X}=\mu} V_{mn}(\mathbf{X}),$$

6

Amplitude fitting

In the process $e^+e^- \to \gamma^* \to \pi^+\pi^- J \ / \ \psi$

• The helicity value of γ^* is taken as $\lambda_0 = \pm 1$ due to from e+e- annihination

•
$$\gamma^* \rightarrow \mathbf{Z}_{\mathbf{c}}^{\pm} \pi^{\mp}, \mathbf{Z}_{\mathbf{c}}^{\pm} \rightarrow \mathbf{J} / \psi \pi^{\pm}, \text{ we try } \mathbf{J}^{\mathbf{p}} \text{ for X:}$$

 0^{-} , 1^{-} , 1^{+} , 2^{-} , 2^{+} , and 0^{+} is not allowed

- Z⁺_c and Z⁻_c states are assumed as isospin partner, share the same mass and coupling constants
- Six resonances are inclued in fitting to data:

 $\sigma_{0}, \boldsymbol{f}_{0}(980), \boldsymbol{f}_{2}(1270), \boldsymbol{f}_{0}(1370), \boldsymbol{Z}_{\boldsymbol{c}}^{\pm}, \boldsymbol{and} \ \pi^{+}\pi^{-}\boldsymbol{J} \ / \ \psi$

 Z_c is taken as 1^+ .

Resonance	σ	$f_0(980)$	$f_2(1270)$	$f_0(1370)$	Z_c^+	Z_c^-	:
Significanc σ	13	25	5	11	22	22	7

Study Zc as J^P=1⁺ state

• $f_0(980)$ line shape parameterized with Flatte formula Mass fixed to the PDG value, and g_1, g_2 determined with data BESII analysis $J/\psi \rightarrow \omega \pi^+ \pi^-$ Phys. Lett., B598, 149(2004).

 $g_1 = 0.138 \pm 0.010 \text{ GeV}^2 \text{ and } g_2/g_1 = 4.45 \pm 0.25.$

• Zc line shape parameterized with Flatte-like formula

$$BW(s) = \frac{1}{s - M^2 + i(g'_1 \rho_{\pi J/\psi}(s) + g'_2 \rho_{D^*D}(s))},$$

 $g_2'/g_1' = 27.1 \pm 13.1$ according to the measurement $\Gamma(Z_c^{\pm} \to (D\bar{D}^*)^{\pm})/\Gamma(Z_c^{\pm} \to J/\psi\pi^{\pm}) = 6.2 \pm 2.9$

The fitted mass, $g'_1, g'_2/g'_1$ and $-\ln L$ for the Z_c resonance.

$Z_c: J^P$	M (MeV)	$g_1' ~({ m GeV^2})$	g_2^\prime/g_1^\prime	$-\ln L$
1+	3900.2 ± 1.5	0.075 ± 0.006	21.8 ± 1.7	-1569.8

8

• Fit results with $Zc(1^+)$

 Z_c pole mass and with: $M_{\text{pole}} = 3887.0 \pm 0.8 \pm 10.0 \text{ MeV}, \ \Gamma_{\text{pole}} = 45.2 \pm 4.8 \pm 16.8 \text{ MeV}$

Helicity amplitudes for Zc production and decays

$$F_{\lambda,\nu} = \sum_{lS} g_{lS} \sqrt{\frac{2l+1}{2J+1}} \langle l0S\delta | J\delta \rangle \langle s\lambda\sigma - \nu | S\delta \rangle r^l B_l(r)$$

 g_{lS} : coupling constant, $B_l(r)$: barrier factor

For
$$e^+e^- \rightarrow Z_c^{\pm}\pi^{\mp}$$
, we measured
 $|F_{1,0}^{Zc}|^2 / |F_{0,0}^{Zc}|^2 = 0.3 \pm 0.2_{\text{stat}}$ at 4.23 GeV
 $= 0.9 \pm 0.7_{\text{stat}}$ at 4.26 GeV
For $Z_c^{\pm} \rightarrow J / \psi \pi^{\pm}$:
 $|F_{1,0}^{\psi}|^2 / |F_{0,0}^{\psi}|^2 = 0.6 \pm 0.3_{\text{stat}}$

Signal yields with $Zc(1^+)$

√s (GeV)	$\pi\pi$ -S wave	Zc [±]
4.23	2814.8±190.4 _{stat}	875.2±84.4 _{stat}
4.26	1450.7±119.6 _{stat}	314.2±21.2 _{stat}

Born cross section for $e^+e^- \rightarrow Z_c^+ \pi^- + c.c \rightarrow \pi^+\pi^- J/\psi$

