Missing Hyper-baryon Search

Bing-Song Zou Institute of Theoretical Physics, CAS

- 1) P.Gao, J.Shi, B.S.Zou, PRC86 (2012) 025201
- 2) J.Shi, B.S.Zou, PRC91(2015) 035202
- 3) J.J.Xie, J.J.Wu, B.S.Zou, PRC90 (2014) 055204
- 4) J.J.Wu, B.S.Zou, Few Body System 56 (2015) 165
- 5) C.S.An, B.S.Zou, PRC89 (2014) 055209

Outline :

- 1. Why hyperon resonances ?
- 2. New results on $\Sigma^* \& \Lambda^*$ from CB data
- 3. Possible new sources for $\Sigma^* \& \Lambda^*$
- 4. Conclusions and Prospects

1. Why hyperon resonances ? Unquenched dynamics: gluons $\rightarrow qq$ crucial for quark confinement & hadron structure

quenched or unquenched quark models give very different predictions of hyperon spectrum

1/2⁻ baryon nonet with strangeness

- Mass pattern : quenched or unquenched ?
 - uds (L=1) $1/2^- \sim \Lambda^*(1670) \sim [us][ds] \overline{s}$
 - uud (L=1) $1/2^- \sim N^*(1535) \sim [ud][us] \overline{s}$
 - uds (L=1) $1/2^- \sim \Lambda^*(1405) \sim [ud][su] \overline{u}$
 - uus (L=1) $1/2^- \sim \Sigma^*(1390) \sim [us][ud] \overline{d}$

Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

• Strange decays of N*(1535) : PDG \rightarrow large $g_{N^*N\eta}$

 $J/\psi \rightarrow pN^* \rightarrow p(K\Lambda)/p(p\eta) \rightarrow large g_{N^*K\Lambda}$ Liu&Zou, PRL96 (2006) 042002; Geng,Oset,Zou&Doring, PRC79 (2009) 025203 $\gamma p \rightarrow p\eta' \& pp \rightarrow pp\eta' \rightarrow large g_{N^*N\eta'}$ M.Dugger et al., PRL96 (2006) 062001; Cao&Lee, PRC78(2008) 035207 $\pi^- p \rightarrow n\phi \& pp \rightarrow pp\phi \& pn \rightarrow d\phi \rightarrow large g_{N^*N\phi}$ Xie, Zou & Chiang, PRC77(2008)015206; Cao, Xie, Zou & Xu, PRC80(2009)025203

• Strange decays of $\Lambda^*(1670)$: PDG \rightarrow large $g_{\Lambda^*\Lambda\eta}$ narrower width (35MeV) than $\Lambda^*(1405)$

Distinctive

Predictions by quenched - & unquenched - quark models

Quenched quark model: Capstick-Roberts, Prog.Part.Nucl.Phys. 45 (2000) S241-S331 Unquenched model: Helminen-Riska, Nucl. Phys. A 699 (2002) 624 A.Zhang, S.L.Zhu et al., HEPNP 29 (2005) 250 **Alternative pictures :**

Hadronic molecules

 $N*(1535) \sim K\Sigma-K\Lambda$

 $\Lambda^*(1405) \sim \text{KN-}\Sigma\pi$

N*(1440) ~ Nσ

Penta-quark states

 $N^{*}(1440) \sim [ud][ud] \bar{q}$

- $N^{*}(1535) \sim [ud][us] \underline{s}$
- $\Lambda^*(1405) \sim [ud][sq] \overline{q}$

Kaiser, Weise, Oset, Ramos, Oller, Meissner, Hyodo, Jido, Hosaka, Oh, ...

Distinguishable model predictions for Σ^* of $3/2^-$ and $1/2^+$

	qqq	$\overline{\mathbf{q}}\mathbf{q}^6$ or $\overline{\mathbf{K}}\pi\mathbf{N}$ - $\pi\pi\mathbf{Y}$	Y
3/2-	Σ*(1650)	Σ*(1570)	Gal 2011
1/2+	Σ*(1720)	Σ*(1630-1656)	Oset 2008

Experiment knowledge on hyperon states still very poor !

