

4th workshop on the XYZ particles@buaa

Ξ_{cc} and T_{cc} states

Yan-Rui Liu (刘言锐) Shandong University 2016.11.24

Recent works about multiquark states

- "X(5568) and its partner states", 1603.01131
- "Heavy-flavored tetraquark states with the QQQQ configuration", 1605.01134
- "X(4140), X(4270), X(4500), and X(4700) and their cs<u>cs</u> tetraquark partners", 1608.07900
- "Triply heavy tetraquark states with the QQQq configuration", 1609.06117
- "*Hidden-charm pentaquarks and their partner states*", to be submitted

In collaboration with X. Liu, S.L. Zhu

Today's talk

• Xicc and Tcc: masses

• Xicc and Tcc: production

• Summary

Based on:

(1) Production of doubly charmed tetraquarks with exotic color configurations in electron–positron collisions, PLB 721, 56 (2013)

(2) Search for a doubly charmed hadron at *B factories, PRD 89, 094006 (2014)* Collaborators: Y. Jin, S.Y. Li, Z.G. Li, T. Yao, T. Hyodo, M. Oka, K. Sudoh, S. Yasui

Introduction

• Quark model

Quark-antiquark meson:

3-quark baryon:

- Exotic states
 Tetraquark, pentaquark,
 - hybrid, ...
- XYZ: four-quark states exist!

XYZ mesons

Quark model spectra

Charmonia and other mesons in GI model

Quark model spectra

• Charmed baryons in GI model

"Baryons in a relativized quark model with chromodynamics", PRD 34,2809 (1986) TABLE X. The Λ_c and Σ_c baryons.

> State, J^P Predicted masses (MeV) $\Lambda_c \frac{1}{2}^+$ $\Lambda_c^* \frac{1}{2}^ \Lambda_c^* \frac{3}{2}^ \Lambda_c^* \frac{5}{2}^ \Lambda_c^* \frac{7}{2}^ \Lambda_c^* \frac{1}{2}^+$ $\Lambda_c^* \frac{3}{2}^+$ $\Lambda_c^* \frac{5}{2}^+$ $\Lambda_c^* \frac{7}{2}^+$ $\Sigma_c \frac{1}{2}^+$ $\Sigma_c \frac{3}{2}^+$ $\Sigma_{c}^{*\frac{1}{2}}$ $\sum_{c=2}^{*} \frac{3}{2}^{-}$ $\Sigma_{c}^{*\frac{5}{2}}$ $\sum_{c}^{*} \frac{7}{2}^{-}$ $\Sigma_c^* \frac{1}{2}^+$ $\sum_{c}^{*} \frac{3}{2}^{+}$ $\sum_{c}^{*} \frac{5}{2}^{+}$ $\Sigma_{c}^{*}\frac{7}{2}^{+}$

No results for csu, ccq, ccc types

TABLE II: 3-quark baryons.

DOUBLY CHARMED BARYONS (C = +2)

 $\varXi_{cc}^{++} = ucc, \, \varXi_{cc}^{+} = dcc, \, \varOmega_{cc}^{+} = scc$

 $I(J^P) = ?(?^2)$ Status: *

OMITTED FROM SUMMARY TABLE

This would presumably be an isospin-1/2 particle, a $ccu \equiv_{cc}^{++}$ and a $ccd \equiv_{cc}^{+}$. However, opposed to the evidence cited below, the BABAR experiment has found no evidence for a \equiv_{cc}^{+} in a search in $\Lambda_c^+ K^- \pi^+$ and $\equiv_c^0 \pi^+$ modes, and no evidence of a \equiv_{cc}^{++} in $\Lambda_c^+ K^- \pi^+ \pi^+$ and $\equiv_c^0 \pi^+ \pi^+$ modes (AUBERT,B 06D). Nor have the BELLE (CHIS-TOV 06, KATO 14) or LHCb (AAIJ 13CD) experiments found any evidence for this state.