 $20.3 \pm 2.0_{stat}$ (pb) at 4.23 GeV $10.1 \pm 0.7_{stat}$ (pb) at 4.26 GeV

Significance for $e^+e^- \rightarrow Z_c^+(4020) \pi^- + c.c \rightarrow \pi^+\pi^- J/\psi$ is ~3 σ . Upper limits at 90% C.L.:

 $\frac{\sigma(e^+e^- \to Z_c^+(4020) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)}{\sigma(e^+e^- \to Z_c^+(3900) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)} < 3.3\% \text{ at } 4.23 \text{ GeV}$ <25.1% at 4.26 GeV

Study Zc with different spin-parity numbers

decay	helicity angules	helicity amplitudes
$\gamma^*(1,\lambda_0) \rightarrow \mathbf{Z}^{\pm}_{\mathbf{c}}(\mathbf{J},\lambda_1)\pi^{\mp}$	$\Theta_{1,}\phi_{1}$	\mathbf{A}_{λ_1}
$\mathbf{Z}_{\mathbf{c}}^{\pm}(\mathbf{J},\boldsymbol{\lambda}_{1}) \rightarrow \mathbf{J} / \boldsymbol{\psi}(1,\boldsymbol{\lambda}_{2})\boldsymbol{\pi}$	$\theta_{2,}\phi_{2}$	B_{λ_2}

 $|M(\theta_{i},\phi_{i})|^{2} \propto \sum_{\lambda_{1},\lambda_{1}',\lambda_{2}} A_{\lambda_{1}} A_{\lambda_{1}'}^{*} \rho^{(\lambda_{1},\lambda_{1}')}(\theta_{1},\phi_{1}) B_{\lambda_{2}} B_{\lambda_{2}}^{*} D_{\lambda_{1},\lambda_{2}}^{J}(\theta_{2},\phi_{2}) D_{\lambda_{1}',\lambda_{2}}^{J*}(\theta_{2},\phi_{2}),$

Where the spin density matrix $\rho^{(i,j)}$ describing the Y(4260) production rate, which is

$$\rho^{(i,j)}(\theta_1,\phi_1) = \sum_{k=\pm 1} D^1_{i,k}(\theta_1,\phi_1) D^{1*}_{j,k}(\theta_1,\phi_1).$$

Table 1: The helicity angular distributions of Z_c for different quantum assignment.

J^P	A_i, B_i	$d M ^2/d\cos\theta_1$	$d M ^2/d\cos\theta_2$
0^{-}		$1 - \cos^2 \theta_1$	$1+0*\cos\theta_2^2$
1^{-}	$A_{-1} = -A_1, A_0 = 0$	$1 + \cos^2 \theta_1$	$1 + \cos \theta_2^2$
	$B_{-1} = -B_1, B_0 = 0$		
1+	$A_{-1} = A_1$	$1 + \alpha \cos^2 \theta_1$, with	$1 + \alpha \cos \theta_2^2$, with
	$B_{-1} = B_1$	$\alpha = \frac{ A_1 ^2 - A_0 ^2}{ A_1 ^2 + A_0 ^2}$	$\alpha = \frac{(A_1 ^2 - A_0 ^2)(B_0 ^2 - B_1 ^2)}{ A_0 ^2 B_1 ^2 + A_1 ^2(B_0 ^2 + B_1 ^2)}$
2^{-}	$A_{-1} = A_1$	$1 + \alpha \cos^2 \theta_1$, with	$ A_0 ^2 [(1 - 3\cos^2\theta_2)^2 B_0 ^2 - 12\cos^2\theta_2 \sin^2\theta_2 B_1 ^2]$
	$B_{-1} = B_1$	$\alpha = \frac{ A_1 ^2 - A_0 ^2}{ A_1 ^2 + A_0 ^2}$	$+4 A_1 ^2[3\cos^2\theta_2\sin^2\theta_2 B_0 ^2+(1-3\cos^2\theta_2+4\cos^4\theta_2) B_1 ^2]$
2^{+}	same as 1^-	$1 + \cos^2 \theta_1$	$1 - 3\cos^2\theta_2 + 4\cos^4\theta_2$

Comparison of fit results with different J^P for Zc

• Mass, g₁' and Log-likelihood

$Z_c: J^P$	M (MeV)	$g_1'({ m GeV^2})$	g_2^\prime/g_1^\prime	$-\ln L$
0^{-}	3906.3 ± 2.3	0.079 ± 0.007	25.8 ± 2.9	-1528.8
1-	3903.1 ± 1.9	0.063 ± 0.005	26.5 ± 2.6	-1457.7
1+	3900.2 ± 1.5	0.075 ± 0.006	21.8 ± 1.7	-1569.8
2^{-}	3905.2 ± 2.1	0.060 ± 0.004	28.7 ± 2.7	-1516.5
2^{+}	3894.3 ± 1.9	0.051 ± 0.005	23.4 ± 3.3	-1316.2

• Zc favors the quantum number $J^P=1^+$

If Zc is assigned as 0^{-} , the fit quality gets worse by about $\Delta(LnL) = 41$. To figure out the Zc quantum numbers, the information on the statistical significance is desirable.