Ω^* in PDG:

- **** $\Omega(1672) 3/2^+$,
 - *** Ω (2250)
 - ** Ω (2380), Ω (2470)

Ξ^* in PDG:

- **** $\Xi(1320) 1/2^+, \Xi(1530) 3/2^+$
 - *** $\Xi(1690), \Xi(1820) 3/2^{-}, \Xi(1950), \Xi(2030)$
 - ** $\Xi(2250), \Xi(2370)$
 - * $\Xi(1620), \Xi(2120), \Xi(2500)$

Σ* in PDG2012

****	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
***	$\Sigma^{*}(1660)1/2^{+}$ $\Sigma^{*}(1750)1/2^{-}$ $\Sigma^{*}(1940)3/2^{-}$ $\Sigma^{*}(2250)??$
**	$\begin{array}{llllllllllllllllllllllllllllllllllll$
*	$\Sigma^{*}(1480)??$ $\Sigma^{*}(1560)??$ $\Sigma^{*}(1580)3/2^{-}$ $\Sigma^{*}(1770)1/2^{+}$ $\Sigma^{*}(1840)3/2^{+}$ $\Sigma^{*}(2000)3/2^{-}$ $\Sigma^{*}(2070)5/2^{+}$ $\Sigma^{*}(2100)7/2^{-}$ $\Sigma^{*}(3000)??$ $\Sigma^{*}(3170)??$

All from old experiments of 1970-1985 !! No established $1/2^{-} \Sigma^{*}$, Ξ^{*} , Ω^{*} !

2. New results on $\Sigma^* \& \Lambda^*$ from CB data

Crystal Ball: Prakhov et al., PRC 80(2009) 025204 $K^- + p \rightarrow \pi^0 + \Lambda$ & $K^- + p \rightarrow \pi^0 + \Sigma^0$ p_K=514-750 MeV, $\sqrt{s} = 1569 - 1676$ MeV

The high precision new data can give valuable information on $\Sigma^* \& \Lambda^*$

 $\Sigma^*(1620)1/2^- \rightarrow$ supporting evidence for quenched qqq models ?

Problem : evidence for its existence is very shaky !

Among 4 references listed in PDG for it:

One without PWA for J^p

Two based on multi-channel analysis gave contradicted BRs Other later multi-channel analyses claim to $\Sigma^*(1660)1/2^+$

The 4-th gave two comparable solutions with and without it by fitting K⁻ n $\rightarrow \pi^- \Lambda$ data W.A. Morris et al., PRD17, 55 (1978)

Is the new CB data compatible with the old K⁻n $\rightarrow \pi^-\Lambda$ data analyzed by W.A. Morris et al., claiming possible $\Sigma^*(1620)1/2^-$?

new CB data on K⁻p $\rightarrow \pi^0 \Lambda$ vs old K⁻n $\rightarrow \pi^- \Lambda$ data

new CB data on $K^-p \rightarrow \pi^0 \Lambda$: No $\Sigma(1620) 1/2^-$ needed !! P.Gao, J.Shi, B.S.Zou, PRC86 (2012) 025201

Polarization data – crucial for clarifying ambiguities !

CB Λ Polarization data is crucial for discriminating $\Sigma(1620)1/2^-$ from $\Sigma(1635)1/2^+$.

PDG2014 downgrades $\Sigma(1620)1/2^{-}$ from ** to *

New evidence for $\Sigma(1380)1/2^-$ from $\Lambda p \to \Lambda p\pi^0$

J.J.Xie, J.J.Wu, B.S.Zou, PRC90 (2014) 055204

Shi&Zou, PRC91(2015) 035202 :

new $\Lambda^{*}(1680)3/2^{+}$ M=1682±1 MeV, Γ =132±1 MeV

Further supports for a new $\Lambda^*(1680)3/2^+$ from coupled channel analysis of KN reactions

Kamano, Nakamura, Lee, Sato, PRC92 (2015) 025205 : M=1681+2 -8 MeV, Γ=10+22 -8 MeV

Fernandez-Ramirez, Danilkin, Manley, Mathieu, Szczepaniak PRD93 (2016) 034029 : $M=1690 \pm 4$ MeV, $\Gamma=46 \pm 11$ MeV

Liu&Xie, PRC86(2012)055202 new $\Lambda^*(1670)3/2^- \rightarrow \Lambda \eta$ with width of 1.5 MeV [us]{ds} s

3. Possible new sources for $\Sigma^* \& \Lambda^*$

1) charmonium decays

 $J / \psi \rightarrow BBM \implies N*, \Lambda*, \Sigma*, \Xi*,$

an ideal isospin and low spin filter from cc annihilation No contamination from t/u-channel scattering as in π N and KN high statistics extension to ψ', χ_{cJ}, η_c

The new picture for the $1/2^-$ octet predicts: Σ^* [us][du] \overline{d} ~ 1380 MeV Ξ^* [us][ds] \overline{u} ~ 1540 MeV