Ξ_{cc}^{+} MASS

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
3518.	9±0.9 OUR	AVERAGE						
3518	±3	6	¹ OCHERASH\	/105	SELX	Σ^{-} nucleus	≈ 600	GeV
3519	± 1	16	² MATTSON	02	SELX	Σ^- nucleus	≈ 600	GeV

¹ OCHERASHVILI 05 claims "an excess of 5.62 events over ... 1.38 ± 0.13 events" for a significance of 4.8 σ in pD⁺K⁻ events.

² MATTSON 02 claims "an excess of 15.9 events over an expected background of 6.1 ± 0.5 events, a statistical significance of 6.3 σ " in the $\Lambda_c^+ K^- \pi^+$ invariant-mass spectrum. The probability that the peak is a fluctuation increases from 1.0×10^{-6} to 1.1×10^{-4} when the number of bins searched is considered.

Ξ⁺_{cc} Mean Life

VALUE (10 ⁻¹⁵ s)	CL%	DOCUMENT ID		TECN	COMMENT
<33	90	MATTSON	02	SELX	Σ^- nucleus, $\approx 600~{\rm GeV}$

E DECAY MODES

Mode $\Lambda_c^+ K^- \pi^+$ $pD^+ K^-$

$\Gamma(pD^+K^-)/\Gamma(\Lambda_c^+)$	K ⁻ π ⁺)			Γ_2/Γ_1
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.36±0.21	6	OCHERASHVI05	SELX	$\Sigma^-~\approx~600~\text{GeV}$

E⁺_{cc} REFERENCES

KATO	14	PR D89 052003	Y. Kato et al.	(BELLE Collab.)
AAU	13CD	JHEP 1312 090	R. Aaij et al.	(LHCb Collab.)
AUBERT, B	06D	PR D74 011103	B. Aubert et al.	(BABAR Collab.)
CHISTOV	06	PRL 97 162001	R. Chistov et al.	(BELLE Collab.)
OCHERASHVL	05	PL B628 18	A. Ocherashvili et al.	(FNAL SELEX Collab.)
MATTSON	02	PRL 89 112001	M. Mattson et al.	(FNAL SELEX Collab.)

Quark model and hadrons

• Why four-quark states easier to find than heavier baryons?

Baryon or flavor number, Pauli principle

Xicc and Tcc:
 Similarity: [ud] ~ q in color 3

Quark model spectra

 Simplified model to explore mass splittings (S-wave)

$$H = \sum_{i} m_{i} + \sum_{i} T_{i} + V_{eff},$$

$$V_{eff} = \sum_{i < j} \left[A(r_{ij})\lambda_{i} \cdot \lambda_{j} + B \frac{\delta^{3}(r_{ij})}{m_{i}m_{j}} \lambda_{i} \cdot \lambda_{j} \sigma_{i} \cdot \sigma_{j} \right].$$

$$H = \sum_{i} m_{i}^{eff} + H_{eff},$$
$$H_{eff} = -\sum_{i < j} \frac{C_{ij}}{m_{i}m_{j}} \lambda_{i} \cdot \lambda_{j} \sigma_{i} \cdot \sigma_{j}.$$

 $m_Q
ightarrow \infty$

Masses

• Xicc: CMI model not applicable

Meaning?

Diquarks in conventional baryons

Color-spin interaction from gluon
 exchange
 TABLE I. The expectation values
 marks i and i with wire 0.1

$$H_{\text{int}} = \sum_{i < j} \frac{C_{\text{H}}}{m_i m_j} \left(-\frac{3}{8} \right) \vec{\lambda}_i \cdot \vec{\lambda}_j \, \vec{s}_i \cdot \vec{s}_j$$
$$C_{\text{H}} = v_0 \langle \delta(r_{ij}) \rangle$$

TABLE I. The expectation values of $(-3/8)\vec{\lambda}_i \cdot \vec{\lambda}_j \vec{s}_i \cdot \vec{s}_j$ for quarks *i* and *j* with spin s = 0, 1 and color $\bar{\mathbf{3}}, \mathbf{6}$.