Statistical significance for the Zc as 1⁺ state

$$t \equiv -2\ln \lambda = 2[\ln L_{\max}(H_1) - \ln L_{\max}(H_0)], \quad \text{See Ref.}$$

Ilya Narsky, Nucl. Instr. Meth., A **450**, 444 (2000); Zhu Yong-Sheng, High Energy Physics and Nuclear Physics, **30**, 331 (2006).

$$\int_{-S}^{S} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 1 - p(t_{\text{obs}}) = \int_{0}^{t_{\text{obs}}} \chi^2(t; r) dt.$$

 $p(t_{\rm obs}) = \int_{t_{\rm obs}}^{\infty} \chi^2(t; r) dt.$

Significance to distinguish the quantum number 1^+ over other quantum numbers.

Hypothesis	$\Delta(-\ln L)$	$\Delta(ndf)$	significance
1^+ over 0^-	44.5	$4 \times 2 + 5$	7.3σ
1^+ over 1^-	107.0	$4 \times 2 + 5$	$> 8.0\sigma$
1^+ over 2^-	51.8	$4 \times 2 + 5$	$> 8.0\sigma$
1^+ over 2^+	193.5	$4 \times 2 + 5$	$> 8.0\sigma$

Systematic uncertainties

• Luminosity, tracking, lineshape, kinematic fit and branching fraction

Source	$\mu^+\mu^-$	e^+e^-
Luminosity	1.0	1.0
Tracking	4.0	4.0
Y(4260) line shape	0.6	0.6
Kinematic fit	2.2	2.2
${\rm Br}(J/\psi \to l^+ l^-)$	1.0	1.0
Total	4.8	4.8

The uncertainty of mass calibration is estimated with J/ψ and D⁰ mass. We quote 1.8 MeV.

• Line shape of σ_0 parameterization

PKU ansatz: $\Gamma_X(s) = \sqrt{1 - \frac{4m_\pi^2}{s}} \frac{s}{m_X^2} \Gamma,$ $\Gamma_X(s) = \sqrt{1 - \frac{4m_\pi^2}{s}} \frac{s}{m_X^2} \Gamma,$ $\Gamma_X(s) = g_1 \frac{\rho_{\pi\pi}(s)}{\rho_{\pi\pi}(M_{\sigma}^2)} + g_2 \frac{\rho_{4\pi}(s)}{\rho_{4\pi}(M_{\sigma}^2)},$ $g_1 = f(s) \frac{s - m_{\pi}^2/2}{M_{\sigma}^2 - m_{\pi}^2/2} e^{-\frac{s - M_{\sigma}^2}{a}},$

• Zc line shape Breit-Wigner parameterization

$$M = 3890.1 \pm 0.9 \text{ MeV}$$
 $\Gamma = 35.4 \pm 7.1 \text{ MeV}$

Compared to the Flatte-like formula, the Breit-Wigner parameterization make the fit quality worse by about $\Delta(\ln L) = 25$.

• Backgrounds

637 background events \rightarrow 662 events (1 σ deviation)

• $f_0(980)$ Flatte formula

BESII analysis J/ $\psi \rightarrow \omega \pi^+ \pi^-$: $g_1 = 0.138 \pm 0.010 \text{ GeV}^2$ $g_2 / g_1 = 4.45 \pm 0.25$ Uncertainty estimated with: $g_2 / g_1 = 4.7$ for conservative case

• $f_0(1370)$ mass and width

(M,Γ): (1.35,0.265) → (1.2,0.2) GeV

• Barrier radius

For meson decays: $r \in (0.25, 0.76)$ fm, both ends are checked. Uncertaity is estimated conservatively with r=0.76 fm •Mass resolution for Zc coupling constant

 $\delta g'_1/g'_1 \propto \delta \Gamma_{Z_c}/\Gamma_{Z_c}$, is about 1.8%

• Uncertainty due to nonresonant decay

$$\begin{aligned} A_{3}(\lambda_{0},\lambda_{3}) &= \frac{F}{f_{\pi}^{2}} \epsilon_{Y}(\lambda_{0}) \cdot \epsilon_{J/\psi}(\lambda_{3}) \left\{ \left[q^{2} + \kappa (\Delta M)^{2} (1 + \frac{2m_{\pi}^{2}}{q^{2}}) \right]_{\text{S-wave}} \right. \\ &+ \left. \left[\frac{3}{2} \kappa ((\Delta M)^{2} (1 - \frac{4m_{\pi}^{2}}{q^{2}}) (\cos^{2}\theta - \frac{1}{3}) \right]_{\text{D-wave}} \right\}, \end{aligned}$$

Uncertainty is estimated with $\kappa=0$

• Summary of systematic errors

Summary of uncertainties the Z_c ($J^P = 1^+$) resonance parameters (%).