Mass spectum for BESII $J/\Psi \rightarrow pKA$ events

branching ratio * 10⁴ **J**/ψ decay p Δ(1232)⁺ $3/2^{+}$ < 1 SU(3) breaking $\overline{\Sigma}^{-}\Sigma(1385)^{+}$ 3.1 ± 0.5 $\overline{\Xi}^{+} \Xi (1530)^{-}$ 5.9 ± 1.5 $\overline{p} N^*(1535)^+ 1/2^ 10 \pm 3$ SU(3) allowed $\overline{\Sigma}^{-}\Sigma(1380)^{+}$? $\overline{\Xi}^{+} \Xi (1540)^{-}$?

It is very important to check whether under the $\Sigma(1385)$ and $\Xi(1530)$ peaks there are $1/2^-$ components ?

 $\psi(2S) \rightarrow \Lambda \Sigma^+ \pi^- + c.c.$

Observation Ξ^* of $\psi(2S) \rightarrow (\gamma)K^-\Lambda \Xi^++c.c.$

106 M ψ(2S)	PRD 91, 092006 (2015)
Ξ(1690) ⁻ and Ξ(1	820) ⁻ observed in M(KΛ)
Mass and width o	onsistent with PDG

First observation in Charmonium decay

Decay	Branching fraction
$\psi(3686) \rightarrow K^- \Lambda \Xi^+$	$(3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$
$\psi(3686) \rightarrow \Xi(1690)^{-}\Xi^{+}$,	$(5.21 \pm 1.48 \pm 0.57) \times 10^{-6}$
$\Xi(1690)^- \rightarrow K^-\Lambda$	
$\psi(3686) \rightarrow \Xi(1820)^-\Xi^+$,	$(12.03 \pm 2.94 \pm 1.22) \times 10^{-6}$
$\Xi(1820)^- \rightarrow K^-\Lambda$	(2, 27, 1, 2, 22, 1, 2, 22), 12-5
$\psi(3686) \rightarrow K^-\Sigma^0\Xi^+$	$(3.67 \pm 0.33 \pm 0.28) \times 10^{-3}$

What's J^{p} of $\Xi(1690)$? $\Xi(1540)$ in $\Xi\Xi\pi$?

2) $\bar{\nu}_{e/\mu} + p \rightarrow e^+/\mu^+ + \pi + \Lambda/\Sigma$, Wu, Zou, FBS 56 (2015) 165

MiniBooNE \rightarrow an ideal place for studying $\Sigma^* \& \Lambda^*$ below Kp threshold

3) $A_c^+ \rightarrow A \pi^+ \pi^0$ BR=3.6%

 $Λ_c$ production from πp, γp, e+e– at BESIII, JPARC, JLAB, BelleII

new $\Lambda^*(1670)3/2^-$ with width of 1.5 MeV [us]{ds} s from $K^-p \rightarrow \Lambda\eta$ Liu&Xie, PRC86(2012)055202

Belle: $\Lambda_c^+ \rightarrow p \ K^- \pi^+$, PRL117 (2016) 011801 May be checked by BESIII on $\Lambda_c^+ \rightarrow p \ K^- \pi^+ \& \Lambda \eta \ \pi^+$

4) K⁻, K_L beam experiments at JPARC&Jlab

Elegant new source for $\Lambda^*, \Sigma^*, \Xi^* \& \Omega^*$ hyperon spectroscopy $K^-p \rightarrow \Sigma^0 \pi^0, \Sigma^{*0} \pi^0, \Lambda \eta, \Lambda \pi^0 \pi^0$: $\Lambda^*(1680)3/2^+, \Lambda^*(1670)3/2^ K^-p \rightarrow \Sigma^0 \pi^0 \pi^0$: $\Sigma^*(1380)1/2^-, \Sigma^*(1540)3/2^ K_Lp \rightarrow \Lambda \pi^+, \Sigma^0 \pi^+, \Sigma^+ \pi^0, \Sigma^{*0} \pi^+, \Sigma^{*+} \pi^0$: $\Sigma^*(1540)3/2^ K_Lp \rightarrow \Sigma^0 \eta \pi^+, \Lambda \eta \pi^+$: $\Sigma^*(1380)1/2^-, \Sigma^*(1540)3/2^-, \Lambda^*(1670)3/2^-$