- "Good" light diquark in Λ_c
 color=3, s=0, l=0
- "Bad" light diquark in Σ_c & Σ_c*
 color=3, s=1, l=1

Diquarks in conventional baryons

Heavy diquark in Ξ_{cc} cc: color=3, s=1, l=0 cc: color=6, s=0, l=0

 $|H_{QQ}\rangle = c_1|QQq\rangle + c_2|QQqg\rangle + c_3|QQqgg\rangle + \cdots$

• NRQCD $c_1 \sim c_2 \sim c_3 \cdots$

TABLE I. The expectation values of $(-3/8)\vec{\lambda}_i \cdot \vec{\lambda}_j \vec{s}_i \cdot \vec{s}_j$ for quarks *i* and *j* with spin s = 0, 1 and color $\bar{\mathbf{3}}, \mathbf{6}$.

J.P. Ma , Z.G. Si, Phys. Lett. B 568, 135 (2003).

Diquarks in T_{cc}

- T_{cc} with "Good" light diquark \overline{ud} : color=3, s=0, l=0 cc: color=3, s=1, l=0 I(J^P) = 0(1⁺) • Interactions \overline{ud} : 1/m_c⁰ dominant attraction $c\overline{q}$: 1/m_c¹ suppressed (0 in this case)
 - CC: 1/m_c² suppressed

Stable?

Stability of T_{cc} $I(J^P) = 0(1^+)$

- Lowest two-meson threshold: DD*
- Binding energy from this threshold B.E. $\approx 71 \text{ MeV} \quad \Leftarrow^{H_{\text{int}}} = \sum_{i < i} \frac{C_{\text{H}}}{m_i m_j} \left(-\frac{3}{8}\right) \vec{\lambda}_i \cdot \vec{\lambda}_j \vec{s}_i \cdot \vec{s}_j$

$T_{cc}[\bar{\mathbf{3}}, {}^{3}S_{1}] \& T_{cc}[\mathbf{6}, {}^{1}S_{0}]$

- Notation for the ground T_{cc} : $T_{cc}[\bar{3}, {}^{3}S_{1}]$
- Another configuration $T_{cc}[6, {}^{1}S_{0}]$ \overline{ud} : color=6, s=1, l=0 cc: color=6, s=0, l=0

TABLE I. The expectation values of $(-3/8)\vec{\lambda}_i \cdot \vec{\lambda}_j \vec{s}_i \cdot \vec{s}_j$ for quarks *i* and *j* with spin s = 0, 1 and color $\bar{\mathbf{3}}, \mathbf{6}$.

		3	6
Weaker attraction	s = 0	$-\frac{3}{2}$	$\left(\frac{3}{2}\right)$
		4	
	s = 1	$\frac{1}{4}$	$\left(-\frac{1}{8}\right)$

Decay of $T_{cc}[6, {}^1S_0]$

• Mass splitting between $T_{cc}[\bar{3}, {}^{3}S_{1}]$ and $T_{cc}[6, {}^{1}S_{0}]$ M.S. $\approx 125 \text{ MeV} \qquad \Leftarrow H_{int} = \sum_{i < i} \frac{C_{H}}{m_{i}m_{j}} \left(-\frac{3}{8}\right) \vec{\lambda}_{i} \cdot \vec{\lambda}_{j} \vec{s}_{i} \cdot \vec{s}_{j}$

Decay of $T_{cc}[6, {}^1S_0]$

- To $\pi\pi$ and $T_{cc}[\bar{\mathbf{3}}, {}^3S_1]$: kinematically forbidden
- To DD*: dominant decay, color recombination → may be narrow

- Two "narrow" T_{cc} states: $T_{cc}[\mathbf{\bar{3}}, {}^{3}S_{1}]$ $T_{cc}[\mathbf{6}, {}^{1}S_{0}]$
- Mixing?

