Recent results on light hadrons from ₩SI

LIU Beijiang Institute of High Energy Physics, Beijing

Outline

- Introduction
- Selected results from BESIII
 - Light meson spectroscopy
 - Light baryon spectroscopy
 - Light meson decays
- Summary

Beijing Electron Positron Collider (BEPC)

BESIII

detector

LINAC

L_{peak}=1.0x10³¹ /cm²s

2009-now (BEPCII): X 100

 $L_{peak} = 1 \times 10^{33} / cm^2 s$

Features of the BEPC Energy Region

- Rich of resonances: charmonia and charmed mesons
- Threshold characteristics (pairs of τ, D, D_s, ...)
- Transition between smooth and resonances, perturbative and non-perturbative QCD
- Energy location of the gluonic excitations and multi-quark states

BESIII data samples

World largest J/ψ, ψ(2S), ψ(3770), Y(4260), ... produced directly from e⁺e⁻ collision

- Hadron spectroscopy is a key tool to investigate QCD
- testing QCD in the confinement regime

From V. Crede

- providing insights into the fundamental degrees of freedom

Light meson spectroscopy

- X(ppbar) and X(1835)
- η (1405) • PWA of J/ $\psi \rightarrow \gamma \phi \phi$ • PWA of J/ $\psi \rightarrow \gamma \eta \eta$ • MIPWA of J/ $\psi \rightarrow \gamma \pi^0 \pi^0$
- PWA of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Charmonium decays provides an ideal hunting ground for light glueballs and hybrids

 $\Gamma(J/\psi \to \gamma G) \sim O(\alpha \alpha_s^2), \Gamma(J/\psi \to \gamma H) \sim O(\alpha \alpha_s^3),$ $\Gamma(J/\psi \to \gamma M) \sim O(\alpha \alpha_s^4), \Gamma(J/\psi \to \gamma F) \sim O(\alpha \alpha_s^4)$

"Gluon-rich" process
 Clean high statistics data samples from e⁺e⁻ production
 I(J^{PC}) filter in strong decays of charmonium

PWA of $J/\psi \rightarrow \gamma p \bar{p}$

Phys. Rev. Lett. 108, 112003 (2012)

- The fit with a BW and S-wave FSI (I=0) factor can well describe $p\bar{p}$ mass threshold structure.
- It is much better than that without FSI effect ($\Delta 2 \ln L = 5, 7.1\sigma$)
- Different FSI models → Model dependent uncertainty

$$R = \frac{B(\psi' \rightarrow \gamma X(p\overline{p}))}{B(J/\psi \rightarrow \gamma X(p\overline{p}))}$$
$$= (5.08^{+0.71}_{-0.45} (\text{stat})^{+0.67}_{-3.58} (\text{syst}) \pm 0.12 (\text{mod}))\%$$

Spin parity, mass, width and branching ratio:

$$\begin{split} J^{PC} &= 0^{-+}, > 6.8\sigma \ better \ than \ other \ J^{PC} assignments, \\ M &= 1832^{+19}_{-5}(stat)^{+18}_{-17}(sys) \pm 19(model) MeV/c^2, \\ \Gamma &= 13 \pm 39(stat)^{+10}_{-13}(sys) \pm 4(model) MeV/c^2, \quad \Gamma < 76 \ MeV/c^2 \ (90\% \ CL), \\ B(J/\psi \to \gamma X) B(X \to p\bar{p}) &= \left(9.0^{+0.4}_{-1.1}(stat)^{+1.5}_{-5.0}(sys) \pm 2.3(model)\right) * 10^{-5} \end{split}$$

In J/ ψ hadronic decays

Phys. Rev. Lett. 95, 262001 (2005)

• Discovered by BESII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

X(1835)

- Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - \checkmark M = 1836.5 ± 3.0^{+5.6}_{-2.1} MeV/ c^2
 - ✓ $Γ = 190 \pm 9^{+38}_{-36} \text{ MeV}/c^2$
 - ✓ Angular distribution is consistent with 0⁻

Phys. Rev. Lett. 106, 072002 (2011)

11

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

Phys.Rev.Lett. 115 091803(2015)

- Any relations?
- What is the role of the ppbar threshold (and other thresholds)?
- Patterns in the production and decay modes