Prediction of Narrow N^* and Λ^* Resonances with Hidden Charm above 4 GeV

Jia-Jun Wu,^{1,2} R. Molina,^{2,3} E. Oset,^{2,3} and B. S. Zou^{1,3}

(0, -1)	1909	0.90	K* N	$\rho\Sigma$	ωA	$\phi \Lambda$	$K^*\Xi$	$J/\psi \Lambda$
	4308 4544	28.0 36.6	0	3.1 8.8	0.3 9.1	4.0	1.8 5.0	5.4 13.8
1/2,0)	4261	56.9	$\frac{\pi N}{3.8}$	$\frac{\eta N}{8.1}$	$\eta' N$ 3.9	KΣ 17.0)	$\eta_c N$ 23.4
0, -1)	4209	32.4	KN 15.8	$\frac{\pi\Sigma}{2.9}$	$\eta \Lambda$ 3.2	$\eta' \Lambda$ 1.7	KΞ 2.4	$\eta_c \Lambda$ 5.8
	4394	43.3	0	10.6	7.1	3.3	5.8	16.3

PHYSICAL REVIEW D

VOLUME 51, NUMBER 9

1 MAY 1995

$\Upsilon(3S) \rightarrow \Upsilon(1S) \pi \pi$ decay: Is the $\pi \pi$ spectrum puzzle an indication of a $b\bar{b}q\bar{q}$ resonance?

V. V. Anisovich, ^{1,2} D. V. Bugg, ¹ A. V. Sarantsev, ^{1,2} and B. S. Zou¹ ¹Queen Mary and Westfield College, London E1 4NS, United Kingdom ²Petersburg Nuclear Physics Institute, Gatchina, 188350, Russia (Received 22 August 1994; revised manuscript received 2 February 1995)

The $\pi\pi$ mass spectrum in $\Upsilon(3S) \rightarrow \Upsilon(1S)\pi\pi$ has a peculiar double peak structure. This structure and the $\Upsilon(1S)\pi$ spectrum are reproduced by introducing a triangle singularity associated with a $b\bar{b}\pi$ resonance $(J^P = 1^+)$ in the mass range 10.4–10.8 GeV.

Belle Collaboration, PRL108 (2012) 122001 \rightarrow Z_b(10610), Z_b (10650) "Observation of Two Charged Bottomoniumlike Resonances in Y(5S) Decays" Y.H.Chen, J.T.Daub, F.K.Guo, B.Kubis, Ulf-G.Meißner, B.S.Zou, "The effect of Z_b states on Y(3S) \rightarrow Y(1S) $\pi\pi$ decays", PRD93 (2016) 034030 **Predictions for the lowest** Ω^* by various models:

 $\Omega^*(x/2^-)$ as sss (L=1): ~ 2020 MeV

Chao, Isgur, Karl, PRD38(1981)155

Ω*(1/2⁻) as KΞ bound state: ~ 1805 MeV W.L.Wang, F.Huang, Z.Y.Zhang, F.Liu, JPG35 (2008) 085003

 $\Omega^{*}(x/2^{-})$ as usss (L=0): ~ 1820 MeV Yuan-An-Wei-Zou-Xu, PRC87(2013)025205

Ω*(3/2⁻) as sss - uusss mixture : ~ 1780 MeV by instanton/NJL interaction An-Metsch-Zou, PRC87(2013) 065207; An-Zou, PRC89 (2014) 055209

K10@JPARC: $K^-p \rightarrow K^+ K^0 \Omega^* \implies \Omega^*(1800)$?!

4. Conclusions and Prospects

- New hyperons support unquenched quark picture new $\Sigma^*(1380)1/2^-$ replaces $\Sigma^*(1620)1/2^{-**}$ new $\Lambda^*(1680)3/2^+$ replaces $\Lambda^*(1690)3/2^{-****}$ new $\Lambda^*(1670)3/2^-$ with width of 1.5 MeV [ud]{ss} s $\rightarrow \Lambda \eta$ Liu&Xie, PRC86(2012)055202 new $\Sigma^*(1540) 3/2^-$
 - 3/2⁻ baryon nonet with strangeness
 - $\Lambda^{*}(1670) \sim [ud]\{ss\} s$
 - $N^{*}(1520) \sim [ud]{uq}_{q}$
 - $\Lambda^*(1520) ~ [ud]{su} \underline{u}$
 - $\Sigma^{*}(1540) \sim [ud]{sd} d$

pentaquark prediction: $\Xi(1630)1/2^{-}, \Xi(1690)3/2^{-} \& \Omega(1800)x/2^{-}$

• All these and more new hyperons can be studied by BESIII, BelleII & forthcoming K beam experiments !

Thanks !