Mixing between $T_{cc}[\bar{3}, {}^{3}S_{1}]$ and $T_{cc}[6, {}^{1}S_{0}]$

• T_{cc} studied in many Refs. Sup

Doubly charmed compact tetraquark I(J^P)=0(1⁺)

- S. Zouzou, B. Silvestre-Brac, C. Gignoux, J. M. Richard, Z. Phys. C30, 457 (1986).
- H. J. Lipkin, Phys. Lett. B 172, 242 (1986).
- L. Heller and J. A. Tjon, Phys. Rev. D 35, 969 (1987).
- J. Carlson, L. Heller, J. A. Tjon, Phys. Rev. D37, 744 (1988).
- B. Silvestre-Brac and C. Semay, Z. Phys. C 57, 273 (1993).
- B. Silvestre-Brac and C. Semay, Z. Phys. C 59, 457 (1993).
- C. Semay, B. Silvestre-Brac, Z. Phys. C61, 271-275 (1994).
- S. Pepin, F. Stancu, M. Genovese and J. M. Richard, Phys. Lett. B 393, 119 (1997).
- J. Schaffner-Bielich and A. P. Vischer, Phys. Rev. D 57 4142 (1998).
- D. M. Brink and F. Stancu, Phys. Rev. D 57, 6778 (1998).
- D. Janc and M. Rosina, Few Body Syst. 35, 175 (2004).
- J. Vijande, E. Weissman, A. Valcarce, N. Barnea, Phys. Rev. D76, 094027 (2007).
- J. Vijande, A. Valcarce and J. M. Richard, Phys. Rev. D 76, 114013 (2007).
- D. Ebert, R. N. Faustov, V. O. Galkin and W. Lucha, Phys. Rev. D 76, 114015 (2007).
- F. S. Navarra, M. Nielsen and S. H. Lee, Phys. Lett. B 649, 166 (2007).
- M. Zhang, H. X. Zhang and Z. Y. Zhang, Commun. Theor. Phys. 50, 437 (2008).
- S. H. Lee, S. Yasui, W. Liu, C. M. Ko, Eur. Phys. J. C54, 259-265 (2008).
- Y. Yang, C. Deng, J. Ping and T. Goldman, Phys. Rev. D 80, 114023 (2009).
- J. Vijande, A. Valcarce, N. Barnea, Phys. Rev. D79, 074010 (2009).
- T. F. Carames, A. Valcarce and J. Vijande, Phys. Lett. B 699, 291 (2011).
- J. Vijande, A. Valcarce and T. F. Carames, Few Body Syst. 50, 195 (2011).

Tcc mass

"Masses of tetraquarks with two heavy quarks in the relativistic quark model",
 D. Ebert et al, PRD 76, 114015 (2007)

System	$I(J^P)$	this work	[21]	[22]	[23]	[24]	[25]	[26]	[27]
$(cc)(\bar{u}\bar{d})$									
	$0(1^+)$	3935	3931	3876		3764	3927	3905	4000 ± 200
	$1(0^{+})$	4056				4150			
	$1(1^{+})$	4079				4186			
	$1(2^{+})$	4118				4211			
$(hh)(=\bar{J})$									

TABLE V. Comparison of different theoretical predictions for the masses of heavy $(QQ')(\bar{q}\bar{q}')$ tetraquarks (in MeV).

Xicc: production in e^+e^-

- Belle: $\sqrt{s} = 10.6 \text{ GeV}$
- N= σ ×Lint (Lint>1000 fb^{-1}, Babar: ~550)
- $\sigma \approx 150 \text{ fb}$ (hep-ph/0303145,Berezhnoy, Likhoded)
- σ≈230 fb (PLB 568, 135 (2003), J.P. Ma, Z.G. Si)
- σ≈(10-100) fb (PLB 721, 56 (2013), Hyodo et al)
- Z: $\sqrt{s} = m_Z$

"Doubly heavy baryon production at a high luminosity ete collider", J.Jiang et al, PRD 86, 054021(2012)

TABLE I. Total cross section (in pb) for the production of $\Xi_{QQ'}(n)$ baryons (where *n* stands for the intermediate diquark state) through e^+e^- annihilation at the Z^0 peak ($\sqrt{S} = m_Z$).