1.6

 $M_{\eta\pi^{+}\pi^{-}} \, (\text{GeV}/c^2)$

1.8

1.2

1.4

2.0

2.2

New: connection is emerging

- Use 1.09×10⁹ J/ψ events collected by BESIII in 2012
- Two decay modes of η'
 - η′→γπ⁺π⁻
 - η'→ηπ⁺π⁻, η→γγ
- Clear peaks of X(1835), X(2120), X(2370), η_c , and a structure near 2.6 GeV/ c^2
- A significant distortion of the $\eta' \pi^+ \pi^-$ line shape near the $p\overline{p}$ mass threshold

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p\overline{p}$ mass threshold: connection between X(1835) and X($p\overline{p}$)

The anomalous line shape can be modeled two models with equally good fit quality.

- Suggest the existence of a state, either a broad state with strong couplings to $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass threshold
- Support the existence of a $p\overline{p}$ molecule-like state or bound state

Phys. Rev. Lett. 110, 021601

$$\Gamma(J/\psi \to \gamma G_{0^+}) = \frac{4}{27} \alpha \frac{|p|}{M_{J/\psi}^2} |E_1(0)|^2 = 0.35(8) keV$$

$$\Gamma/\Gamma _ tot = 0.33(7)/93.2 = 3.8(9) \times 10^{-3}$$

Phys. Rev. Lett. 111, 091601

 $\Gamma(J/\psi \rightarrow \gamma G_{2^+}) = 1.01(22) keV$

 $\Gamma(J/\psi \to \gamma G_{2^+})/\Gamma_{tot} = 1.1(2) \times 10^{-2}$

Low lying glueballs have ordinary quantum number 0⁺⁺(1.5~1.7 GeV), 2⁺⁺(2.3~2.4 GeV), 0⁻⁺(2.3~2.6 GeV) mixing with qqbar mesons

Large Br in J/ψ radiative decays

Systematic exp. studies are required:

 \rightarrow Over-population

Map out the resonances

\rightarrow Production patterns

 ${\rm J}/\psi o \gamma \, /\omega/\phi$ + X

Other experiments: $\gamma\gamma$ processes from Belle2, ...

\rightarrow Decay patterns

"flavor blind", "chiral suppression", ...

LQCD and QCD inspired models

0⁺ : experimental results saturated

- f_0 (1710) $/f_0$ (1790) , one or two
- Large production rate of f₀(2100) in gluon rich environment ppbar annihilations and J/psi radiative decays

$f_0(600)*$	400-1200	600-1000	ππ, γγ
f ₀ (980)*	980 ± 10	40-100	ππ, ΚΚ̄, γγ
f ₀ (1370)*	1200-1500	200-500	$\pi\pi, \rho\rho, \sigma\sigma, \pi(1300)\pi, a_1\pi, \eta\eta, K\bar{K}$
f ₀ (1500)*	1507 ± 5	109 ± 7	$\pi\pi, \sigma\sigma, \rho\rho, \pi(1300)\pi, a_1\pi, \eta\eta, \eta\eta'$
			$K\bar{K}, \gamma\gamma$
f ₀ (1710)*	1718 ± 6	137 ± 8	$\pi\pi, K\overline{K}, \eta\eta, \omega\omega, \gamma\gamma$
f ₀ (1790)			
$f_0(2020)$	1992 ± 16	442 ± 60	ρππ, ππ, ρρ, ωω, ηη
$f_0(2100)$	2103 ± 7	206 ± 15	$\eta\pi\pi,\pi\pi,\pi\pi\pi,\eta\eta,\eta\eta'$
$f_0(2200)$	2189 ± 13	238 ± 50	$\pi\pi, K\bar{K}, \eta\eta$

2⁺: complicated situation around 2 GeV

 $0^{\text{-}}$ simple in quark model $~(~\eta,~\eta')~$. Very little known above 2 GeV

- η(1295) exists?
- η (1405) / η(1475) ?
- X(18xx)?
- X(2370)

Isospin-violating decay of $\eta(1405) \rightarrow f_0(980)\pi$

The long standing E-i puzzle:

 $\eta(1405) \rightarrow a_0 \pi, \eta(1475) \rightarrow K^* \overline{K}$, overpopulation? **Anomalously large isospin violation:** $Br(\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0)$ $Br(r(1405) \rightarrow r^0(980)\pi^0 \rightarrow r^0\pi^0\pi^0) \cong (17.9 \pm 4.2)\%$