	Z_c resonance	parameters	
Sources	Mass	g_1'	g_2^\prime/g_1^\prime
Event selection	0.04	•••	
σ -PKU	0.01	4.00	0.00
$\sigma\text{-ZB}$	0.01	1.33	0.45
Z_c parametrization	0.26		
Backgrounds	0.01	1.33	0.46
$f_0(980), g_1, g_2/g_1$	0.00	2.67	0.00
$f_0(1370)$	0.00	10.67	0.00
Barrier radius	0.07	4.00	6.88
Z_c Mass resolution	0.00	2.67	2.30
non-resonance	0.09	5.33	6.00
Total	0.28	13.86	9.41

Summary of uncertainties of signal yields for $Z_c^{\pm}\pi^{\mp}$ mode at $\sqrt{s} = 4.23$ GeV and 4.26 GeV (%).

\sqrt{s}	$4.23 \; (GeV)$	$4.26 \; (GeV)$
Event selection	4.8	4.8
σ PKU line shape	5.5	2.2
σ ZB line shape	6.2	3.9
Z_c parametrization	19.8	2.8
Backgrounds	4.4	0.3
$f_0(980), g_1, g_2/g_1$	6.6	1.8
$f_0(1370)$	4.7	6.2
Barrier radius	3.2	9.9
Z_c -mass resolution	0.2	1.9
non-resonance	0.7	0.6
Total	23.6	13.1

Summary

- Z_c spin parity are studied with 1.92fb⁻¹ data taken at 4.23 and 4.26 GeV, the data suggests $J^P = 1^+$ with statistical significance larger than 7.3 σ over other quantum numbers, e.g. $0^-, 1^-, 2^+$ and 2^- .
- If Z_c is parameterized with a Flatte-like formula $M_{pole} = 3887.0 \pm 0.8 \pm 10.0 \text{ MeV}, \Gamma_{pole} = 45.2 \pm 4.8 \pm 16.8 \text{ MeV}$
- Born cross section for $e^+e^- \rightarrow Z_c^+ \pi^- + c.c \rightarrow \pi^+\pi^- J/\psi$ $20.3 \pm 2.0_{stat}$ pb at 4.23 GeV $10.1 \pm 0.7_{stat}$ pb at 4.26 GeV
- Significance for $e^+e^- \rightarrow Z_c^+(4020) \pi^- + c.c \rightarrow \pi^+\pi^- J/\psi$ is ~3 σ . Upper limits at 90% C.L.:

$$\frac{\sigma(e^+e^- \to Z_c^+(4020) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)}{\sigma(e^+e^- \to Z_c^+(3900) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)} < 3.3\% \text{ at } 4.23 \text{ GeV}$$

$$<25.1\% \text{ at } 4.26 \text{ GeV}$$

Backup slides

Table 2. Flatté parameters for the $f_0(980)$ -meson taken from the literature. The values of m_R , $\Gamma_{\pi\eta}$ and E_{BW} are given in MeV. Values for the references labeled with the superscript (^a) are based on Achasov's parametrization [13], cf. also the appendix.

Ref.	m_R	$\Gamma_{\pi\pi}$	\bar{g}_{π}	\bar{g}_K	R	E_R	α
$[14]^{(a)}$	969.8	196	0.417	2.51	6.02	-21.5	-1.35
$[15]^{(a)}$	975	149	0.317	1.51	4.76	-16.3	-1.00
$[16]^{(a)}$	973	256	0.538	2.84	5.28	-18.3	-1.07
[17]	977	42.3	0.09	0.02	0.22	-14.3	-0.66
[18]	—	90	0.19	0.40	2.11	_	_
[19]	957	42.3	0.09	0.97	10.78	-34.3	-1.60

[14]: NOVOSIBIRSK-SND

[15]: CMD-2

[16]: CLOE

[17]: E791

$$g_{\rm K}/g_{\pi}$$
=0.22 ~ 10.8

[18]: WA102

[19]: OPAL

BESII:
$$g_K/g_\pi = 4.5$$