Production channel	Cross section (pb)
$e^+e^- \rightarrow \gamma \rightarrow \Xi_{cc}([{}^3S_1]_{\bar{\mathfrak{z}}})$	$8.90 imes 10^{-4}$
$e^+e^- \rightarrow \gamma \rightarrow \Xi_{cc}([{}^1S_0]_6)$	$4.29 imes 10^{-4}$
$e^+e^- \rightarrow Z^0 \rightarrow \Xi_{cc}([{}^3S_1]_{\bar{3}})$	0.727
$e^+e^- \rightarrow Z^0 \rightarrow \Xi_{cc}([{}^1S_0]_6)$	0.353

Tcc: production

TABLE I. Estimations for the T_{cc} tetraquark production at various facilities. At RHIC experiment, the results are for scattering of the nucleon on gold. Production rate for the gold-gold scattering is due to the small luminosity significantly smaller. Estimate for production at SELEX and in Belle *B* factory are obtained from experimental data on double charm production.

	LHC		Tevatron	RHIC	SELEX	Belle
	LHCb	ALICE				
Luminosity $(cm^{-2}s^{-1})$	10 ³³	10 ³³	8×10^{31}	2×10^{27}		
Cross section (nb) No. of events	27 9700/hour	58 20900/hour	21 600/hour	755 12/hour	5	1000/year

A. Del Fabbro, D. Janc, M. Rosina, D. Treleani, PRD71, 014008 (2005)

Same framework in discussing Xicc production in PLB 568, 135 (2003), J.P. Ma, Z.G. Si

T_{cc} production in $\mathrm{e^+e^-} \to \mathrm{T_{cc}} + \mathrm{X}$

Framework: NRQCD

Inclusive Ξ_{cc} production: J.P. Ma , Z.G. Si, Phys. Lett. B 568, 135 (2003).

$$\left\langle \mathcal{O}^{k}(\mathbf{T}_{cc}[\alpha]) \right\rangle \Big|_{k=\mathrm{LO}} = \begin{cases} h_{[\bar{\mathbf{3}},^{3}\mathbf{S}_{1}]} & \text{for } \alpha = [\bar{\mathbf{3}},^{3}\mathbf{S}_{1}] \\ h_{[6,^{1}\mathbf{S}_{0}]} & \text{for } \alpha = [\mathbf{6},^{1}\mathbf{S}_{0}] \end{cases}$$

$$d\sigma_{\alpha}(e^{+}e^{-} \to T_{cc}[\alpha] + X) = \sum_{k} \underbrace{d\hat{\sigma}(e^{+}e^{-} \to [cc]^{k}_{\alpha} + \bar{c} + \bar{c})}_{\text{short distance}} \underbrace{\langle \mathcal{O}^{k}(T_{cc}[\alpha]) \rangle}_{\text{long distance}}$$

$$\begin{aligned} & \operatorname{\mathsf{T}_{cc}} \text{ production } ie^+e^- \to \operatorname{\mathsf{T}_{cc}} + X \\ & \overbrace{e^+(p_1)}^{e^-(p_2)} & \overbrace{e^+(p_2)}^{e^-(p_2)} & \overbrace{e^+$$

where s is the total energy squared, $E_{3,4} = \sqrt{m_c^2 + |p_{3,4}|^2}$, $\theta' = \theta - \Theta$, $A = \sqrt{s}(\sqrt{s} - 2E_p)(\sqrt{s} - E_p)^2$, $B = 4(\sqrt{s} - E_p)^2$, and $C = 4p^2$.