 $Br(\eta(1405) \to a_0^0(980)\pi^0 \to \eta\pi^0\pi^0) \cong (17.9 \pm 4.2)\%$

Much larger than a_0 -f₀ mixing (PRD 83 032003)

200 150

100

PRL 108, 182001

a

20

TABLE I: Summary of measurements of the mass, width and the product branching fraction of $\mathcal{B}(J/\psi \to \omega X) \times \mathcal{B}(X \to a_0^{\pm}(980)\pi^{\mp}) \times \mathcal{B}(a_0^{\pm}(980) \to \eta\pi^{\pm})$ where X represents $f_1(1285)$, $\eta(1405)$ and X(1870). Here the first errors are statistical and the second ones are systematic.

Resonance	Mass (MeV/c^2)	Width (MeV/c^2)	$B(10^{-4})$
$f_1(1285)$	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0 \pm 3.1^{+2.0}_{-1.5}$	$1.25 \pm 0.10^{+0.19}_{-0.20}$
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	$1.89 \pm 0.21^{+0.21}_{-0.23}$
X(1870)	$1877.3 \pm 6.3^{+3.4}_{-7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50 \pm 0.26^{+0.72}_{-0.36}$

Study of $J/\psi \rightarrow \eta \phi \pi^+ \pi^-$

PRD 91,052017 (2015)

- > Offer a unique opportunity to investigate the properties of the $f_1(1285)$, $\eta(1295)$, and $\eta(1405)/\eta(1475)$ resonances.
- Search for the new production in different J/ ψ decays for a better understand of X(1835) and X(1870):

Via the $M(\eta \pi^+\pi^-)$ spectrum recoiling against the ϕ in J/ ψ decays

B= product branching fraction of J/ $\psi \rightarrow \phi$ Res with Res $\rightarrow \eta \pi^+ \pi^-$

Res	N _{obs} ^(up)	eff. (%)	Sign.	B (up limit) [10 ⁻⁴]
f ₁ (1285)	1154±56	22.14±0.09		1.20 ± 0.06 ± 0.14
η(1405)	172±50 (<345)	19.75±0.12	3.6σ	(2.01 ± 0.58 ± 0.82) ×10 ⁻¹ (<4.45×10 ⁻¹)
X(1835)	394±360 (<1522)	13.85 ± 0.14	1.1σ	<2.80
X(1870)	25±73 (<330)	13.73±0.14	0.8σ	<6.13×10 ⁻¹

 f₁(1285) is observed significantly: M=1281.7±0.6 MeV, Γ=21.0±1.7 MeV
 in good agreement with that of PDG.

✓ A small structure around 1.4 GeV seems to be present $(3.6\sigma \text{ for } \eta(1405))$:

It imply the u-d account for more of the quark content in the $\eta(1405)$ than s quark.

 ✓ No evidence of X(1835) and X(1870), upper limits at 90% C.L. are set.

• Confirmed the enhancement observed at BESII $M = 1795 \pm 7^{+13}_{-5} \pm 19 \pmod{MeV/c^2},$ $\Gamma = 95 \pm 10^{+21}_{-34} \pm 75 \pmod{MeV}$ Spin-parity is determined to be 0⁺

• the same as $f_0(1710)/f_0(1790)$, or a new state ?

the most complex and controversial

 $\omega K^+ K^- \rightarrow$ Peak around 1700 MeV/ c^2 (OZI rule: $n\bar{n}$ structure)

 $\phi K^+ K^- \rightarrow \text{No peak around 1700 MeV}/c^2$

PWA of $J/\psi \rightarrow \gamma \eta \eta$ (Phys. Rev. D87 092009 (2013))

Resonance	${ m Mass}({ m MeV}/c^2)$	$\rm Width (MeV/c^2)$	${\cal B}(J/\psi\to\gamma X\to\gamma\eta\eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40})\times10^{-5}$	8.2σ
$f_0(1710)$	$1759{\pm}6^{+14}_{-25}$	$172{\pm}10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0 σ
$f_0(2100)$	$2081{\pm}13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9 σ
$f_{2}^{\prime}(1525)$	$1513{\pm}5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0 σ
$f_2(1810)$	$1822\substack{+29+66\\-24-57}$	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362\substack{+31+140\\-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6 σ

- Br of $f_0(1710)$ and $f_0(2100)$ are ~10x larger than that of $f_0(1500)$
 - Possible large overlap with LQCD predictions of 0+ Glueball: PRL 110 021601 (2013)
- Strong production of f₂(2340)

Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- ✓ Extract amplitudes in each M(π⁰π⁰) mass bin
- ✓ Significant features of the scalar spectrum includes structures near 1.5, 1.7 and 2.0 GeV/c²
- Multi-solution problem in MIPWA is usually unavoidable.
- Model Dependent PWA of global PWA fit is still needed to extract resonance parameters

Partial Wave Analysis of $J/\psi \rightarrow \gamma \phi \phi$ [PR D93 112011]

Besides η(2225), very little was known in the sector of pseudoscalar above 2 GeV. The new experimental results are helpful for mapping out the pseudoscalar excitations and searching for 0⁻⁺ glueball

Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	$B.F.(\times 10^{-4})$	Sig.
$\eta(2225)$	2216^{+4+18}_{-5-11}	$185^{+12}_{-14}{}^{+44}_{-17}$	$(2.40\pm0.10^{+2.47}_{-0.18})$	28.1σ
$\eta(2100)$	$2050^{+30}_{-24}{}^{+77}_{-26}$	$250^{+36+187}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	21.5σ
X(2500)	$2470^{+15}_{-19}{}^{+63}_{-23}$	$230^{+64}_{-35}{}^{+53}_{-33}$	$(0.17\pm0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2102	211	$(0.43\pm0.04^{+0.24}_{-0.03})$	24.2σ
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44\pm0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91\pm0.07^{+0.72}_{-0.69})$	10.7σ
0^{-+} PHSP			$(2.74\pm0.15^{+0.16}_{-1.48})$	6.8σ

- Dominant contribution from pseudoscalars
 - η(2225) is confirmed;
 - η(2100) and X(2500) are observed with large significance.
- The three tensors f₂(2010), f₂(2300) and f₂(2340) stated in π⁻p reactions are also observed with a strong production of f₂(2340).
- Model-dependent PWA results are well consistent with the results from MIPWA

Amplitude analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

arXiv:1610.02479

- χ_{c1} provides another suitable environment to look for 1⁻⁺
 - $\pi_1(1600)$ studied in χ_{c1} decays by CLEO-c
 - only π_1 (1400) has been reported decays to $\eta\pi$
- Properties of a_0 and a_2 still need further studies

Decay	${\cal F} \ [\%]$	Significance $[\sigma]$	$\mathcal{B}(\chi_{c1} \to \eta \pi^+ \pi^-) \ [10^{-3}]$
$\eta \pi^+ \pi^-$	-	-	$4.67 \pm 0.03 \pm 0.23 \pm 0.16$
$a_0(980)^+\pi^-$	$72.8 \pm 0.6 \pm 2.3$	> 100	$3.40 \pm 0.03 \pm 0.19 \pm 0.11$
$a_2(1320)^+\pi^-$	$3.8 \pm 0.2 \pm 0.3$	32	$0.18 \pm 0.01 \pm 0.02 \pm 0.01$
$a_2(1700)^+\pi^-$	$1.0 \pm 0.1 \pm 0.1$	20	$0.047 \pm 0.004 \pm 0.006 \pm 0.002$
$S_{K\bar{K}}\eta$	$2.5 \pm 0.2 \pm 0.3$	22	$0.119 \pm 0.007 \pm 0.015 \pm 0.004$
$S_{\pi\pi}\eta$	$16.4 \pm 0.5 \pm 0.7$	> 100	$0.76 \pm 0.02 \pm 0.05 \pm 0.03$
$(\pi^+\pi^-)_S\eta$	$17.8 \pm 0.5 \pm 0.6$	-	$0.83 \pm 0.02 \pm 0.05 \pm 0.03$
$f_2(1270)\eta$	$7.8 \pm 0.3 \pm 1.1$	> 100	$0.36 \pm 0.01 \pm 0.06 \pm 0.01$
$f_4(2050)\eta$	$0.6\pm0.1\pm0.2$	9.8	$0.026 \pm 0.004 \pm 0.008 \pm 0.001$
Exotic candidates			U.L. [90% C.L.]
$\pi_1(1400)^+\pi^-$	$0.58 {\pm} 0.20$	3.5	< 0.046
$\pi_1(1600)^+\pi^-$	$0.11 {\pm} 0.10$	1.3	< 0.015
$\pi_1(2015)^+\pi^-$	$0.06{\pm}0.03$	2.6	< 0.008

- Clear evidence for $a_2(1700)$ in χ_{c1} decays.
- First measurement of $g'_{\eta'\pi} \neq 0$ using $a_0(980) \rightarrow \eta\pi$ line shape.
- Measured upper limits for $\pi_1(1^{-+})$ in 1.4 2.0 GeV/c² region.