Jiang, Wu, Liao, Zheng, Fang, PRD 86, 054021(2012)

Total cross section

Cf. Ecc production based on NRQCD formalism • Ma, Si, Physics Letters B568, 135 (2003) • Jian, Wu, Liao, Zheng, Fang, arXiv:1208.3051 [hep-ph]

$$\sum_{i < j} \left(-\frac{3}{16} \right) \vec{\lambda}_i \cdot \vec{\lambda}_j \frac{k}{2} |\vec{r_i} - \vec{r_j}|^2$$

Total cross section

$$\sum_{i < j} \left(-\frac{3}{16} \right) \vec{\lambda}_i \cdot \vec{\lambda}_j \, \frac{k}{2} |\vec{r}_i - \vec{r}_j|^2$$

Total cross section

• Xicc (Belle)

 $\sigma \approx 150 \text{ fb} \text{ (hep-ph/0303145,Berezhnoy, Likhoded)}$ $\sigma \approx 230 \text{ fb} \text{ (PLB 568, 135 (2003), J.P. Ma, Z.G. Si)}$ $\sigma \approx (10-100) \text{ fb} \text{ (PLB 721, 56 (2013), Hyodo et al)}$

• Tcc (Belle)

 $\sigma \approx 13.8$ fb, 4.1 fb for $T_{cc}[\bar{3}, \bar{}^{3}S_{1}]$ and $T_{cc}[6, \bar{}^{1}S_{0}]$, resp. (another parameter set: 65 fb, 21 fb)

Why are they not observed by Belle where Lint=1000 fb^{-1}?

Maybe backgroud affects

Search for Ξcc

• SELEX in $\Lambda_c^+ K^- \pi^+$ & $pD^+ K^-$

BELLE, LHCb, BABAR, & FOCUS give negative results!

SELEX: much smaller number of $\Lambda c(\sim 1650)$ than BABAR (~600,000) and Focus(~19,500)

The SELEX experiment at Fermilab is a 3stage magnetic spectrometer [3]. The negative 600 GeV/c Fermilab Hyperon Beam had about equal fluxes of π^- and Σ^- . The positive beam was 92% protons. For charm momenta in a range

(Taken from hep-ex/0209075)

- Exist? Why? How?
- Only produced in Σp collision?
 Special production mechanism: (dds)(uud)→dcc+...? ⇐ Vcs=0.97,Vcd=0.23
- BELLE&BABAR: 4π records more reactions
- Theories: observation at Belle is possible
- Maybe it could be observed if backgrounds are suppressed

- Signal: $e^+e^- \rightarrow c\bar{c}c\bar{c}+... \rightarrow \Xi^+_{cc} + X \rightarrow (\Lambda^+_c K^- \pi^+) + X$ background: $e^+e^- \rightarrow c\bar{c}+... \rightarrow \Lambda^+_c + X$ (1) background >> signal; (2) used K π in reconstructing Ξcc may also be from X
- Suggestion: 3-jet event shape
 [Jin et al., PRD 89, 094006 (2014)]
 Jade algorithm: y_{ij} = (p_i + p_j)²/E²_{cm}
 2 partons/particles in one jet when: y_{ij} < y_{cut}

• 3-jet event in Ecc production

From angular distribution analysis: Jet-2=awayside jet Most/second/least energetic jet =cc/awayside/nearside jet

- The 3 jets may be identified from energy ordering and jet direction;
- Once identified, backgrounds can be significantly suppressed while signals are not affected;
- Look for them in Λc⁺K⁻π⁺, D⁻K⁻π⁺ in Jet-1;
- Average of Ecc & Ecc* (Tcc & Tcc*): further study to distinguish them.

Summary

- Model calculations favor the existence of both Xicc and Tcc.
- Searching for them in e^+e^- process is possible

(σ≈10~230 fb, Lint=1000 fb^{-1} at Belle)

- Suppression of background is helpful
- More studies: on going ...

Thank you very much!