Light Baryon spectroscopy

Charmonium decays can provide novel insights into baryons and complementary information to other experiments

- ✓ Missing N* with small couplings to $\pi N \& \gamma N$, but large coupling to gggN : $\psi \to N \overline{N} \pi / \eta / \eta' / \omega / \phi$, $\overline{p} \Sigma \pi$, $\overline{p} \Lambda K$...
- ✓ Not only N^{*}, but also Λ^* , Σ^* , Ξ^*
- ✓ Gluon-rich environment: a favorable place for producing hybrid (qqqg) baryons
- ✓ High statistics of charmonium @ BES III

Observation of two new N* resonances in $\psi(3686) \rightarrow p\bar{p}\pi^0$

- In photon or meson beam studies, isospin 1/2 and
 3/2 resonances are excited, complicating the analysis
- Δ resonances suppressed in charmonium decays to $p\bar{p}\pi^0$, giving a cleaner spectrum
 - Thought to be dominated by two body decays involving N* intermediate states
 - Also consider $p\bar{p}$ resonances ($\psi(3686) \rightarrow R\pi^0$)
- Seven N* states observed in partial wave analysis
 - Two new resonances, N(2300) with $J^P = 1/2^+$ and N(2570) with $J^P = 5/2^-$

•	Other five	consistent	with	previous	results
---	------------	------------	------	----------	---------

Resonance	$M(MeV/c^2)$	$\Gamma({ m MeV}/c^2)$	ΔS	ΔN_{dof}	Sig.
N(1440)	$1390^{+11}_{-21}^{+21}_{-30}$	$340^{+46}_{-40}^{+70}_{-156}$	72.5	4	11.5σ
N(1520)	1510^{+3+11}_{-7-9}	$115^{+20}_{-15}^{+0}_{-40}$	19.8	6	5.0σ
N(1535)	$1535^{+9}_{-8}^{+15}_{-22}$	$120^{+20}_{-20}{}^{+0}_{-42}$	49.4	4	9.3σ
N(1650)	$1650^{+5}_{-5}^{+11}_{-30}$	$150^{+21}_{-22}^{+14}_{-50}$	82.1	4	12.2σ
N(1720)	$1700^{+30}_{-28}^{+32}_{-35}$	450^{+109}_{-94}	55.6	6	9.6σ
N(2300)	$2300\substack{+40+109\\-30-0}$	$340\substack{+30+110\\-30-58}$	120.7	4	15.0σ
N(2570)	2570^{+19+34}_{-10-10}	250^{+14+69}_{-24-21}	78.9	6	11.7σ

Measurements of $\psi(3686) \rightarrow (\gamma) K^{\mp} \Lambda \bar{\Xi}^{\pm}$

BESIII: PRD 91, 092006 (2015)

• $\psi(3686) \rightarrow (\gamma) K^{\mp} \Lambda \overline{\Xi}^{\pm}; \Lambda \rightarrow p\pi, \overline{\Xi} \rightarrow \Lambda \pi; \Lambda \rightarrow p\pi$

Decay	Branching fraction
$\psi(3686) \rightarrow K^- \Lambda \bar{\Xi}^+$	$(3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$
$\psi(3686) \rightarrow \Xi(1690)^- \overline{\Xi}^+, \ \Xi(1690)^- \rightarrow K^- \Lambda$	$(5.21 \pm 1.48 \pm 0.57) \times 10^{-6}$
$\psi(3686) \rightarrow \Xi(1820)^- \overline{\Xi}^+, \ \Xi(1820)^- \rightarrow K^- \Lambda$	$(12.03 \pm 2.94 \pm 1.22) \times 10^{-6}$
$\psi(3686) \rightarrow K^- \Sigma^0 \overline{\Xi}^+$	$(3.67 \pm 0.33 \pm 0.28) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c0}, \ \chi_{c0} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.90 \pm 0.30 \pm 0.16) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c1}, \ \chi_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.32 \pm 0.20 \pm 0.12) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c2}, \ \chi_{c2} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.68 \pm 0.26 \pm 0.15) \times 10^{-5}$
$\chi_{c0} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.96 \pm 0.31 \pm 0.16) \times 10^{-4}$
$\chi_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.43 \pm 0.22 \pm 0.12) \times 10^{-4}$
$\chi_{c2} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.93 \pm 0.30 \pm 0.15) \times 10^{-4}$

- Observe two hyperons, $\Xi(1690)$ and $\Xi(1820)$ in M(KA)
 - Both are well established states
 - Resonance parameters consistent with the PDG

$\Xi(1690)^{-}$	$\Xi(1820)^{-}$
$1687.7 \pm 3.8 \pm 1.0$	$1826.7 \pm 5.5 \pm 1.6$
$27.1 \pm 10.0 \pm 2.7$	$54.4 \pm 15.7 \pm 4.2$
74.4 ± 21.2	136.2 ± 33.4
4.9	6.2
32.8	26.1
$5.21 \pm 1.48 \pm 0.57$	$12.03 \pm 2.94 \pm 1.22$
1690 ± 10	1823 ± 5
< 30	24^{+15}_{-10}
	$\begin{array}{r} \Xi(1690)^- \\ 1687.7 \pm 3.8 \pm 1.0 \\ 27.1 \pm 10.0 \pm 2.7 \\ 74.4 \pm 21.2 \\ 4.9 \\ 32.8 \\ 5.21 \pm 1.48 \pm 0.57 \\ 1690 \pm 10 \\ < 30 \end{array}$

Light meson decays

• Listed in many facilities' physics program:

(VES, Gams (-4π), CLEO, CLAS, Crystal Ball at MAINZ, WASA-at-COSY, KLOE-2, GlueX, BESIII)

- Unique place to test fundamental symmetries in QCD at low energy
- Probe physics beyond the Standard Model (SM):

 $\begin{array}{ll} n/n' \rightarrow 2\gamma & chiral anomaly \\ n/n' \rightarrow \pi + \pi - \pi^0 & quark masses \\ n' \rightarrow \gamma \pi + \pi - & box anomaly \\ n/n' \rightarrow \pi \pi & CP \text{ violation} \\ n/n' \rightarrow \mu^+ \mu^- \pi^0, e^+ e^- \pi^0 & C \text{ violation} \\ n/n' \rightarrow \mu e & LF \text{ violation} \end{array}$

• η and η' events at BESIII

- $B(J/\psi \rightarrow \gamma \eta) \sim 1.10 \times 10^{-3} \rightarrow 1.44 \times 10^{6} \eta \text{ events};$
- B(J/ $\psi \rightarrow \gamma \eta$ ') ~ 5.15×10⁻³ \rightarrow 6.74×10⁶ η ' events;
- Results of η/η' presented in this talk are based on all the data sample of J/ψ events.

η

11

Observation of $\eta' \rightarrow \pi^+\pi^-\pi^+\pi^-$, $\pi^+\pi^-\pi^0\pi^0$

PRL 112, 251801(2014)

Upper limits @90% C.L. by CLEO (PRL102, 061801(2009)): $B(\eta' \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}) < 2.4 \times 10^{-4}$ $B(\eta' \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}) < 2.6 \times 10^{-3}$

Prediction by ChPT and VMD (PRD85, 014014(2012)): $B(\eta' \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}) = (1.0 \pm 0.3) \times 10^{-4}$ $B(\eta' \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}) = (2.4 \pm 0.7) \times 10^{-4}$

B($\eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$)=[8.53±0.69±0.64]×10⁻⁵

 $B(\eta' \rightarrow \pi^+ \pi^- \pi^0 \pi^0) = [1.82 \pm 0.35 \pm 0.18] \times 10^{-4}$

32

$\eta' \rightarrow \gamma \pi^+ \pi^-$ decay dynamics

 $\begin{array}{c|c} \eta,\eta' & \pi^* \\ \hline & \rho \\ & & \pi^* \end{array} \qquad \begin{array}{c} \eta,\eta' & \pi^* \\ & & & & \\ & & & \\ & &$

- High term of WZW $\chi PT \rightarrow box$ anomaly
- Studied by many experiments (CB, L3, ...)
- No consistent picture due to limited statistics
 - rho mass shift?
 - Box anomaly?

For the first time, ω contribution is observed Model dependent fit: the box diagram or $\rho(1450)$ is required Model independent fit: ω contribution and non-linear term is required

Amplitude analysis of the decays
$$\eta' o \pi^+\pi^-\pi^0$$
 and $\eta' o \pi^0\pi^0\pi^0$

arXiv:1606.03847

Significant P-wave contribution from $\eta' \to \rho^{\pm} \pi^{\mp}$ is observed for the first time in $\eta' \to \pi^{+} \pi^{-} \pi^{0}$ $775.49 (\text{fixed}) - i(68.5 \pm 0.2) \text{ MeV}$

In addition to the non-resonant S-wave component, a contribution from the σ meson is also essential. $(512 \pm 15) - i(188 \pm 12) \,\mathrm{MeV}$

See also "Matrix element for $\eta \rightarrow \pi^+\pi^-\pi^0$, $\eta/\eta' \rightarrow \pi^0\pi^0\pi^0$ " BESIII PRD 92 012024(2015)

34

Observation of $\eta' \rightarrow V e^+ e^-$

 $\eta'
ightarrow \gamma e^+ e^-$

Phys.Rev. D92, 012001 (2015)

$$F(q^{2})|^{2} = \frac{\Lambda^{2}(\Lambda^{2} + \gamma^{2})}{(\Lambda^{2} - q^{2})^{2} + \Lambda^{2}\gamma^{2}}$$
$$b = \frac{dF}{dq^{2}}\Big|_{q^{2} = 0} = \Lambda^{-2}$$
$$\Lambda = (0.79 \pm 0.04 \pm 0.02) \text{ GeV/c}^{2}$$

 γ =(0.13 ± 0.06 ± 0.03) GeV/c²

b=(1.60 ± 0.17 ± 0.08) GeV⁻²

In agreement with the result of η' → γμ⁺μ⁻ from CELLO: b = (1.7 ± 0.4) GeV⁻²

Theoretical predictions:

b = 1.45 GeV⁻² VMD model b = 1.60 GeV⁻² ChPT b = 1.53 $^{+0.15}_{-0.08}$ GeV⁻² Dispersion

 Theoretical predictions from VMD*: B(η'→ ωe⁺e⁻) ~ 2.0×10⁻⁴
 * PRC 61, 035206 (2000); EPJ A48, 190 (2012)

> First measurement of $\eta' \rightarrow \omega e^+e^-$: 8σ

 $B(\eta' \rightarrow \gamma \omega) = (2.55 \pm 0.03 \pm 0.16) \times 10^{-2}$ Good agreement with PDC

 $B(\eta' \rightarrow \omega e^+e^-) = (1.97 \pm 0.34 \pm 0.17) \times 10^{-4}$ Consist with prediction

 $\frac{\mathcal{B}(\eta' \rightarrow \omega e^+ e^-)}{\mathcal{B}(\eta' \rightarrow \omega \gamma)} = (7.71 \pm 1.34 \pm 0.54) \times 10^{-3}$

- BESIII collected world's largest samples of J/ ψ , ψ (2S), ψ (3770), Y(4260), ... from e⁺e⁻ production.
- It will continue to run for a few years.

	BESIII	Goal
J/ψ	1.3*10 ⁹ 21x BESII	10*10 ⁹
ψ'	0.6*10 ⁹ 24x CLEO-c	3*10 ⁹
ψ(3770)	2.9 fb ⁻¹ 21x CLEO-c	20 fb ⁻¹
Above open charm threshold	0.5 fb ⁻¹ @ ψ (4040), 1.9 fb ⁻¹ @~4260, 0.5 fb ⁻¹ @4360, 1.0 fb ⁻¹ @4420, 0.5 fb ⁻¹ @4600	5-10 fb ⁻¹
R scan and tau	3.8-4.6 GeV at 105 energy points 2.0-3.1 GeV at 20 energy points	
Y(2175)	100 pb ⁻¹ (2015)	
ψ (4170)	3 fb ⁻¹ (2016)	

Opportunities for hadron spectroscopy of both light quarks and heavy quarks.

Thank you